Медь и ее основные сплавы

Какие процессы происходят при плавлении меди

Что характерно, температуры плавления меди и сплавов, полученных на ее основе, отличаются. При добавлении в медь олова, имеющего меньшую температуру плавления, получают бронзу с температурой плавления 930–1140 градусов Цельсия. А сплав меди с цинком (латунь) плавится при 900–10500 Цельсия.

Во всех металлах в процессе плавления происходят одинаковые процессы. При получении достаточного количества теплоты при нагревании кристаллическая решетка металла начинает разрушаться. В тот момент, когда он переходит в расплавленное состояние, его температура не повышается, хотя процесс передачи ему теплоты при помощи нагрева не прекращается. Температура металла начинает вновь повышаться только тогда, когда он весь перейдет в расплавленное состояние.

Диаграмма состояния системы хром-медь

При охлаждении происходит противоположный процесс: сначала температура резко снижается, затем на некоторое время останавливается на постоянной отметке. После того, как весь металл перейдет в твердую фазу, температура снова начинает снижаться до полного его остывания.

Как плавление, так и обратная кристаллизация меди, связаны с параметром удельной теплоты. Данный параметр характеризует удельное количество теплоты, которая требуется для того, чтобы перевести металл из твердого состояния в жидкое. При кристаллизации металла такой параметр характеризует количество теплоты, которое он отдает при остывании.

Более подробно узнать о плавлении меди помогает фазовая диаграмма, показывающая зависимость состояния металла от температуры. Такие диаграммы, которые можно составить для любых металлов, помогают изучать их свойства, определять температуры, при которых они кардинально меняют свои свойства и текущее состояние.

Кроме температуры плавления, у меди есть и температура кипения, при которой расплавленный металл начинает выделять пузырьки, наполненные газом. На самом деле никакого кипения меди не происходит, просто этот процесс внешне очень его напоминает. Довести до такого состояния ее можно, если нагреть до температуры 2560 градусов.

Как понятно из всего вышесказанного, именно невысокую температуру плавления меди можно назвать одной из основных причин того, что сегодня мы можем использовать этот металл, обладающий многими уникальными характеристиками.

Медь: вред избытка

Причины роста уровня меди

  • Воспаление ()
  • Инфекции (туберкулез, проказа, вирусный гепатит, пневмония, ветряная оспа) (, 53)
  • Гематологические заболевания (железодефицитная анемия, апластическая и пернициозная анемия, серповидноклеточная анемия, бета-талассемия) (, 55)
  • Диабет ()
  • Болезни сердца и кровеносных сосудов (, 58)
  • Злокачественные заболевания (острый и хронический лейкоз, болезнь Ходжкина, множественная миелома, рак молочной железы и рак легких) (, 60, 62)
  • Заболевания печени (цирроз, гепатит, обструкция желчевыводящих путей) (, 64)
  • Контрацепция (использование оральных контрацептивов, медная внутриматочная спираль) (, 66)
  • Беременность ()
  • Тиазидные диуретики ()

Абсорбция и биодоступность меди. Всасывание и распределение меди из желудочно-кишечного тракта человека в периферические ткани. (источник)

Сильная токсичность

Сильнейшая токсичность возникает при приеме соединений меди, как правило, с суицидальными намерениями или при случайном употреблении загрязненных медью пищевых продуктов или воды. Прием внутрь более 1 г меди может привести к такой токсичность. Однако это лишь приблизительный порог токсичности и зависит от индивидуальных факторов. ()

Симптомы включают боль в животе, тошноту, рвоту, диарею, головокружение и боль в мышцах. Более серьезные признаки токсичности включают тяжелые повреждения печени и почек, гемолитическую анемию, массивное кишечное кровотечение и даже смерть. (, 71, 69)

Хроническая токсичность

Длительная токсичность меди не часто встречается у пациентов, не обладающих наследственными нарушениями обмена этого микроэлемента.

