Периодическая таблица менделеева

Применение молибдена

Жаропрочные сплавы

Техника сверхскоростных и космических полетов ставит перед металлургами задачу получать все более жаростойкие материалы. Прочность при высоких температурах зависит прежде всего от типа кристаллической решетки и, конечно, от химической природы материала. Температурный предел эксплуатации титановых сплавов 550-600°C, молибденовых — 860, а титано-молибденовых — 1500°C.

Чем объяснить столь значительный скачок? Его причина — в строении кристаллической решетки. В объемно-центрированную структуру молибдена внедряются посторонние атомы, на этот раз атомы титана. Получается так называемый твердый раствор внедрения, структуру которого можно представить так. Атомы молибдена, металла- основы, располагаются по углам куба, а атомы добавленного металла, титана, — в центрах этих кубов. Вместо объемноцентрированной кристаллической решетки появляется гранецентрированная, в которой процессы разупрочнения под действием температур происходят намного менее интенсивно.

В таком целенаправленном изменении кристаллической структуры металлов состоит один из основных принципов легирования.

Другая причина столь резкого увеличения жаропрочности кроется в том, что сплавляются очень непохожие металлы — молибден и титан. Это общее правило: чем больше разница между атомами легирующего металла и металла-основы, тем прочнее образующиеся связи. Металлическая связь как бы дополняется химической.

Легирование, однако, вовсе не последнее слово в решении проблемы жаропрочных сплавов. Уже в наше время обнаружены необычайные свойства нитевидных кристаллов, или «усов». Прочность их по сравнению с металлами, обычно используемыми в технике, поразительно велика. Объясняется это тем, что кристаллическая структура усов практически лишена дефектов, и техника сверхскоростных полетов берет на вооружение усы, создавая с их помощью композиционные жаропрочные материалы. Один из таких материалов — это окись алюминия, армированная молибденовыми усами, другой представляет собой начиненный той же арматурой технический титан. По сравнению обычным титаном этот материал может работать в жестких условиях в 1000 раз дольше.

Что можно противопоставить огненному смерчу, обрушивающемуся на космический корабль при входе в плотные слои атмосферы? Прежде всего теплозащитную обмазку и охлаждение. Да, охлаждение, подобное в принципе охлаждению автомобильных двигателей с помощью радиаторов. Только работать здесь должны более энергоемкие процессы. Много тепла нужно на испарение веществ, но еще больше на сублимацию — перевод из твердого состояния непосредственно в газообразное. При высоких температурах сублимировать способны молибден, вольфрам, золото.

Покрытие носовой части корабля молибденом или другим из перечисленных (более дорогих) металлов в значительной мере ослабит силу огненного смерча, через который надо пройти возвращаемому аппарату космического корабля.

Другие области применения молибдена

Сплав из молибдена с вольфрамом в паре с чистым вольфрамом можно использовать для измерения температуры до 2900°C в восстановительной атмосфере. Молибденовая проволока может служить обмоткой в высокотемпературных (до 2200°C) индукционных печах, но опять-таки только не в окислительной среде.

В технике используют и вредное в принципе свойство молибдена окисляться при повышенной температуре. Молибденом пользуются для очистки благородных газов от примеси кислорода. Для этого аргон или неон пропускают над нагретой до 600-900°C молибденовой поверхностью, и она жадно впитывает кислород.

Тугоплавкий, ковкий, не тускнеющий, обладающий приятным цветом молибден получил признание у ювелиров. Им иногда заменяют драгоценную платину.

В химической промышленности молибден и соли молибденовой кислоты применяют как катализаторы. Кожевенники добавляют некоторые соединения молибдена в дубильные растворы, чтобы улучшить качество натуральной кожи.

А молибденит, который 200 лет назад не отличали от графита, в наше время иногда применяют вместо графита как высокотемпературную смазку. Ведь по кристаллической структуре он действительно подобен графиту.

И еще молибден так же, как бор, медь, марганец, цинк, — жизненно необходимый микроэлемент, обладающий специфическим действием на растительные и животные организмы. Впрочем, это тема самостоятельного рассказа

А доказывать важность и необходимость этого элемента для техники после всего, что уже рассказано, вряд ли нужно. Нельзя считать его бесполезным и для науки XX в., хотя бы потому, что благодаря молибдену был, наконец, открыт первый искусственный элемент — технеций

Физико-химические свойства молибдена

МОЛИБДЕН — (Molybdenum), Mo — химический элемент 6 (VI Б) группы периодической системы, атомный номер 42, атомная масса 95,94. Известен 31 изотоп молибдена с 83Мо по 113Мо. Из них стабильные: 92
Мо, 94
Мо — 98
Мо. Шесть этих изотопов и 100
Мо (Т½ = 1,00·1019
лет) встречаются в природе: 92
Мо (14,84%), 94
Мо (9,25%), 95
Мо (15,92%), 96
Мо (16,68%), 97
Мо (9,55%), 98
Мо (24,13%), 100
Мо (9,63%). Самые нестабильные изотопы элемента № 42 имеют периоды полураспада менее 150 нс. Наиболее устойчивая степень окисления +6.

