Сделать самому фильтр для сабвуфера несложно

ВВЕДЕНИЕ

В наше время высоких технологий всё более распространёнными становятся нелинейные нагрузки (частотные преобразователи, инверторы, системы бесперебойного питания, импульсные источники питания, люминесцентные и светодиодные лампы и т.п.). Из-за таких изменений в структуре нагрузки основной темой в этом десятилетии стали качество электроэнергии и снижение уровня гармоник. Проблемы, вызываемые гармониками, такие как перегрев трансформаторов и вращающихся машин, перегрузка проводников нейтрали, выход из строя конденсаторных батарей и т.п., приводят к повышению эксплуатационных расходов и также могут привести к снижению качества продукции и производительности труда. Кроме того, изменения в структуре генерации электроэнергии в сторону использования энергии ветра и солнечных батарей, которые тоже генерируют гармоники, также приводят к тому, что применение фильтров гармоник становится всё более важным для обеспечения стабильного энергоснабжения с приемлемым качеством электроэнергии.

Снизить уровень гармоник можно с использованием пассивных фильтров (составленных из конденсаторов, реакторов и резисторов) или активных фильтров (генерирующих гармоники в противофазе к гармоникам искажений и за счёт этого их уничтожающих)

Хотя основные принципы работы активных фильтров были выработаны ещё в 1970-е годы, они стали привлекать к себе повышенное внимание в последние несколько лет, потому что появилась возможность использования биполярных транзисторов с изолированным затвором (IGBT) и цифровых сигнальных процессоров (ЦСП). При этом разница в стоимости между активными и пассивными фильтрами становится не такой большой, как в прошлом. В этой статье сравниваются преимущества и недостатки активных и пассивных технологий фильтрации

Рассматриваются пассивные и активные решения для снижения уровня гармоник и стабилизации сети, направленные на решение проблем, которые возникают в современных областях применения и имеют тенденцию к возникновению в будущем

В этой статье сравниваются преимущества и недостатки активных и пассивных технологий фильтрации. Рассматриваются пассивные и активные решения для снижения уровня гармоник и стабилизации сети, направленные на решение проблем, которые возникают в современных областях применения и имеют тенденцию к возникновению в будущем.

Полезные советы

Шпаклевание потолка может выполнить каждый, при этом новичкам лучше всего начинать работы с полимерными смесями, их консистенция позволяет равномерно сравнять слои материала и не оставляет неровностей. Кроме этого, полимерная шпаклёвка не так быстро сохнет, как акриловая, поэтому в процессе отделки потолка можно не спешить.

Использовать можно как готовую, так и сухую смесь. С помощью финишной шпаклевки можно делать декорации узорами и добавлять специальные краски, которые позволят придать потолку более яркий белый цвет. Первый слой наносится вертикально, а второй горизонтально. Выравнивание поверхности необходимо осуществлять в закрытом помещении, не допуская появление сквозняка.

О том, как правильно шпаклевать потолок, смотрите в следующем видео.

И тут что-то пошло не так…

После воплощения схемы в железе, выяснилось, что сигнал на выходе буфера за 5-10 секунд после включения доходит до положительного напряжения питания. Ну и само собой, дальше схема ничего интересного не выдает.

В моем случае перед фильтром стоит разделительный конденсатор. А после фильтра — повторитель на ОУ. При этом возникла ситуация, что нет привязки операционных усилителей к земле по постоянному напряжению. Все соединения с землей идут только через конденсаторы, т.е. по переменному напряжению.

Как результат, конденсаторы заряжаются и схема перестает работать, как нам бы этого хотелось. Для решения проблемы оказалось достаточным установить постоянный резистор величиной в 1 МОм с выхода фильтра на землю.

Что касается качества звука, то тут никаких претензий к фильтру нет. До него были опробованы разные варианты фильтров, среди которых просто RC цепь в ОС ОУ и фильтр Баттерворта 2-го порядка, который для звуковых цепей оказался неприменим.

Применение

Для звуковых волн твёрдый барьер играет роль фильтра нижних частот — например, в музыке, играющей в другой комнате, легко различимы басы, а высокие частоты отфильтровываются (звук «оглушается»). Точно так же ухом воспринимается музыка, играющая в закрытой машине.