Длительный прием добавок с медью в дозировке 30-60 мг/сут в течение 3 лет вызывал тяжелые заболевания печени. ()

Различные добавки с медью не следует применять людям с генетическими нарушениями, влияющими на метаболизм меди:

  • Болезнь Вильсона
  • Идиопатический медный токсикоз ()
  • Синдромы детского цирроза печени (, 74)

Добавка меди в адекватных дозах, вероятно, безопасна для здоровых людей, включая детей и беременных женщин. Убедитесь, что вы не превышаете безопасный верхний предел в 10 мг/сут. ()

17 интересных фактов о меди

  1. Люди научились добывать и выплавлять медь примерно 5-6 тысяч лет назад.
  2. Она была первым металлом, который древние люди начали массово использовать (см. интересные факты о древних людях).
  3. Медный век продлился в разных землях примерно 1000-2000 лет, и закончился, когда люди научились выплавлять бронзу из смеси меди и олова.
  4. Оригинальное латинское название меди («cuprum») происходит от названия острова Кипр, одного из первых мест, где началась выплавка этого металла.
  5. До сих пор большая часть электрических кабелей во всём мире изготавливается именно из меди.
  6. Медные самородки встречаются намного чаще, чем железные, несмотря на то, что железо — один из самых распространённых металлов.
  7. Медь препятствует распространению бактерий по своей поверхности. Поэтому часто дверные ручки и тому подобные скобяные изделия делают из бронзы — она прочнее и при этом обладает схожими свойствами, так как меди в её составе много.
  8. Медные инструменты при ударе друг о друга не могут вызвать искру, в отличие от железных.
  9. Нередко медь добавляется в ювелирные сплавы, чтобы повысить их прочность. Само по себе золото — слишком мягкий металл (см. интересные факты о золоте).
  10. Средняя норма потребления меди для взрослого человека составляет порядка 0,9 миллиграмма.
  11. По производству и потреблению медь занимает третье место в мире, уступая лишь железу и алюминию.
  12. В Непале медь считается чем-то вроде священного металла. Местные жители верят, что она помогает бороться с болезнями, и часто пьют воду, в которую кидают медные монеты (см. интересные факты о Непале).
  13. Благодаря высокой коррозионной стойкости меди из неё стали изготавливать капсулы для захоронения токсичных и радиоактивных отходов.
  14. Медь — один из металлов, который активно перерабатывается и используется повторно. В среднем в мире перерабатывается около 80% всего объёма меди.
  15. В древнеегипетских развалинах археологи нашли медные водопроводные трубы, которым почти 5 тысяч лет. Они на момент находки были полностью работоспособны (см. интересные факты о Древнем Египте).
  16. Несмотря на то, что сама по себе медь экологически чиста, процесс её добычи изрядно загрязняет окружающую среду. Американское озеро Беркли-Пит, являющееся самым токсичным в мире, образовалось в закрытом карьере, где ранее добывали медь. Его воды настолько токсичны, что убивают неосторожных водоплавающих птиц, садящихся на него.
  17. Больше всего меди в человеческом организме содержится в печени.

http://met-all.org/cvetmet-splavy/med/fizicheskie-i-himicheskie-svojstva-medi.html

http://стофактов.рф/17-интересных-фактов-о-меди/

В каких продуктах содержится медь

Медь находится во многих продуктах, а также питьевой воде. Рассмотрим список продуктов с содержанием меди в наибольшем количестве:

  • все виды орехов (кешью, миндаль, кедровые, арахис, фундук, грецкие и другие);
  • большинство ягод, овощей, фруктов;
  • злаковые культуры;
  • кисломолочные продукты (ряженка, творог, йогурт, кефир и т.д.);
  • морепродукты;
  • яичные желтки в сыром виде;
  • вяленые томаты;
  • шиповник;
  • морская рыба;
  • бобовые (чечевица, соя, горох, красная фасоль)
  • хлебобулочные изделия из ржаной муки;
  • гречневая и рисовая крупа;
  • печень.

Меньше элемента содержится в шоколаде, какао, семенах тыквы, подсолнечника, пряностях, специях.