Внешний вид металлического молибдена зависит от способа его получения. Компактный (в виде слитков, проволоки, листов, пластин) молибден — довольно светлый, но блеклый металл, а молибден, полученный в виде зеркала разложением, например, кабонила — блестящий, но серый.

Молибденовый порошок имеет темно-серый цвет. Плотность молибдена 10280 кг/м3. Температура плавления 2623° С, кипения 4639° С. Известна только одна (при обычном давлении) кристаллическая модификация металла с кубической объемноцентрированной решеткой.

В совершенно чистом состоянии компактный молибден пластичен, ковок, тягуч, довольно легко подвергается штамповке и прокатке. При высоких температурах (но не в окислительной атмосфере) прочность молибдена превосходит прочность большинства остальных металлов.

При загрязнении углеродом, азотом или серой молибден, подобно хрому, становится хрупким, твердым, ломким, что существенно затрудняет его обработку. Водород очень мало растворим в молибдене, поэтому не может заметно влиять на его свойства.

Молибден — хороший проводник электричества, он в этом отношении уступает серебру всего в 3 раза. Электропроводность молибдена больше, чем у платины, никеля, ртути, железа и многих других металлов. В обычных условиях молибден устойчив даже во влажном воздухе.

Его реакционная способность зависит от степени измельченности, и мелкий порошок все же медленно окисляется во влажном воздухе, давая так называемую молибденовую синь.

Энергичное взаимодействие молибдена с водяным паром начинается при 700° С, а с кислородом — при 500° С:

2Mo + 3O2
= 2MoO3
.

Молибден сгорает в атмосфере фтора уже при 50-60° С, реакции с другими галогенами протекают при более высоких температурах:

Mo + 3F2
= MoF6

2Mo + 5Cl2
= 2MoCl5
.

Разбавленные и концентрированные минеральные кислоты при нагревании растворяют молибден, но концентрированная HNO3
пассивирует его. При повышенных температурах с молибденом взаимодействуют сера, селен, мышьяк, азот, углерод и многие другие неметаллы. Основным промышленным способом получения металлического молибдена является реакция MoO3
с водородом:

MoO3
+ 3H2
= Mo + 3H2
O.

Процесс проходит в две или три стадии. Сначала молибденовый ангидрид восстанавливается до MoO2
, а затем до свободного металла. Первая стадия восстановления проводится при 550° С. Если вторая стадия протекает ниже 900° С, то получающийся металл содержит значительное количество кислорода и поэтому необходима третья стадия восстановления, при 1000-1100° С и выше. Получающийся таким способом металл вполне пригоден для обработки методами порошковой металлургии. Долгое время не удавалось получить молибден в компактном состоянии, и только в 1907 была предложена методика получения молибденовой проволоки. Порошок металла смешивался с органическим клеящим веществом (сахарным сиропом) и продавливался через отверстия матрицы для получения сформованных нитей. Через эти нити в атмосфере водорода пропускался постоянный электрический ток с маленькой разностью потенциалов, при этом происходил сильный разогрев, органическое вещество выгорало, а частицы металла спекались — получалась проволока. Для получения компактного металла сейчас используются приемы порошковой металлургии, позволяющие получать слитки при температурах значительно более низких, чем температура плавления металла. Порошкообразный молибден прессуется на гидравлических прессах в стальных матрицах, нагревается в атмосфере водорода при 1100-1300° С и спекается при 2200° С в атмосфере водорода в толстостенных молибденовых лодочках. Кроме того распространен метод плавления молибдена в вакууме, в электрической дуге, возникающей между стержнем из спрессованного порошка молибдена и охлаждаемым медным электродом при силе тока 7000А и небольшой разности потенциалов. Иногда применяется плавление в сфокусированном пучке электронов или аргоновой плазме.

Атом и молекула молибдена. Формула молибдена. Строение атома молибдена:

Молибден (лат. Molybdaenum, от др.-греч. μόλυβδος – «свинец») – химический элемент периодической системы химических элементов Д. И. Менделеева с обозначением Mo и атомным номером 42. Расположен в 6-й группе (по старой классификации – побочной подгруппе шестой группы), пятом периоде периодической системы.