Электронные фильтры нижних частот используются для подавления пульсаций напряжения на выходе выпрямителей переменного тока, для разделения частотных полос в акустических системах, в системах передачи данных для подавления высокочастотных помех и ограничения спектра сигнала, а также имеют большое число других применений.

Радиопередатчики используют ФНЧ для блокировки гармонических излучений, которые могут взаимодействовать с низкочастотным полезным сигналом и создавать помехи другим радиоэлектронным средствам.

Механические низкочастотные фильтры часто используют в контурах АВМ непрерывных систем управления в качестве корректирующих звеньев.

В обработке изображений низкочастотные фильтры используются для очистки картинки от шума и создания спецэффектов, а также при сжатии изображений.

Модели с мощными преобразователями

Фильтры с мощными преобразователями позволяют значительно повысить коэффициент пропускания – до уровня 33 Гц. При этом отрицательное сопротивление в системе не будет превышать 4 Ом. Катушки в данном случае используются электрические. Подвижные элементы, в свою очередь, не применяются. Преселектор в фильтре, как правило, располагается сразу за катушкой. Чтобы минимизировать риски различных сбоев, используют специальные стабилитроны.

Резисторы в данном случае следует подбирать аналогового типа. Чтобы уменьшить обратную связь в устройстве, конденсаторы устанавливают попарно. В некоторых случаях стабилитроны применяются двухстороннего действия. Однако недостатки у них также имеются. В первую очередь среди них следует отметить довольно резкое повышение чувствительности устройства.

Частота среза

Диапазон частот, для которого фильтр не вызывает значительного ослабления, называется полосой пропускания, а диапазон частот, для которых фильтр вызывает существенное ослабление, называется полосой задерживания. Аналоговые фильтры, такие как RC фильтр нижних частот, переходят из полосы пропускания в полосу задерживания всегда постепенно. Это означает, что невозможно идентифицировать одну частоту, на которой фильтр прекращает пропускать сигналы и начинает их блокировать. Однако инженерам нужен способ, чтобы удобно и кратко охарактеризовать амплитудно-частотную характеристику фильтра, и именно здесь в игру вступает понятие частоты среза.

Когда вы посмотрите на график амплитудно-частотной характеристики RC фильтра, вы заметите, что термин «частота среза» не очень точен. Изображение спектра сигнала, «разрезанного» на две половины, одна из которых сохраняется, а другая отбрасывается, неприменимо, поскольку затухание увеличивается постепенно по мере того, как частоты перемещаются от значений ниже частоты среза к значениям выше частоты среза.

Частота среза RC фильтра нижних частот фактически является частотой, на которой амплитуда входного сигнала уменьшается на 3 дБ (это значение было выбрано, поскольку уменьшение амплитуды на 3 дБ соответствует снижению мощности на 50%). Таким образом, частоту среза также называют частотой -3 дБ, и на самом деле это название является более точным и более информативным. Термин полоса пропускания относится к ширине полосы пропускания фильтра, и в случае фильтра нижних частот полоса пропускания равна частоте -3 дБ (как показано на диаграмме ниже).

Как объяснялось выше, пропускающее низкие частоты поведение RC фильтра обусловлено взаимодействием между частотно-независимым импедансом резистора и частотно-зависимым импедансом конденсатора. Чтобы определить подробности амплитудно-частотной характеристики фильтра, нам нужно математически проанализировать взаимосвязь между сопротивлением (R) и емкостью (C); мы также можем манипулировать этими значениями, чтобы разработать фильтр, который соответствует точным спецификациям. Частота среза (fср) RC фильтра нижних частот рассчитывается следующим образом:

Давайте посмотрим на простой пример. Значения конденсаторов являются более сдерживающими, чем значения резисторов, поэтому мы начнем с распространенного значения емкости (например, 10 нФ), а затем воспользуемся формулой для определения необходимого значения сопротивления. Цель состоит в том, чтобы разработать фильтр, который будет сохранять аудиосигнал 5 кГц и подавлять шум 500 кГц. Мы попробуем частоту среза 100 кГц, а позже в этой статье мы более тщательно проанализируем влияние этого фильтра на обе частотные составляющие.