Таблица продуктов, содержащих медь (мкг/100 г)

номер продукт содержание меди номер продукт содержание меди
1 говяжья печень 12.8 10 шиповник 1.9
2 печень трески 12.6 11 кальмары 1.7
3 свежий шпинат 7.2 12 базилик 1.4
4 кунжут 4.3 13 отруби пшеницы 1.4
5 свиная печень 4.2 14 шоколадные изделия 1.2
6 томаты 3.9 15 почки 1.2
7 живые дрожжи 3.2 16 горох 0.8
8 кешью 2.4 17 лесные грибы 0.8
9 телятина 2 18 абрикосы 0.18

Сплавы химического элемента меди

Медь, в соединении с другими металлами, образует сплавы с новыми свойствами. В качестве основных добавок используются олово, никель или свинец. Каждый вид соединения обладает особыми характеристиками. Отдельно медь используется редко, поскольку у нее невысокая твердость.

Немного о бронзе

Бронза — название сплава меди и олова. Также в состав соединения входит кремний, свинец, алюминий, марганец, бериллий. У полученного материала показатели прочности выше, чем у меди. Он обладает антикоррозионными свойствами.

С целью улучшения характеристик в сплав добавляются легирующие элементы: титан, цинк, никель, железо, фосфор.

Существует несколько разновидностей бронзы:

  1. Деформируемые. Количество олова не превышает 6%. Благодаря этому, металл обладает хорошей пластичностью и поддается обработке давлением.
  2. Литейные. Высокая прочность позволяет использовать материал для работы в сложных условиях.

Сплав никель и медь

В этом соединении используется медь и никель. Если к этой паре добавляются другие элементы, соединения носят такие названия:

  1. Куниали. К 6–13% никеля еще добавляется 1,5–3% алюминия. Остальное медь.
  2. Нейзильбер. Содержит 20% цинка и 15% хрома.
  3. Мельхиор. Присутствует 1% марганца.
  4. Копелем. Сплав с содержанием 0,5% марганца.

Латунь

Это сплав меди с цинком. Колебание количественного содержания цинка влечет за собой изменение характеристик и цвета сплава.

Кроме этих 2 основных элементов в сплаве содержатся легирующие добавки. Их показатель составляет небольшой процент.

Латунь обладает высокими прочностными характеристиками, пластичностью и способностью противостоять коррозии. Также характеризуется немагнитными свойствами.

Латунь

1 Маркировка по ГОСТ – показатели и характеристики

В зависимости от количества добавок и легирующих элементов, при производстве меди получают сплавы с различными свойствами: антифрикционные, высокопрочные, с высокой стойкостью к химическим изменениям. Наибольшее распространение получили сплавы с добавлением цинка, алюминия, марганца и магния. Однако в промышленности также используются варианты с самыми разными химическими элементами.

Лист из меди

Для определения конкретного состава, согласно классификации ГОСТ 859-2001, существует специальная таблица с характеристиками и маркировками. В отличие от стальных сплавов, в сокращенной таблице маркировок указывается минимально допустимый процент содержания меди и процентное соотношение примесей кислорода и фосфора в максимально допустимом значении. Например, М00к, М1к и М2к. Таблица дает представление о тех или иных марках.

Чаще всего используется катодная медь или медные полуфабрикаты, то есть катанка, прокат, слитки и изделия из медных сплавов. Особенности и области применения металла, согласно таблице по ГОСТ 859-2001, рассчитываются, исходя из процента содержания различных примесей. В разных марках может содержаться от 10 до 50 примесей. Наиболее часто медь классифицируют на две группы:

  • сплав с минимальным содержанием кислорода (до 0,011 процентов) высокой чистоты. Обозначение по ГОСТ 859-2001 – М00, М01, медь М3. Используется преимущественно для изготовления токопроводников или сплавов высокой степени чистоты.
  • рафинированный металл с содержанием примесей фосфора для общего применения. Обозначение по ГОСТ 859-2001 – М1ф, М2р, М3р. Используется для производства труб, горячекатаных и холоднокатаных листов, фольги.

Классификация по ГОСТ 859-2001 соответствует зарубежной классификации по DIN с обязательным обозначением химических элементов и примесей. Например, марка М00 – это CuOFE, M1 – CuOF.