Молибден – металл. Относится к группе переходных металлов.

Как простое вещество молибден при нормальных условиях представляет собой металл светло-серого цвета.

Молекула молибдена одноатомна.

Химическая формула молибдена Mo.

Электронная конфигурация атома молибдена 1s2 2s2 2p6 3s2 3p6 3d10 4s2 4p6 4d5 5s1. Потенциал ионизации атома молибдена равен 7,10 эВ (684,8 кДж/моль).

Строение атома молибдена. Атом молибдена состоит из положительно заряженного ядра (+42), вокруг которого по пяти оболочкам движутся 42 электрона. При этом 41 электрон находится на внутреннем уровне, а 1 электрон – на внешнем. Поскольку молибден расположен в пятом периоде, оболочек всего пять. Первая – внутренняя оболочка представлена s-орбиталью. Вторая – внутренняя оболочка представлены s- и р-орбиталями. Третья и четвертая – внутренние оболочки представлены s-, р- и d-орбиталями. Пятая – внешняя оболочка представлена s-орбиталью. На внутреннем энергетическом уровне атома молибдена на 4d-орбитали находится пять неспаренных электрона. На внешнем энергетическом уровне атома молибдена на s-орбитали находится один неспаренный электрон. В свою очередь ядро атома молибдена состоит из 42 протона и 54 нейтрона. Молибден относится к элементам d-семейства.

Радиус атома молибдена составляет 139 пм.

Атомная масса атома молибдена составляет 95,96(2) а. е. м.

Свойства осмия (таблица): температура, плотность, давление и пр.:

100 Общие сведения  
101 Название Осмий
102 Прежнее название
103 Латинское название Osmium
104 Английское название Osmium
105 Символ Os
106 Атомный номер (номер в таблице) 76
107 Тип Металл
108 Группа Драгоценный, переходный металл, металл платиновой группы
109 Открыт Смитсон Теннант, Великобритания, 1803 г.
110 Год открытия 1803 г.
111 Внешний вид и пр. Блестящий, серебристо-белый с голубоватым отливом металл
112 Происхождение Природный материал
113 Модификации
114 Аллотропные модификации
115 Температура и иные условия перехода аллотропных модификаций друг в друга
116 Конденсат Бозе-Эйнштейна
117 Двумерные материалы
118 Содержание в атмосфере и воздухе (по массе) 0 %
119 Содержание в земной коре (по массе) 1,8·10-7 %
120 Содержание в морях и океанах (по массе)
121 Содержание во Вселенной и космосе (по массе) 3,0·10-7 %
122 Содержание в Солнце (по массе) 2,0·10-7 %
123 Содержание в метеоритах (по массе) 0,000066 %
124 Содержание в организме человека (по массе)
200 Свойства атома
201 Атомная масса (молярная масса) 190,23(3) а. е. м. (г/моль)
202 Электронная конфигурация 1s2 2s2 2p6 3s2 3p6 3d10 4s2 4p6 4d10 4f14 5s2 5p6 5d6 6s2
203 Электронная оболочка

K2 L8 M18 N32 O14 P2 Q0 R0

204 Радиус атома (вычисленный) 185 пм
205 Эмпирический радиус атома* 130 пм
206 Ковалентный радиус* 128 пм
207 Радиус иона (кристаллический) (кристаллический) Os4+

77 (6) пм,

Os5+

71,5 (6) пм,

Os6+

68,5 (6) пм

Os7+

66,5 (6) пм,

Os8+

53 (4) пм

(в скобках указано координационное число – характеристика, которая определяет число ближайших частиц (ионов или атомов) в молекуле или кристалле)

208 Радиус Ван-дер-Ваальса
209 Электроны, Протоны, Нейтроны 76 электронов, 76 протонов, 114 нейтронов
210 Семейство (блок) элемент d-семейства
211 Период в периодической таблице 6
212 Группа в периодической таблице 8-ая группа (по старой классификации – побочная подгруппа 8-ой группы)
213 Эмиссионный спектр излучения
300 Химические свойства
301 Степени окисления -4, -2, -1, 0, +1, +2, +3, +4, +5, +6, +7, +8
302 Валентность I, II, III, IV, V, VI, VII, VIII
303 Электроотрицательность 2,2 (шкала Полинга)
304 Энергия ионизации (первый электрон) 814,17 кДж/моль (8,43823(20) эВ)
305 Электродный потенциал Os2+ + 2e– → Os, Eo = +0,85 В
306 Энергия сродства атома к электрону 106,1 кДж/моль
400 Физические свойства
401 Плотность* 22,59 г/см3 (при 20 °C и иных стандартных условиях, состояние вещества – твердое тело),

