Углекислый газ

свойства, получение, применение :: SYL.ru

Вы уже знаете, что при выдохе из легких выходит углекислый газ. А вот что вам известно об этом веществе? Наверное, немного. Сегодня я отвечу на все вопросы, касающиеся углекислого газа.

Определение

Это вещество в нормальных условиях является бесцветным газом. Во многих источниках его могут называть по-разному: и оксидом углерода (IV), и угольным ангидридом, и двуокисью углерода, и диоксидом углерода.

Свойства

Углекислый газ (формула СО2) является бесцветным газом, имеющим кислые запах и вкус, растворимым в воде веществом. Если его как следует охладить, то образуется снегообразная масса, называемая сухим льдом (фотография ниже), которая  сублимирует при температуре -78оС.


о3

Получение

Углекислый и еще некоторые газы в больших количествах выделяются, когда производят алкоголь или разлагаются природные карбонаты. Затем полученные газы проходят промывание растворенным карбонатом калия. Далее следует поглощение ими углекислого газа, продуктом данной реакции является гидрокарбонат, при нагревании раствора которого получают искомый оксид. Но сейчас его с успехом заменяет растворенный водой этаноламин, который абсорбирует содержащийся в дымовом газе оксид углерода и отдает его при нагревании. Также этот газ является побочным продуктом тех реакций, при которых получают чистые азот, кислород и аргон. В лаборатории немного углекислоты получается, когда карбонаты и гидрокарбонаты взаимодействуют с кислотами. Еще она образуется, когда реагируют пищевая сода и лимонный сок или тот же гидрокарбонат натрия и уксус (фото).

Применение

Пищевая промышленность не может обойтись без использования углекислоты, где она известна в качестве консерванта и разрыхлителя, имеющего код E290. Ее в виде жидкости содержит любой огнетушитель.


Заключение

Вот до чего полезен для человека углекислый газ. И не только в промышленности, он играет и важную биологическую роль: без него не может происходить газообмен, регуляция сосудистого тонуса, фотосинтез и многие другие природные процессы. Но его переизбыток или недостача в воздухе некоторое время могут негативно влиять на физическое состояние всех живых организмов.

Углекислый газ и его физические свойства

Углекислый газ состоит из углерода и кислорода. Формула углекислого газа выглядит так – CO₂. В природе он образуется при сжигании или гниении органических веществ. В воздухе и минеральных источниках содержание газа также достаточно велико. кроме того люди и животные также выделяют диоксид углерода при выдыхании.

Рис. 1. Молекула углекислого газа.

Диоксид углерода является абсолютно бесцветным газом, его невозможно увидеть. Также он не имеет и запаха. Однако при его большой концентрации у человека может развиться гиперкапния, то есть удушье. Недостаток углекислого газа также может причинить проблемы со здоровьем. В результате недостатка это газа может развиться обратное состояние к удушью – гипокапния.

Если поместить углекислый газ в условия низкой температуры, то при -72 градусах он кристаллизуется и становится похож на снег. Поэтому углекислый газ в твердом состоянии называют «сухой снег».

Рис. 2. Сухой снег – углекислый газ.

Углекислый газ плотнее воздуха в 1,5 раза. Его плотность составляет 1,98 кг/м³ Химическая связь в молекуле углекислого газа ковалентная полярная. Полярной она является из-за того, что у кислорода больше значение электроотрицательности.

Важным понятием при изучении веществ является молекулярная и молярная масса. Молярная масса углекислого газа равна 44. Это число формируется из суммы относительных атомных масс атомов, входящих в состав молекулы. Значения относительных атомных масс берутся из таблицы Д.И. Менделеева и округляются до целых чисел. Соответственно, молярная масса CO₂ = 12+2*16.

Чтобы вычислить массовые доли элементов в углекислом газе необходимо следовать формулерасчета массовых долей каждого химического элемента в веществе.

n – число атомов или молекул.
Ar – относительная атомная масса химического элемента.Mr – относительная молекулярная масса вещества.
Рассчитаем относительную молекулярную массу углекислого газа.

«Сухой лед» и прочие полезные свойства диоксида углерода

В повседневной практике углекислый газ используется достаточно широко. Например, газированная вода с добавками ароматных эссенций – прекрасный освежающий напиток. В пищевой промышленности диоксид углерода используется и как консервант — он обозначается на упаковке под кодом Е290, а также в качестве разрыхлителя теста.

Углекислотными огнетушителями пользуются при пожарах. Биохимики нашли, что удобрение… воздуха углекислым газом весьма эффективное средство для увеличения урожайности различных культур. Пожалуй, такое удобрение имеет единственный, но существенный недостаток: применять его можно только в оранжереях.   На заводах, производящих диоксид углерода, сжиженный газ расфасовывают в стальные баллоны и отправляют потребителям. Если открыть вентиль, то из отверстия с шипением вырывается… снег. Что за чудо?

Все объясняется просто. Работа, затраченная на сжатие газа, оказывается значительно меньше той, которая требуется на его расширение. И чтобы как-то компенсировать возникающий дефицит, углекислый газ резко охлаждается, превращаясь в «сухой лед». Он широко используется для сохранения пищевых продуктов и перед обычным льдом имеет значительные преимущества: во-первых, «хладопроизводительность» его вдвое выше на единицу веса; во-вторых, он испаряется без остатка.

Углекислый газ используется в качестве активной среды при сварке проволокой, так как при температуре дуги углекислота разлагается на угарный газ СО и кислород, который, в свою очередь, и входит во взаимодействие с жидким металлом, окисляя его.

Углекислота в баллончиках применяется в пневматическом оружии и в качестве источника энергии для двигателей в авиамоделировании.