Добыча металла

В природе медь в виде самородков встречается чаще, по сравнению с золотом, серебром или железом. Древнейшие медные предметы, а также шлак, свидетельствующий о выплавке её из руды, были обнаружены в Турции при раскопках древних поселений. Из истории известно, что за каменным веком последовал медный, характеризующийся изготовлением и применением медных предметов. Исследования учёных говорят о том, что даже при мягкости металла орудия труда из меди выигрывают в скорости строгания, рубки, сверления и распила древесины у каменных изделий.

Медные руды — это залежи минералов, которые содержат не только медь, но и другие вещества, способствующие формированию их свойств, например, никель. Медными считают те виды руд, в которых содержание количества меди было бы достаточным для целесообразной добычи промышленными способами. Таким требованиям соответствуют руды, содержащие цветной металл в пределах от 0,5 до 1%. Земля располагает ресурсами, содержащими медь, 90% из которых — медно-никелевые руды.

Из-за прочности металла и способности сохранять свои физико-химические свойства продолжительное время жизненный цикл у меди довольно долгий, хотя изделия приходят со временем в негодность. Они сдаются в металлоприемные пункты, и начинается новый процесс переработки медного лома, состоящий из нескольких этапов и положительно влияющий на экономику производства. При этом недра земли остаются нетронутыми, к тому же переработка руды требует немалых затрат энергии, а на переработку лома расходуется на 90% меньше. Таким высоким показателем характеризуются далеко не все металлы.

Медь принадлежит к группе цветных металлов, даже руда отличается выраженным медным цветом. Добычу руды осуществляют в основном открытым способом, то есть без шахтных сооружений, а металл извлекается с применением обогащения методом флотации. Рудная порода смачивается водой, вещества, не содержащие металл, увлажняются и слипаются, образуя отходы, а не смоченные частицы поднимаются вверх и образуют пену. Затем медная руда подвергается дополнительному циклу очистки, отправляется в плавильную печь, потом на изготовление заготовок.

Медные сплавы, их свойства, характеристики, марки

Изготовление медных сплавов позволяет улучшить свойства меди, не теряя основных преимуществ данного металла, а также получить дополнительные полезные свойства.

Бронза

Сплав меди с оловом. Однако, с развитием технологий появились также бронзы, в которых вместо олова в состав сплава вводятся алюминий, кремний, бериллий и свинец.

Бронзы твёрже меди. У них более высокие показатели прочности. Они лучше поддаются обработке металла давлением, прежде всего, ковке.

Маркировка бронз производится буквенно-цифровыми кодами, где первыми стоят буквы Бр, означающими собственно бронзу. Добавочные буквы означают легирующие элементы, а цифры после букв показывают процентное содержание таких элементов в сплаве.

Буквенные обозначения легирующих элементов бронз:

  • А – алюминий,
  • Б – бериллий,
  • Ж – железо,
  • К – кремний,
  • Мц – марганец,
  • Н – никель,
  • О – олово,
  • С – свинец,
  • Ц – цинк,
  • Ф – фосфор.

Пример маркировки оловянистой бронзы: БрО10С12Н3. Расшифровывается как «бронза оловянистая с содержанием олова до 10%, свинца – до 12%, никеля – до 3%».

Пример расшифровки алюминиевой бронзы: БрАЖ9-4. Расшифровывается как «бронза алюминиевая с содержанием алюминия до 9% и железа до 4%».

Латунь

Это сплав меди с цинком. Кроме цинка содержит и иные легирующие добавки, также и олово.

Латуни – коррозионно устойчивые сплавы. Обладают антифрикционными свойствами, позволяющими противостоять вибрациям. У них высокие показатели жидкотекучести, что даёт изделиям из них высокую степень устойчивости к тяжёлым нагрузкам. В отливках латуни практически не образуются ликвационные области, поэтому изделия обладают равномерной структурой и плотностью.

Маркируются латуни набором буквенно-цифровых кодов, где первой всегда стоит буква Л, означающая собственно латунь. Далее следует цифровой указатель процентного содержания меди в латуни. Остальные буквы и цифры показывают содержание легирующих элементов в процентном соотношении. В латунях используются те же буквенные обозначения легирующих элементов, что и в бронзах.

Пример маркировки латуни двойной: Л85. Расшифровывается как «латунь с содержанием меди до 85%, остальное – цинк».