20 г/см3 (при 3033  °C и иных стандартных условиях, состояние вещества – жидкость)

402 Температура плавления* 3033 °C (3306 K, 5491 °F)
403 Температура кипения* 5012 °C (5285 K, 9054 °F)
404 Температура сублимации
405 Температура разложения
406 Температура самовоспламенения смеси газа с воздухом
407 Удельная теплота плавления (энтальпия плавления ΔHпл)* 31 кДж/моль
408 Удельная теплота испарения (энтальпия кипения ΔHкип)* 378 кДж/моль
409 Удельная теплоемкость при постоянном давлении 0,129 Дж/г·K (при 0-25 °C)
410 Молярная теплоёмкость 24,7 Дж/(K·моль)
411 Молярный объём 8,43 см³/моль
412 Теплопроводность 87,6 Вт/(м·К) (при стандартных условиях),

87,6 Вт/(м·К) (при 300 K)

500 Кристаллическая решётка
511 Кристаллическая решётка #1
512 Структура решётки

Гексагональная плотноупакованная

513 Параметры решётки a = 2,734 Å, c = 4,317 Å
514 Отношение c/a 1,579
515 Температура Дебая
516 Название пространственной группы симметрии P63/mmc
517 Номер пространственной группы симметрии 194
900 Дополнительные сведения
901 Номер CAS 7440-04-2

Примечание:

205* Эмпирический радиус осмия согласно и составляет 135 пм.

206* Ковалентный радиус осмия согласно и составляет 144±4 пм и 126 пм соответственно.

401* Плотность осмия согласно и составляет 22,587 / 22,61 г/см3 (при 0 °C и иных стандартных условиях, состояние вещества – твердое тело) и 22,587 г/см3 (при 20 °C и иных стандартных условиях, состояние вещества – твердое тело) соответственно.

402* Температура плавления осмия согласно составляет 3027 °C (3300,15 K, 5480,6 °F).

403* Температура кипения осмия согласно составляет 5000 °C (5273,15 K, 9032 °F).

407* Удельная теплота плавления (энтальпия плавления ΔHпл) осмия согласно и  составляет 31,7 кДж/моль и 31,8 кДж/моль соответственно.

408* Удельная теплота испарения (энтальпия кипения ΔHкип) осмия согласно и составляет 738 кДж/моль и 749 кДж/моль соответственно.

Голосование: лучшие производители смесителей для ванной

Свойства молибдена (таблица): температура, плотность, давление и пр.:

100 Общие сведения  
101 Название Молибден
102 Прежнее название
103 Латинское название Molybdaenum
104 Английское название Molybdenum
105 Символ Mo
106 Атомный номер (номер в таблице) 42
107 Тип Металл
108 Группа Переходный, тяжёлый металл
109 Открыт Карл Вильгельм Шееле, Швеция, 1778 г.
110 Год открытия 1778 г.
111 Внешний вид и пр. Блестящий металл серебристо-белого цвета
112 Происхождение Природный материал
113 Модификации
114 Аллотропные модификации
115 Температура и иные условия перехода аллотропных модификаций друг в друга
116 Конденсат Бозе-Эйнштейна
117 Двумерные материалы
118 Содержание в атмосфере и воздухе (по массе) 0 %
119 Содержание в земной коре (по массе) 0,00011 %
120 Содержание в морях и океанах (по массе) 1,0·10-6 %
121 Содержание во Вселенной и космосе (по массе) 5,0·10-7 %
122 Содержание в Солнце (по массе) 9,0·10-7 %
123 Содержание в метеоритах (по массе) 0,00012 %
124 Содержание в организме человека (по массе) 0,00001 %
200 Свойства атома  
201 Атомная масса (молярная масса) 95,96(2) а. е. м. (г/моль)
202 Электронная конфигурация 1s2 2s2 2p6 3s2 3p6 3d10 4s2 4p6 4d5 5s1
203 Электронная оболочка

K2 L8 M18 N13 O1 P0 Q0 R0

204 Радиус атома (вычисленный) 190  пм
205 Эмпирический радиус атома* 154 пм
206 Ковалентный радиус* 154 пм
207 Радиус иона (кристаллический) Mo3+

83 (6) пм,

Mo4+
79 (6) пм

Mo5+

75 (6) пм,

Mo6+

73 (6) пм

(в скобках указано координационное число – характеристика, которая определяет число ближайших частиц (ионов или атомов) в молекуле или кристалле)