Таким образом, резистор 160 Ом в сочетании с конденсатором 10 нФ даст нам фильтр, который дает амплитудно-частотную характеристику, близкую к необходимой.

Модели с полевыми конденсаторами

Фильтр низких частот с использованием полевых конденсаторов является довольно распространенным. Во многом это связано с его дешевизной. В данном случае параметр полосы пропускания будет находиться на уровне 5 Гц. В свою очередь, отрицательное сопротивление цепи зависит от установленных транзисторов. Если использовать одноканальные элементы, то они позволят значительно сократить образцовое напряжение.

Отклонение фактической индуктивности у фильтра зависит от чувствительности прибора. Стабилитроны в системе применяются довольно редко. Однако если параметр отрицательного сопротивления превышает 5 Ом, то их следует использовать. Дополнительно можно задуматься над применением тиристоров. Во многом данные элементы позволят справиться с дипольностью в системе. Таким образом, чувствительность прибора значительно снизится.

Практическая работа

Плавно переходим от теории к практике. Достались мне винтажные колонки под названием Kompaktbox B 9251. И первое что было сделано – произведено прослушивание.

С холодным камнем звук был в среднем не плох, а если говорить конкретно, то местами хороший, а местами как попало. С теплой лампой играть вообще отказались. На основе этих наблюдений был сделан вывод о наличии глубоко зарытого потенциала. Вскрытие показало, что немецкие инженеры решили обойтись одним единственным конденсатором последовательно с ВЧ головкой. Измерение АЧХ дало страшную картину

На рисунке АЧХ одной колонки, кривая с глубокой дыркой на 6 кгц из-за плохого контакта разъема, на нее внимание не обращать. АЧХ отдельно ВЧ и НЧ приведены ниже

Расчет амплитудно-частотной характеристики фильтра

Мы можем рассчитать теоретическое поведение фильтра нижних частот, используя частотно-зависимую версию типового расчета делителя напряжения. Выходное напряжение резистивного делителя напряжения выражается следующим образом:

Рисунок 9 – Резистивный делитель напряжения

RC фильтр использует эквивалентную структуру, но вместо R2 у нас конденсатор. Сначала мы заменим R2 (в числителе) на реактивное сопротивление конденсатора (XC). Далее нам нужно рассчитать величину полного сопротивления и поместить его в знаменатель. Таким образом, мы имеем

Реактивное сопротивление конденсатора указывает величину противодействия протеканию тока, но, в отличие от активного сопротивления, величина противодействия зависит от частоты сигнала, проходящего через конденсатор. Таким образом, мы должны рассчитать реактивное сопротивление на определенной частоте, и формула, которую мы используем для этого, следующая:

В приведенном выше примере схемы R ≈ 160 Ом, и C = 10 нФ. Предположим, что амплитуда Vвх равна 1 В, поэтому мы можем просто удалить Vвх из расчетов. Сначала давайте рассчитаем амплитуду Vвых на частоте необходимой нам синусоиды:

Амплитуда необходимого нам синусоидального сигнала практически не изменяется. Это хорошо, поскольку мы намеревались сохранить синусоидальный сигнал при подавлении шума. Этот результат неудивителен, поскольку мы выбрали частоту среза (100 кГц), которая намного выше частоты синусоидального сигнала (5 кГц).

Теперь посмотрим, насколько успешно фильтр ослабит шумовую составляющую.

Амплитуда шума составляет всего около 20% от первоначального значения.

Как сделать своими руками

Проще всего изготовить пассивный фильтр низких частот. Это связано с тем, что он изготавливается при применении всего нескольких элементов. Среди особенностей проведения работы своими руками отметим следующее:

  • Проводятся подробные расчеты. Повысить удобство можно путем применения специальных калькуляторов, с помощью которых проводится расчет параметров основных элементов изделия.
  • Выбирается наиболее подходящая схема. Она предусматривает применение специального разделителя, который изготавливается в виде сумматора. Качественного звука в этом случае не достигнуть, но устройство прослужит долго.