Пример маркировки латуни многокомпонентной: ЛМцА57-3-1. Расшифровывается как «латунь с содержанием меди до 57%, марганца – до 3%, алюминия – до 1%, остальное – цинк».

Медно-никелевые сплавы

  • Мельхиор —  сплав меди и никеля. В качестве добавок в сплаве могут присутствовать железо и марганец. Частные случаи технических сплавов на основе меди и никеля:
  • Нейзильбер – дополнительно содержит цинк,
  • Константан – дополнительно содержит марганец.

У мельхиора высокая коррозионная устойчивость. Он хорошо поддаётся любым видам механической обработки. Немагнитен. Имеет приятный серебристый цвет.

Благодаря своим свойствам мельхиор является, прежде всего, декоративно-прикладным материалом. Из него изготавливают украшения и сувениры. В декоративных целях является отличным заменителем серебра.

Выпускается 2 марки мельхиора:

  • МНЖМц – сплав меди с никелем, железом и марганцем;
  • МН19 – сплав меди и никеля.

Определение по цвету

Итак, перед нами кусок неизвестного материала, который необходимо идентифицировать как медь. Упор на термин «материал», а не «металл», сделан специально, так как в последнее время появилось немало композитов, которые по внешним признакам и тактильным ощущениям очень похожи на металлы.

В первую очередь рассматриваем цвет. Это желательно делать при дневном свете или «теплом» светодиодном освещении (под «холодными» светодиодами красноватый оттенок меняется на желто-зеленый). Идеально, если для сравнения есть медная пластинка или проволока – в этом случае ошибка в цветовосприятии практически исключена.

Важно: старые медные изделия могут быть покрыты окислившимся слоем (зеленовато-голубым рыхлым налетом): в этом случае цвет металла нужно смотреть на срезе или спиле

Химические свойства железа

Железо Fe, химический элемент, находящийся в VIIIB группе и имеющий порядковый номер 26 в таблице Менделеева. Распределение электронов в атоме железа следующее 26Fe1s22s22p63s23p63d64s2, то есть железо относится к d-элементам,  поскольку заполняемым в его случае является d-подуровень. Для него наиболее характерны две степени окисления +2 и +3. У оксида FeO и гидроксида Fe(OH)2 преобладают основные свойства, у оксида Fe2O3 и гидроксида Fe(OH)3 заметно выражены амфотерные. Так оксид и гидроксид железа (lll) в некоторой степени растворяются при кипячении в концентрированных растворах щелочей,  а также реагируют с безводными щелочами при сплавлении. Следует отметить что степень окисления железа +2 весьма неустойчива, и легко переходит в степень окисления +3. Также известны соединения железа в редкой степени окисления +6 – ферраты, соли не существующей «железной кислоты» H2FeO4. Указанные соединения относительно устойчивы лишь в твердом состоянии, либо в сильнощелочных растворах.  При недостаточной щелочности среды ферраты довольно быстро окисляют даже воду,  выделяя из нее кислород.

Взаимодействие с простыми веществами

С кислородом

При сгорании в чистом кислороде железо образует, так называемую, железную окалину, имеющую формулу Fe3O4 и фактически представляющую собой смешанный оксид, состав которого условно можно представить формулой FeO∙Fe2O3. Реакция горения железа имеет вид:

3Fe + 2O2 =to=> Fe3O4

С серой

При нагревании железо реагирует с серой, образуя сульфид двухвалентого железа:

Fe + S =to=> FeS

Либо же при избытке серы дисульфид железа:

Fe + 2S =to=> FeS2

С галогенами

Всеми галогенами кроме йода металлическое железо окисляется до степени окисления +3, образуя галогениды железа (lll):

2Fe + 3F2 =to=> 2FeF3 – фторид железа (lll)

2Fe + 3Cl2 =to=> 2FeCl3 – хлорид железа (lll)

2Fe + 3Br2 =to=> 2FeBr3 – бромид железа (lll)

Йод же, как наиболее слабый окислитель среди галогенов, окисляет железо лишь до степени окисления +2:

Fe + I2 =to=> FeI2 – йодид железа (ll)