208 Радиус Ван-дер-Ваальса
209 Электроны, Протоны, Нейтроны 42 электрона, 42 протона, 54 нейтрона
210 Семейство (блок) элемент d-семейства
211 Период в периодической таблице 5
212 Группа в периодической таблице 6-ая группа (по старой классификации – побочная подгруппа 6-ой группы)
213 Эмиссионный спектр излучения
300 Химические свойства  
301 Степени окисления -4, -2, -1, 0, +1,+2, +3, +4, +5, +6
302 Валентность II, III, IV, V, VI
303 Электроотрицательность 2,16 (шкала Полинга)
304 Энергия ионизации (первый электрон) 684,32 кДж/моль (7,09243(4) эВ)
305 Электродный потенциал Mo3+ + 3e– → Mo, Eo = -0,2 В
306 Энергия сродства атома к электрону 71,9 кДж/моль
400 Физические свойства
401 Плотность* 10,28 г/см3 (при 20 °C и иных стандартных условиях, состояние вещества – твердое тело),

9,33 г/см3 (при температуре плавления 2623 °C и иных стандартных условиях, состояние вещества – жидкость)

402 Температура плавления* 2623 °C (2896 K, 4753 °F)
403 Температура кипения* 4639 °C (4912 K, 8382 °F)
404 Температура сублимации
405 Температура разложения
406 Температура самовоспламенения смеси газа с воздухом
407 Удельная теплота плавления (энтальпия плавления ΔHпл)* 37,48 кДж/моль
408 Удельная теплота испарения (энтальпия кипения ΔHкип)* 598 кДж/моль
409 Удельная теплоемкость при постоянном давлении 0,251 Дж/г·K (при 25 °C),
0,272 Дж/г·K (при 0-100 °C)
410 Молярная теплоёмкость* 24,06 Дж/(K·моль)
411 Молярный объём 9,4 см³/моль
412 Теплопроводность 138 Вт/(м·К) (при стандартных условиях),

138 Вт/(м·К) (при 300 K)

500 Кристаллическая решётка
511 Кристаллическая решётка #1
512 Структура решётки

Кубическая объёмно-центрированная

513 Параметры решётки 3,147 Å
514 Отношение c/a
515 Температура Дебая 450 K
516 Название пространственной группы симметрии Im_ 3m
517 Номер пространственной группы симметрии 229
900 Дополнительные сведения
901 Номер CAS 7439-98-7

Примечание:

205* Эмпирический радиус атома молибдена согласно и составляет 139 пм.

206* Ковалентный радиус молибдена согласно и составляет 154±5 пм и 130 пм соответственно.

401* Плотность молибдена согласно и составляет 10,22 г/см3 (при 0 °C/20 °C и иных стандартных условиях, состояние вещества – твердое тело).

402* Температура плавления молибдена согласно составляет 2620 °С (2893,15 K, 4748 °F).

403* Температура кипения молибдена согласно и составляет 4611,85 °С (4885 K, 8333,33 °F) и 4630 °С (4903,15 K, 8366 °F) соответственно.

407* Удельная теплота плавления (энтальпия плавления ΔHпл) молибдена согласно и составляет 28 кДж/моль и 36,4 кДж/моль соответственно.

408* Удельная теплота испарения (энтальпия кипения ΔHкип) молибдена согласно составляет 582,4 кДж/моль.

410* Молярная теплоёмкость молибдена согласно составляет 23,93 Дж/(K·моль).

Презентация на тему: » Цинк Автор : Калашникова Д. 11 « а ». Электронное строение Атомная масса ( молярная масса )65,39 а. е. м. ( г / моль ) Электронная конфигурация [Ar] 3d.» — Транскрипт:

1

Цинк Автор : Калашникова Д. 11 « а »

2

Электронное строение Атомная масса ( молярная масса )65,39 а. е. м. ( г / моль ) Электронная конфигурация 3d 10 4s 2 Радиус атома 138 пм Электронная формула цинка 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 ион цинка.

3

Физические свойства В чистом виде довольно пластичный серебристо — белый металл, легкоплавкий и летучий. При комнатной температуре хрупок, при сгибании пластинки слышен треск от трения кристаллитов ( обычно сильнее, чем « крик олова »). При °C цинк пластичен. Примеси, даже незначительные, резко увеличивают хрупкость цинка. Собственная концентрация носителей заряда в цинке 13,1·10 28 м 3

4

Получение Цинк в природе как самородный металл не встречается. Основной способ получения цинка электролитический ( гидрометаллургический ). Обожженные концентраты обрабатывают серной кислотой ; получаемый сульфатный раствор очищают от примесей ( осаждением их цинковой пылью ) и подвергают электролизу в ваннах, плотно выложенных внутри свинцом или винипластом. Цинк осаждается на алюминиевых катодах, с которых его ежесуточно удаляют ( сдирают ) и плавят в индукционных печах. Обычно чистота электролитного цинка 99,95 %, полнота извлечения его из концентрата ( при учете переработки отходов ) %.