Простой фильтр для 2-полосного усилителя собрать просто. Инструкция по проведению работы следующая:

  1. Подается сигнал на вход операционного усилителя.
  2. Подается сигнал на МС2.
  3. С выхода ФНЧ переводится сигнал на МС2.
  4. Блок стабилизации напряжения создается на основе резистора, конденсатора и стабилизатора.
  5. При напряжении питания менее 15В из схемы исключается резистор R11. На компонентах R1, R2, C1, C2 собирается сумматор входного сигнала. Этот элемент отключается в том случае, если подается моносигнал. Подключение источника сигнала проводится напрямую ко второму контакту.
  6. Конденсатор C7 предназначается для фильтрации выходного сигнала. Регулятор сигнала основан на R9, R10, C8.
  7. Для получения устройства потребуется печатная плата. Изготовить ее можно самостоятельно из стеклотекстиля, рекомендуемые размеры листа 2 на 4 см.
  8. Поверхность шлифуется до блеска, после чего обезжиривается. Распечатанный рисунок схемы переносится на поверхность.
  9. Выполняется травлене при применении специального состава. Лишняя медь растворяется, после чего поверхность промывается чистой водой.

Для соединения отдельных элементов проводится пайка. При правильной сборке схемы она должна заработать сразу, при этом дополнительная настройка не требуется. Если звука нет, то придется проверить надежность всех соединений. При работе есть вероятность повреждения основных элементов.

Активный фильтр

Большое широкое распространение получил активный фильтр сабвуфера. Подобная схема обладает следующими особенностями:

  • Активный элемент не нагружает акустическую систему.
  • Входной сигнал фильтруется. За счет этого есть возможность устранить шумы.
  • При правильном подходе можно гибко настроить усилитель.
  • Исходный спектр часто разделяется на несколько каналов. Схема активного фильтра позволяет выбрать низкие и средние, высокие частоты.

Изготовить самостоятельно активный фильтр можно, для этого не требуется специальное оборудование.

Пассивный фильтр

Пассивное устройство проще в изготовлении, но обладает менее привлекательными характеристиками. Его особенности заключаются в следующем:

  • Предназначено для отсеивания низких частот в заданном диапазоне.
  • Не усиливает сигнал.

В продаже встречается большое количество пассивных фильтров. Они могут прослужить в течение длительного периода и имеют относительно небольшие размеры.

Звучание системы

И конечно же надо сказать про звук. Стало лучше, сцена получилась очень недурственная. Кривизна АЧХ особо не слышна, даже наоборот, подъем на середине поддает детальности, верхов как ни странно хватает. Был замечен интересный эффект на басу. Как можно заметить по АЧХ на сотне герц большой подъем, а за ним завал, разумеется качающего баса нет, но есть мид бас. К примеру партия гитары кажется немного просаженным, а нижний бас, партия бас гитары, переходит как бы в слышимую область и читается очень четко, создается впечатление наличия того самого низкого баса.

Конечно ящики маловаты, и порой слышно подбубнивание, для устранения этого эффекта в каждую колонку было добавлено по 30 грамм натуральней шерсти. В целом данная акустика играет тепло и мягко даже без лампового усилителя, сохраняя в звуке строгость и точность камня, а вот с теплой лампой получается перебор мягкости. Все же им нужен усилитель по-строже — триод или двухтакт, но это тема для следующих экспериментов. Специально для сайта Радиосхемы — SecreTUseR.

Фильтр 3-го порядка для ЦАП на гираторе

Итак, разобрались с вопросами, возникающими в первую очередь. Теперь наконец перейдем к самой схеме. Она представлена на следующем рисунке.

Фазовая характеристика на выходе получившегося фильтра все же немного загибается к концу. Поэтому частота среза была выбрана такой, чтобы в слышимом частотном диапазоне фазовые искажения были минимальными.

Частота среза была выбрана равной 40 кГц. При этом фазовые искажения в диапазоне 1-10кГц, для указанной схемы, составили менее 0.1%. А это самый слышимый частотный диапазон. Загиб на частотах 10-20кГц минимален. Это потрясающий результат для фильтра в звуковых цепях.