Следует отметить, что соединения трехвалентного железа легко окисляют иодид-ионы в водном растворе до свободного йода I2 при этом восстанавливаясь до степени окисления +2. Примеры, подобных реакций из банка ФИПИ:

2FeCl3 + 2KI = 2FeCl2 + I2 + 2KCl

2Fe(OH)3 + 6HI = 2FeI2 + I2 + 6H2O

Fe2O3 + 6HI = 2FeI2 + I2 + 3H2O

С водородом

Железо с водородом не реагирует (с водородом из металлов реагируют только щелочные металлы и щелочноземельные):

Взаимодействие со сложными веществами

С кислотами-неокислителями

Так как железо расположено в ряду активности левее водорода, это значит, что оно способно вытеснять водород из кислот-неокислителей (почти все кислоты кроме H2SO4 (конц.)  и HNO3 любой концентрации):

Нужно обратить внимание на такую уловку в заданиях ЕГЭ, как вопрос на тему того до какой степени окисления окислится железо при действии на него разбавленной  и концентрированной соляной кислоты. Правильный ответ – до +2 в обоих случаях

Ловушка здесь заключается в интуитивном ожидании более глубокого окисления железа (до с.о. +3) в случае его взаимодействия с концентрированной соляной кислотой.

С концентрированными серной и азотной кислотами в обычных условиях железо не реагирует по причине пассивации. Однако, реагирует с ними при кипячении:

2Fe + 6H2SO4 = ot=> Fe2(SO4)3 + 3SO2 + 6H2O

Fe + 6HNO3 =ot=> Fe(NO3)3 + 3NO2 + 3H2O

Обратите внимание на то,  что разбавленная серная кислота окисляет железо до степени окисления +2, а концентрированная до +3

Коррозия (ржавление) железа

На влажном воздухе железо весьма быстро подвергается ржавлению:

4Fe + 6H2O + 3O2 = 4Fe(OH)3

С водой в отсутствие кислорода железо не реагирует ни в обычных условиях, ни при кипячении. Реакция с водой протекает лишь при температуре выше температуры красного каления (>800 оС). т.е.:

Богатство основного цвета и разнообразие оттенков

Медь — золотисто-розовый пластичный металл, на воздухе быстро покрывается оксидной плёнкой, которая придаёт ей характерный интенсивный желтовато-красный оттенок. Тонкие плёнки меди на просвет имеют зеленовато-голубой цвет.

Наряду с осмием, цезием и золотом, медь — один из четырёх металлов, имеющих явную цветовую окраску, отличную от серой или серебристой у прочих металлов.

Этот цветовой оттенок объясняется наличием электронных переходов между заполненной третьей и полупустой четвёртой атомными орбиталями: энергетическая разница между ними соответствует длине волны оранжевого света. Тот же механизм отвечает за характерный цвет золота.

До недавнего времени технологические возможности не позволяли сразу получать медь желаемого цвета и крыши домов покрывали классическим желто-блестящим металлом. Со временем, когда на поверхности металла формировался оксид металла, крыша приобретала более темный оттенок.

Дальнейшие химические процессы, происходящие в меди, активно взаимодействующей с окружающей средой, приводили к тому, что на ее поверхности образовывался слой патины, имеющей малахитово-зеленый цвет.

В наше время с помощью фото в каталогах профильных магазинов сразу можно выбрать, какого цвета листы из меди использовать для покрытия крыши своего дома. Возможности современных технологий позволяют сразу получать медь классического, оксидированного или патинированного типа.

Сейчас медью разного цвета покрывают не только крыши домов, но и их фасадную часть. Следует отметить, что это не только красиво, но и выгодно с финансовой точки зрения. Листы меди, которыми отделан фасад дома, не требуют особого ухода и не выцветают со временем, надежно защищают строительные конструкции от негативного воздействия температурных перепадов и повышенной влажности.

Интересные цвета имеют также оксид и сульфат меди, активно используемые в современной промышленности. Оксид меди, кристаллы которого имеют черный цвет, применяется для придания различных оттенков (синий, зеленый) стеклу и лакокрасочным материалам. Сульфат меди не используется в качестве красителя, но при этом обладает красивым сине-бирюзовым цветом.