5

Химические свойства Цинк является амфотерным металлом, он растворим в кислотах и при нагревании с щелочами : Zn+2HCl=Zn С l +H Zn+2NaOH+2H O Na +H Оксид цинка способен реагировать с кислотами и с основаниями : ZnO+H SO =ZnSO +H O ZnO+2NaOH+H O=Na Гидроксид цинка не растворим в воде, но растворим в кислотах и основаниях : Zn(OH) +2HCl=ZnCl +2H O Zn(OH) +2NaOH=Na

6

Применение Чистый металлический цинк используется для восстановления благородных металлов, используется для извлечения серебра, золота ( и других металлов ) из чернового свинца в виде интерметаллидов цинка с серебром и золотом. Применяется для защиты стали от коррозии. Цинк используется в качестве материала для отрицательного электрода в химических источниках тока, то есть в батарейках и аккумуляторах. Очень важна роль цинка в цинк — воздушных аккумуляторах, которые отличаются весьма высокой удельной энергоёмкостью. Цинк вводится в состав многих твёрдых припоев для снижения их температуры плавления. Окись цинка широко используется в медицине как антисептическое и противовоспалительное средство. Также окись цинка используется для производства краски цинковых белил. Цинк важный компонент латуни. Сплавы цинка с алюминием и магнием ( ЦАМ, ZAMAK) благодаря сравнительно высоким механическим и очень высоким литейным качествам очень широко используются в машиностроении для точного литья. Хлорид цинка важный флюс для пайки металлов и компонент при производстве фибры. Сульфид цинка используется для синтеза люминофоров временного действия и разного рода люминесцентов на базе смеси ZnS и CdS. Люминофоры на базе сульфидов цинка и кадмия, также применяются в электронной промышленности для изготовления светящихся гибких панелей и экранов в качестве электролюминофоров и составов с коротким временем высвечивания. Теллурид, селенид, фосфид, сульфид цинка широко применяемые полупроводники. Селенид цинка используется для изготовления оптических стёкол с очень низким коэффициентом поглощения в среднем инфракрасном диапазоне, например, в углекислотных лазерах.

7

Действие на организм человека необходим для продукции спермы и мужских гормонов необходим для метаболизма витамина E. важен для нормальной деятельности простаты. участвует в синтезе разных анаболических гормонов в организме, включая инсулин, тестостерон и гормон роста. необходим для расщепления алкоголя в организме, так как входит в состав алкогольдегидрогеназы.

8

Содержание в продуктах питания Среди продуктов, употребляемых в пищу человеком, наибольшее содержание цинка в устрицах. Практически во всех хлебных злаках цинк содержится в достаточном количестве и в легкой — свариваемой форме. Поэтому, биологическая потребность организма человека в цинке обычно полностью обеспечивается ежедневным употреблением в пищу цельнозерновых продуктов ( нерафинированного зерна ).

9

Признаки нехватки цинка Признаки нехватки цинка потеря обоняния, вкуса и аппетита ломкость ногтей и появление белых пятнышек на ногтях выпадение волос частые инфекции плохое заживление ран позднее половое содержание импотенция утомляемость, раздражительность снижение способности к обучению диареи Признаки избытка цинка желудочно — кишечные расстройства головные боли тошнота

Облако тегов

Прокат и штамповка, применение

Из заготовок, получаемых при выплавке порошка, создают прокатные изделия — прутки и проволоку. Они состоят из чистого металла под названием молибден. Где применяется такая продукция? Наиболее часто её используют в изготовлении термопар, которые служат для измерения температур свыше 2000 ⁰C. Крючки и керны для навивки вольфрамовой нити в лампе накаливания также делают из молибденовой проволоки. Вводы катодов и фокусирующие электроды в и генераторных ламп должны быть надёжными и отвечать требованиям высокой тугоплавкости металла. Для этих целей отлично подходит прокат молибдена.

Прутки и пластины используются вместо электродов в высокотемпературных плавильных печах. Они должны находиться в специальной среде, состоящей из аргона, водорода либо вакуума. Благодаря тому, что молибден не вступает со стеклом в химические реакции, он применяется для изготовления деталей плавильной печи.

Рекомендации по продлению эксплуатационного ресурса

Примерный срок эксплуатации фирменной шины равняется суммарному ресурсу 3-х качественных пильных цепей, приводная звездочка меняется по состоянию. Специалисты рекомендуют использовать в работе комплект из нескольких цепей.