На следующем графике приведена АЧХ сигнала после фильтра и относительная ошибка фазы (мелкие коллебания фазовой характеристики). Большие колебания ошибки фазы в области низких частот на самом деле составляют лишь 0.02 градуса. Да и в этом диапазоне наше ухо к фазовым искажениям практически не чувствительно.

Еще одним плюсом применения фильтра на гираторе для звука является то, что сигнал не проходит непосредственно через операционный усилитель. ОУ лишь вносит свой вклад в звук, но влияет меньше, чем в случае обычных активных фильтров.

Тем не менее качество операционного усилителя, как и качество всех остальных компонентов все равно имеет большое значение.

В авторском варианте были использованы AD8066. Это прецизионные скоростные ОУ с частотой пропускания до 145МГц и скоростью нарастания сигнала 180 В/мкс. На форумах эти ОУ часто хвалят и за их «звуковые» свойства. Они прекрасно продемонстрировали себя и в этой роли.

Фильтры нижних частот второго порядка

До сих пор мы предполагали, что RC фильтр нижних частот состоит из одного резистора и одного конденсатора. Эта конфигурация является фильтром первого порядка.

«Порядок» пассивного фильтра определяется количеством реактивных элементов, то есть конденсаторов или индуктивностей, которые присутствуют в цепи. Фильтр более высокого порядка имеет больше реактивных элементов, что приводит к большему сдвигу фазы и более крутому спаду АЧХ. Эта вторая характеристика является основной причиной для увеличения порядка фильтра.

Добавляя один реактивный элемент к фильтру, например, переходя от первого порядка ко второму или от второго к третьему, мы увеличиваем максимальный спад на 20 дБ/декада. Более крутой спад приводит к более быстрому переходу от низкого затухания к высокому затуханию, и это может привести к улучшению производительности, когда нет широкой полосы частот, отделяющей необходимые частотные компоненты от шумовых компонентов.

Фильтры второго порядка обычно строятся вокруг резонансного контура, состоящего из катушки индуктивности и конденсатора (эта топология называется «RLC», т.е. резистор-индуктивность-конденсатор). Однако также возможно создание RC фильтров второго порядка. Как показано на рисунке ниже, всё, что нам нужно сделать, это включить каскадно два RC фильтра первого порядка.

Рисунок 12 – RC фильтр нижних частот второго порядка

Хотя эта топология, безусловно, создает характеристику второго порядка, она широко не используется – как мы увидим в следующем разделе, ее амплитудно-частотная характеристика часто уступает амплитудно-частотной характеристике активного фильтра второго порядка или RLC фильтра второго порядка.

Сборка

Давайте рассмотрим инструкцию как правильно сделать простой фильтр

Для начала следует отшлифовать стеклотекстолит наждачной бумагой и обезжирить. На него способом ЛУТ перенести рисунок платы.

Возможно потребуется дорисовать лаком дорожки.

Из лимонной кислоты и перекиси водорода (1:3) готовят раствор для травления. В качестве катализатора используется щепотка соли.

Заготовленную плату помещают в готовый раствор. После растворения лишней меди промыть плату под проточной водой. Тонер удаляют ацетоном.

Согласно схеме припаивают детали. Сзади закрепляют перемычку.

Такая схема работает без настройки. При отсутствии звука проверяют все соединения и крутят резистор.

Инструкция как правильно сделать простой фильтр довольно проста.

В нем используют не менее трех конденсаторов. Тетроды помогут уменьшить чувствительность. Их стоимость довольно высока, но они позволяют заметно улучшить качество сигнала.

Активные RC фильтры

Активные RC фильтры применяются на частотах ниже 100 кГц. Применение положительной обратной связи позволяет
увеличивать добротность полюса фильтра. При этом полюс фильтра можно реализовать на RC элементах, которые значительно дешевле
и в данном диапазоне частот меньше по габаритам индуктивностей. Кроме того, величина емкости конденсатора, входящего в
состав активного фильтра может быть уменьшена, так как в ряде случаев усилительный элемент позволяет увеличивать ее значение.
Применение конденсаторов с малой емкостью позволяет выбирать их типы, обладающие малыми потерями и высокой стабильностью
параметров.