Витамины и препараты с медью

Препараты меди назначаются, если по каким-либо причинам по результатам клинических исследований обнаружена его недостача. Особенность потребность в веществе увеличивается при повышенных умственных и физических нагрузках.

Это могут быть и витамины с медью, и активные пищевые добавки (БАДы).

Самыми популярными препаратами являются следующие:

  • Витаминный комплекс «Витрум» — назначается для укрепления иммунитета, после перенесенных заболеваний, в качестве профилактического средства. Помимо меди содержит важные микро и макроэлементы, витамины. Рекомендуются людям, придерживающимся строгих диет или при несбалансированном питании. Повышает защиту от вирусов, бактерий. Рекомендуется после курсов химиотерапии и лечения антибиотиками.
  • Витамины «Дуовит» — содержат 1 грамм микроэлемента. Рекомендуется принимать как в лечебной, так и профилактической форме. Имеет сбалансированный состав полезных веществ.
  • Активная биологическая добавка «Био-медь» — показана при выраженном дефиците элемента. Назначается при болях в суставах, костях, мышцах, заболеваниях опорно-двигательного аппарата, печени и другим проблемах в организме.
  • Препарат «Цимед» — имеет уникальный состав, полностью натуральное средство. Содержит экстракты растений, богатые Cuprum. Рекомендуется принимать на протяжении месяца. Не назначается при непереносимости лактозы.

Производство, добыча и запасы меди

Мировая добыча меди в 2000 году составляла около 15 млн т., a в 2004 году — около 14 млн т. . Мировые запасы в 2000 году составляли, по оценке экспертов, 954 млн т., из них 687 млн т. подтверждённые запасы , на долю России приходилось 3.2 % общих и 3.1 % подтверждённых мировых запасов . Таким образом, при нынешних темпах потребления запасов меди хватит примерно на 60 лет.

Производство рафинированной меди в России в 2006 году составило 1,009 тыс. тонн, потребление — 714 тыс. тонн. Основными производителями меди в России являются:

Компания тыс. тонн %
425 45 %
351 37 %
166 18 %

Как добывают медь
Этот металл встречается в природе в самородном виде чаще, чем золото, серебро и железо. Нашли однажды самородок, который весил 420 т. Наверняка медь была первым металлом, с которым познакомились древние люди. Первые свои орудия делали они из кремниевой и железной руды, из меди, и уже потом научились изготовлять их из бронзы и железа. Сплав меди с оловом (бронзу) получили впервые за 3000 лет до н.э. на Ближнем Востоке. Бронза привлекала людей прочностью и хорошей ковкостью, что делало ее пригодной для изготовления орудий труда и охоты, посуды, украшений. Все эти предметы находят в археологических раскопах. Добычу меди называют прабабушкой металлургии. Ее добыча и выплавка были налажены еще в Древнем Египте, во времена фараона Рамзеса II (1300—1200 гг. до н.э.). Древние египтяне нагнетали воздух в плавильные печи с помощью мехов, а древесный уголь получали из акации и финиковой пальмы. Они выплавили около 100 т чистой меди. На территории России и сопредельных стран медные рудники появились за два тысячелетия до н.э. Остатки их находят на Урале, в Закавказье, на Украине, в Сибири, на Алтае. В XIII—XIV вв. освоили промышленную выплавку меди. В Москве в XV в. был основан Пушечный двор, где отливали из бронзы орудия разных калибров. О нем напоминает теперешняя Пушечная улица в Москве. Сейчас известно более 170 минералов, содержащих медь, но из них только 14—15 имеют промышленное значение. Это — халькопирит (он же медный колчедан), малахит, встречается и самородная медь. В медных рудах часто в качестве примесей встречаются молибден, никель, свинец, кобальт, реже — золото, серебро. Обычно мед-ные руды обогащаются на фабриках, прежде чем поступают на медеплавильные комбинаты. Богаты медью Казахстан, США, Чили, Канада, африканские страны — Заир, Замбия, Южно-Африканская республика. Очень крупное Удоканское месторождение медной руды сравнительно недавно обнаружено на севере Читинской области.