Основные факторы досрочного выхода шины из строя:

  • инициирующее быструю выработку паза и хвостовиков чрезмерное натяжение цепи или несоответствие ее шага характеристикам венца ведущей звездочки;
  • приложение значительных усилий при распиловке твердой или мерзлой древесины;
  • греется шина и интенсивно изнашивается из-за отсутствия подачи смазки, вследствие неисправности или неправильной регулировки штатного маслонасоса;
  • экономия средств на применении некачественного цепного масла или масляных суррогатов типа отработки.

Форсированный расход ресурса пильной гарнитуры имеет место при попадании в нее грунта или песка, работе новой цепи на изношенном венце ведущей звездочки.

Дополнительно: Бензопила MAKITA EA3202S40B, отзывы владельцев

Физиологическое действие

Где применяется молибден?

В истории самое первое применение молибдена было зафиксировано в Японии еще в 10-13 ст. Существует вероятность, что в те далекие времена, данный металл служил материалом для изготовления холодного оружия.

Сегодня молибденовая промышленность является достаточно развитой отраслью. И, кроме того, что в настоящее время продолжают производить чистый молибден и его сплавы, также существует множество его марок, каждая из которых предназначена для определенных целей. Самые известные марки молибдена:

  • МЧ — чистый молибден без присадок. Из этой марки производятся держатели вольфрамовых спиралей и нити накаливания, аноды генераторных ламп.
  • МЧВП — чистый молибден без присадок, произведенный методом вакуумной плавки.
  • МРН — молибден разного назначения, не содержит присадок, включает большее количество примесей по сравнению с марками МЧ и МЧВП. Предназначена для использования в производстве высокотемпературных нагревателей, экранов, электрических вводов в вакуумные приборы и установки.
  • МК — содержит кремнещелочную присадку.
  • ЦМ — в качестве присадки используются цирконий и/или титан.
  • МР — сплав молибдена с рением.
  • МВ — сплав молибдена с вольфрамом.

Таким образом, спустя целые столетия, молибден стал незаменимым компонентом во многих промышленных отраслях. Он применяется:

  • в качестве легирующего элемента стали;
  • при производстве жаропрочных сплавов, без которых не обходится авиационная, ракетная и ядерная техника;
  • для изготовления сплавов, обладающих антикоррозионными свойствами;
  • во время производства деталей электровакуумных приборов, нитей ламп накаливания;
  • для изготовления лопаток турбин;
  • в энергетических ядерных реакторах;
  • в качестве смазочных материалов, а также катализатора гидрогенизации;
  • при изготовлении лакокрасочных материалов;
  • в химической, нефтяной промышленности, а также в металлургии.

Роль в растении

Биохимические функции

Молибден входит в состав немногих растительных белков. Он поступает в растения в форме аниона Mo2-4 и концентрируется в растущих, молодых организмах. Наибольшее его количество содержат бобовые, причем, в листьях его больше, чем в корнях и стеблях. В листовых пластинках молибден сосредоточен в составе хлоропластов.

Установлено, что корневые клубеньки содержат в несколько раз больше молибдена, чем ткани листьев. Значительная часть элемента в клубеньках связана с нитратредуктазой корней и стеблей и, кроме того, нитрогеназой клубеньковых бактерий. Молибден – важный компонент нитрогеназы и нитратредуктазы. Эти два молибденсодержащих фермента непосредственно участвуют в метаболизме азота, играя важную роль как в фиксации N2, так и в восстановлении оксида азота NO3. Потребность растений в молибдене непосредственно связана с обеспечением их азотом. Однако установлено, что растения, поглощающие NH4–N, испытывают гораздо меньшую потребность в молибдене, чем усваивающие NO3–N.

Молибден присутствует и в других ферментах (оксидазах), ускоряющих разнообразные, не связанные между собой реакции. Основная ферментативная роль молибдена непосредственно связана с функцией переноса электронов. Этому способствует переменная валентность Mo.

Молибден, как и железо, необходим для синтеза леггемоглобина (белка – переносчика кислорода в клубеньках). Его дефицит приводит к изменению цвета клубеньков на желтый или серый (нормальная окраска красная). Известно более 20 молибденосодержащих ферментов. Среди них альдегидоксидаза (катализирует превращение абсцизового альдегида в фитогормон абсцизовую кислоту), сульфитоксилаза (окисляет SO2-3 до SO2-4), ксантиндегидрогеназа и другие. Во всех вышеперечисленных ферментах молибден присутствует в виде молибдоптерина, именуемого молибденовым фактором, что обеспечивает устойчивость молибдена к окислению.