При проектировании активных фильтров фильтр заданного порядка разбивается на звенья первого и второго порядка. Результирующая
АЧХ получится перемножением характеристик всех звеньев. Применение активных элементов (транзисторов, операционных усилителей)
позволяет исключить влияние звеньев друг на друга и проектировать их независимо. Это обстоятельство значительно упрощает и
удешевляет проектирование и настройку активных фильтров.

Сведение фильтров

Теперь начинается финальный этап — сведение фильтров. Пора намотать катушки… или не намотать? Мотать всегда лень, нет провода, каркасов, конкретных значений индуктивности. В виду этих причин поискав в хламе нашлись пары катушек на 0,8 мкг и 3 мкг — на них и пришлось строить. В крайнем случаи всегда же можно домотать или отмотать лишнее.

По графику видно, что раздел попал в район 1,8 кгц, что вполне вписывается в задуманные границы. Подбором конденсаторов удалось добиться следующего импеданса. На частоте раздела имеется два бугорка, но их высота меньше полу ома — это не критично. Это не конечный его вид, в последствии был несколько увеличен резистор в цепочке Цобеля пищалки.

На приведенных выше картинках АЧХ как самого фильтра, так и АЧХ динамиков с его включением.

Одноэлементные фильтры высоких и низких частот

Как правило, одноэлементные фильтры высоких и низких частот применяют непосредственно в акустических системах мощных усилителей звуковой частоты, для улучшения звучания самих звуковых «колонок».

Они подключаются последовательно с динамическими головками. Во первых, они берегут как динамические головки от мощного электрического сигнала, так и усилитель от низкого сопротивления нагрузки не нагружая его лишними динамиками, на той частоте, которую эти динамики не воспроизводят. Во вторых, они делают воспроизведение приятнее на слух.

Чтобы рассчитать одноэлементный фильтр, необходимо знать реактивное сопротивление катушки динамической головки. Расчёт производится по формулам делителя напряжения, что так же справедливо для Г-образного фильтра. Чаще всего, одноэлементные фильтры подбирают «на слух». Для выделения высоких частот на «пищалке» последовательно с ней устанавливается конденсатор, а для выделения низких частот на низкочастотном динамике (или сабвуфере), последовательно с ним подключается дроссель (катушка индуктивности). Например, при мощностях порядка 20…50 Ватт, на пищалки оптимально использовать конденсатор на 5…20 мкФ, а в качестве дросселя низкочастотного динамика использовать катушку, намотанную медным эмалированным проводом, диаметром 0,3…1,0 мм на бобину от видеокассеты VHS, и содержащую 200…1000 витков. Указаны широкие пределы, потому, как подбор – дело индивидуальное.

Сведение фильтров

Теперь начинается финальный этап – сведение фильтров. Пора намотать катушки… или не намотать? Мотать всегда лень, нет провода, каркасов, конкретных значений индуктивности. В виду этих причин поискав в хламе нашлись пары катушек на 0,8 мкг и 3 мкг – на них и пришлось строить. В крайнем случаи всегда же можно домотать или отмотать лишнее.

По графику видно, что раздел попал в район 1,8 кгц, что вполне вписывается в задуманные границы. Подбором конденсаторов удалось добиться следующего импеданса. На частоте раздела имеется два бугорка, но их высота меньше полу ома – это не критично. Это не конечный его вид, в последствии был несколько увеличен резистор в цепочке Цобеля пищалки.

На приведенных выше картинках АЧХ как самого фильтра, так и АЧХ динамиков с его включением.

Типы

Электронный фильтр нижних частот, построенный в виде RC-цепочки

В схемах пассивных аналоговых фильтров используют реактивные элементы, такие как катушки индуктивности и конденсаторы. Сопротивление реактивных элементов зависит от частоты сигнала, поэтому, комбинируя такие элементы, можно добиться усиления или ослабления гармоник с нужными частотами.