Большая часть добываемой меди используется в электротехнике, потому что медь обладает высокой электропроводностью, уступая в этом только серебру, которое, конечно, намного дороже. Миллионы километров проводов опутали земной шар, и большинство из них медные. Медь нужна для производства двигателей, телевизоров, телефонных аппаратов, различных электроприборов, автомобилей, электровозов, холодильников и даже музыкальных инструментов. Ее используют в химической промышленности для борьбы с вредителями садов и огородов, для подкормки растений и животных. Всюду нужна медь.
По объему мирового производства и потребления медь занимает третье место после железа и алюминия.

Маркировка по ГОСТ

Существуют различные маркировки меди

В зависимости от добавок, примесей и их доли в общем объеме, сплав имеет разные свойства. Это может быть устойчивость к коррозии, прочность, антифрикционный эффект и прочее. Самыми распространенными являются смеси меди с алюминием, цинком, марганцем, магнием. Но в промышленности применяются варианты и с другими химическими веществами.

Разработано специальная таблица с маркировкой меди и ее характеристиками. Она применяется, когда нужно определить состав по классификации ГОСТ.

  • К примеру, в Марке М00 содержание меди должно быть не менее 99,99%.
  • В марке М0 содержится примерно 99,95% меди. В марке М0б присутствует примерно 99,97% основного компонента.
  • Если медь обозначается как М1, это значит, что ее доля во всем составе около 99,9%.
  • Если имеется пометка М1р, то это означает, что в веществе содержится 99,9 меди.
  • Если имеется обозначение М2, то меди будет 99,7%, а вот в марке М2р тоже такая же концентрация основного компонента.
  • Если пишется марка М3 иМ3р, то количество меди составляет 99,5%. Если марка М4, то количество основного вещества равняется 99%.
  • Несмотря на то что количество меди в марках М1 и М1р, М2 и М2р, М3 и М3р одинаковое, при этом в продуктах с буквой «р» содержание кислорода меньше и составляет только не более 0,01%, а вот в других — примерно 0,05-0,08%. Кроме того, в состав включен фосфор, но его доля не более 0,04%.

А вот в продукте с маркой М0б совсем отсутствует кислород, в отличие от продукта с пометкой М0, где содержание кислорода составляет примерно 0,02%.

  1. Сплавы, которые содержат минимальное количество кислорода — не более 0,011%. По ГОСТу они обозначаются как М00, М01 и М3. Обычно применяются они для токопроводников либо создания сплавов, которые отличаются высокой чистотой.
  2. Металл рафинированного типа, которые имеет примеси фосфора в общем объеме. Предназначен для общего применения. По ГОСТу обозначается как М1ф, М2р, М3р. Обычно применяется для создания фольги, труб и листов горячего и холоднокатаного типа.

Для создания чистых и высокоточных металлов применяется только медь той марки, где отсутствует кислород

Это очень важно для криогенной промышленности. В остальных же случаях используются другие виды меди

Например, применение бывает следующим в зависимости от марки:

  1. М0 и М00 используется в производстве электропроводниковых деталей и деталей с высокой частотой. Обычно такие элементы получаются дороже, и делают их на заказ.
  2. М001б и М001бф применяется для медной проволоки с небольшим диаметром сечения. Также подходит для другой проводки и электрических шин.
  3. М1 (в том числе М1р, М1ре и М1ф) применяются как проводники для электрического тока. Они задействованы для создания бронзы высокого качества, где минимальное количество олова. Обычно делают электроды и прутья для сварки чугуна и прочих металлов, которые трудно сваривать.
  4. М2 (в том числе М2к, М2р) используется обычно для деталей, которые применяются в криогенной промышленности. Еще подходит для литого проката, который будет подвергаться обработки под давлением.
  5. М3 (в том числе М3р и М3к) подходит для производства полуфабрикатов прессованного типа либо проката плоского характера. Еще используется для проволоки, которая задействуется для сварки электромеханического характера чугунных и медных деталей.
Оцените статью
Рейтинг автора
5
Материал подготовил
Андрей Измаилов
Наш эксперт
Написано статей
116
Добавить комментарий