Недостаток (дефицит) молибдена в растениях

Симптомы дефицита молибдена проявляются у растений, находящихся на кислых минеральных почвах с высоким содержанием гидроксидов марганца и железа. Обострение дефицита вызывает присутствие в почвенном растворе сульфатных анионов, конкурирующих с анионами молибдата. Критический уровень содержания молибдена в растениях колеблется от 0,1 до 1 мг/кг сухой массы листьев.

Изменение внутреннего строения

При дефиците молибдена растения становятся неустойчивы к низким температурам и дефициту воды. Наблюдаются нарушения в формировании пыльцы.

Внешние признаки

Например, у капусты пятнистость сопровождается увяданием краев листьев, а у томата и картофеля листовые пластинки закручиваются.

Недостаток молибдена негативно сказывается и на формировании цветков. У томатов они мельчают, почти сидят на стебле и не раскрываются, у цветной капусты деформируются и становятся рыхлыми. У бобовых при недостатке данного элемента нарушается образование клубеньков на корнях.

Избыток молибдена

Фитотоксичность молибдена проявляется только в очень высоких его концентрациях. Например, признаки молибденового отравления молодых проростков ячменя отмечались при содержании Mo 135 мг/кг сухой массы.

Избыток молибдена в растениях токсичен для животных и человека. Применять молибденовые микроудобрения следует с учетом токсичности этого элемента для животных и человека, проявляющейся даже при крайне низких концентрациях. Особенно это характерно для кормовых растений.

Молибден – малораспространенный элемент. Молибденовые удобрения получают из молибденовых руд. Массовая доля металла в них составляет 0,1–1 %. В дополнение к этому источнику, значительную часть молибдена добывают из различных отходов промышленности, в частности, электролампового производства.

Нахождение в природе

Содержание в земной коре — 3·10−4% по массе. В свободном виде молибден не встречается. В земной коре молибден распространён относительно равномерно. Меньше всего содержат молибдена ультраосновные и карбонатные породы (0,4 — 0,5 г/т). Концентрация молибдена в породах повышается по мере увеличения SiO2. Молибден находится также в морской и речной воде, в золе растений, в углях и нефти. Содержание молибдена в морской воде колеблется от 8,9 до 12,2 мкг/л для разных океанов и акваторий. Общим является то, что воды вблизи берега и верхние слои меньше обогащены молибденом, чем воды на глубине и вдали от берега. Наиболее высокие концентрации молибдена в породах связаны с акцессорными минералами (магнетит, ильменит, сфен), однако основная масса его заключена в полевых шпатах и меньше в кварце. Молибден в породах находится в следующих формах: молибдатной и сульфидной в виде микроскопических и субмикроскопических выделений, изоморфной и рассеянной (в породообразующих минералах). Молибден обладает большим сродством с серой, чем с кислородом, и в рудных телах образуется сульфид четырёхвалентного молибдена — молибденит. Для кристаллизации молибденита наиболее благоприятны восстановительная среда и повышенная кислотность. В поверхностных условиях образуются преимущественно кислородные соединения Мо6+. В первичных рудах молибденит встречается в ассоциации с вольфрамитом и висмутином, с минералами меди (медно-порфировые руды), а также с галенитом, сфалеритом и урановой смолкой (в низкотемпературных гидротермальных месторождениях). Хотя молибденит считается устойчивым сульфидом по отношению к кислым и щелочным растворителям, в природных условиях при длительном воздействии воды и кислорода воздуха молибденит окисляется, и молибден может интенсивно мигрировать с образованием вторичных минералов. Этим можно объяснить повышенные концентрации молибдена в осадочных отложениях — углистых и кремнисто-углистых сланцах и углях.

Известно около 20 минералов молибдена. Важнейшие из них: молибденит MoS2 (60 % Mo), повеллит СаМоО4 (48 % Мо), молибдит Fe(MoO4)3·nH2O (60 % Mo) и вульфенит PbMoO4.

Месторождения

Крупные месторождения молибдена известны в США, Мексике, Чили, Канаде, Австралии, Норвегии, России. В России молибден выпускают на Сорском ферромолибденовом заводе. Более 7 % от мировых запасов молибдена расположены в Армении, причем 90 % из них сосредоточены в Каджаранском медно-молибденовом месторождении.

В космосе

Аномально высокое содержание молибдена наблюдается в звездных образованиях, состоящих из красного гиганта (или сверхгиганта), внутри которого находится нейтронная звезда — объектах Ландау-Торна-Житковой.

Оцените статью
Рейтинг автора
5
Материал подготовил
Андрей Измаилов
Наш эксперт
Написано статей
116
Добавить комментарий