Идеальный фильтр нижних частот

Идеальный фильтр нижних частот (sinc-фильтр) полностью подавляет все частоты входного сигнала выше частоты среза и пропускает без изменений все частоты ниже частоты среза. Переходной зоны между частотами полосы подавления и полосы пропускания не существует. Идеальный фильтр нижних частот может быть реализован лишь теоретически с помощью умножения спектра (преобразования Фурье) входного сигнала на прямоугольную функцию в частотной области, или, что даёт тот же эффект, свёртки сигнала во временно́й области с sinc-функцией.

Однако такой фильтр невозможно реализовать на практике, так как sinc-функция имеет ненулевые значения для всех моментов времени вплоть до бесконечности, и импульсная характеристика идеального фильтра не равна нулю для моментов времени меньших нуля. Его можно использовать только математически.

Реальные фильтры для приложений реального времени могут лишь приближаться к идеальному фильтру.

Фильтр Бесселя

Основная статья: Фильтр Бесселя

Один из наиболее распространённых типов линейных фильтров, отличительной особенностью которого является максимально гладкая групповая задержка (линейная фазо-частотная характеристика).

Порядок фильтра и его добротность

Следующий параметр, с которым надо определиться – это порядок фильтра и его добротность. В данной статье будут рассматриваться два порядка, первый и второй.

  • С первым все просто: есть катушка, есть конденсатор, считаем их параметры под требуемую частоту среза и при надобности корректируем значения до получения желаемой АЧХ, ФЧХ, ИЧХ.
  • Со вторым порядком по-хитрее, там уже две катушки и два конденсатора. От значений номиналов зависит такой параметр как добротность, он определяет крутизну спада АЧХ и в некоторой степени сдвиг фазы. Поскольку влияние фазового сдвига и крутизны  умозрительно не прикинешь, остается просто выбрать в какую сторону думать. А думать тут в сторону низкой добротности, читай больше индуктивности в катушках, меньше емкости в конденсаторах.

Как выбрать порядок. Тут руководствуются уже знакомыми соображениями о том, на что способны излучатели, в особенности высокочастотник. Если большой ход ему противопоказан (как в нашем случае) то предпочтение отдаем второму порядку.

Для полноты картины следует упомянуть, что порядок также определяет степень совместной работы динамиков, но это уже информация для самостоятельного размышления.

Модели с модуляторами

Фильтр низких частот с модулятором необходим для того, чтобы у пользователя была возможность настраивать прибор. При этом параметр полосы пропускания у таких устройств может быть различным. Устанавливается модулятор, как правило, на магнитной сетке. Преселектор на пару с вышеуказанным элементом использоваться может. Дополнительно следует отметить, что модулятор в некоторых случаях способен создавать низковолновые помехи. Обусловлено это повышением образцового напряжения. Чтобы минимизировать риски, в данном случае лучше рядом с модулятором устанавливать средней мощности стабилитрон.

Понятие частоты среза

Мы видели, что ω в стандартной передаточной функции представляет частоту среза, но каково математическое основание этого факта?

Во-первых, давайте, преобразуем стандартную передаточную функцию в s-области в эквивалентную передаточную функцию .

\

Теперь давайте вычислим выражение при частоте среза.

\

Знаменатель является комплексным числом, поэтому модуль будет равен

\

Поскольку K – это коэффициент усиления по постоянному напряжению, очень низкочастотный входной сигнал с амплитудой в один вольт приведет к выходному сигналу с амплитудой в K вольт. Если входная частота увеличивается до ω радиан в секунду, выходная амплитуда будет равна \(\frac{K}{\sqrt{2}}\). Коэффициент \(\frac{1}{\sqrt{2}}\) соответствует –3 дБ, и, как вы, вероятно, знаете, другое название частоты среза – это частота –3 дБ.

Рисунок 2 – Амплитудно-частотная характеристика пассивного фильтра нижних частот первого порядка (амплитуда откладывается в дБ в зависимости от частоты в логарифмическом масштабе)

Этот простой анализ передаточной функции ясно продемонстрировал, что частота среза – это просто частота, на которой амплитудно-частотная характеристика фильтра снижается на 3 дБ относительно выходного уровня на очень низкой частоте.

Оцените статью
Рейтинг автора
5
Материал подготовил
Андрей Измаилов
Наш эксперт
Написано статей
116
Добавить комментарий