Техника сварки в углекислом газе

Выполнение сварочных работ и технология полуавтоматической сварки в среде углекислого газа достаточно простая, по сути, от мастера требуется выдержать необходимый вылет проволоки и перемещать горелку автомата с одинаковой скоростью.

В результате получается равномерный шов без наплывов, обеспечивается достаточный провар стали и механическая прочность получаемого соединения.

Во время выполнения работ от мастера требуется соблюдение следующих рекомендаций:

Перед началом сварки следует убедиться в том, что защитный газ выходит из горелки. Рабочее давление углекислоты при сварке полуавтоматом 0, 02 кПа. Но этот показатель не является абсолютным, наличие сквозняка, ветра, несколько увеличивает расход материала. Соответственно давление для создания нормального шва будет увеличиваться.

Угол горелки должен находиться в пределах 65-75°. Шов необходимо вести справа налево, так лучше просматриваются свариваемые кромки.

Сила тока. Режимы сварки в углекислом газе регулируются методом изменения скорости подачи проволоки и напряжения дуги.

Какое давление углекислоты при сварке

ГОСТ на полуавтоматическую сварку в углекислом газе регулируется руководящим документом 26-17-051-85. Согласно документу, стандартного баллона, наполненного СО², достаточно чтобы обеспечить 15-20 часов беспрерывной работы. Для увеличения производительности обязательно используют осушитель влаги.

Подача углекислоты может быть изменена в большую сторону при наличии сквозняков, ветра и других негативных факторов. Решающее значение при выборе подходящего рабочего режима играет качество получаемого шва.

Сущность сварки в среде углекислого газа сводится к тому, что СО² обеспечивает защиту обрабатываемой поверхности от перегрева. Как правило, качество шва напрямую зависит от расхода углекислоты при сварке полуавтоматом. При этом от мастера требуется обеспечить оптимальные затраты между использованием газа и расходом сварочной проволоки.

Расход углекислоты для сварочного полуавтомата

Хотя нормы расхода углекислоты зависят от многих факторов, в среднем для полуавтомата предусмотрены следующие затраты расходных материалов:

  1. Скорость подачи проволоки – зависит от ширины расходного материала, составляет, от 35-250 мм/сек.

Расход газа – определяется качеством флюса и погодными условиями. Может варьироваться от 3 до 60 л/мин.

Расчет расхода углекислого газа при полуавтоматической сварке можно выполнить самостоятельно, зная следующие параметры:

  1. Затраты на подготовительные работы составляют около 10% от общего расхода СО².

Удельный расход газа, необходимый для прохождения шва.

Также при расчетах принимают во внимание толщину проволоки и обрабатываемого металла

В баллон заливается около 25 кг углекислоты. В результате химической реакции из каждого килограмма получается около 509 л газа. Соответственно, одного стандартного баллона более чем достаточно для непрерывной работы в течение 12-15 часов.

Существует возможность обойтись без использования защитного газа. Вместо СО² применяют порошковую проволоку. При нагревании проволока, покрытая порошком, выделяет газ, который и защищает обрабатываемую поверхность от перегрева.

В комплект оборудования для полуавтоматической сварки в углекислом газе входит:

  • Выпрямитель – может быть трансформаторного или инверторного типа. Первый оптимально подходит для толстой проволоки, второй обеспечивает равномерную подачу напряжения и стабильную дугу сварки.

Подающий механизм – имеет ограничения по толщине проволоки. При выборе следует учитывать, что не каждый флюс можно будет использовать при выполнении сварочных работ.

Все оборудование в совокупности обеспечивает оптимальный рабочий режим и создается условия для формирования качественного сварного шва.

Многие производства и ремонтные мастерские, квалифицирующиеся на проведении сварочных работ, используют баллоны с защитными газами. Таковыми представляются:

  • инертные — аргон либо гелий, их смеси;
  • активные — водород, диоксид углерода, азот, которые в свою очередь подразделяются на газы с восстановительными, окислительными свойствами и выборочной активностью;
  • конгломерат из инертных и активных продуктов.

Методы регистрации

Измерение парциального давления углекислого газа требуется в технологических процессах, в медицинских применениях — анализ дыхательных смесей при искусственной вентиляции лёгких и в замкнутых системах жизнеобеспечения. Анализ концентрации CO₂ в атмосфере используется для экологических и научных исследований, для изучения парникового эффекта.
Углекислый газ регистрируют с помощью газоанализаторов основанных на принципе инфракрасной спектроскопии и других газоизмерительных систем. Медицинский газоанализатор для регистрации содержания углекислоты в выдыхаемом воздухе называется капнограф. Для измерения низких концентраций CO₂ (а также CO) в технологических газах или в атмосферном воздухе можно использовать газохроматографический метод с метанатором и регистрацией на пламенно-ионизационном детекторе.

Изменения концентрации атмосферного углекислого газа (кривая Килинга). Измерения в обсерватории на горе Мауна-Лоа, Гавайи.

Ежегодные колебания концентрации атмосферной углекислоты на планете определяются, главным образом, растительностью средних (40—70°) широт Северного полушария.

Вегетация в тропиках практически не зависит от сезона, сухой пояс пустынь 20—30° (обоих полушарий) даёт малый вклад в круговорот углекислоты, а полосы суши, наиболее покрытые растительностью, расположены на Земле асимметрично (в Южном полушарии в средних широтах находится океан).
Поэтому с марта по сентябрь вследствие фотосинтеза содержание СО2 в атмосфере падает, а с октября по февраль — повышается. Вклад в зимний прирост дают как окисление древесины (гетеротрофное дыхание растений, гниение, разложение гумуса, лесные пожары), так и сжигание ископаемого топлива (угля, нефти, газа), заметно увеличивающееся в зимний сезон.

Большое количество углекислоты растворено в океане.

Основное применение

CO2 широко применяется в промышленности и в быту – в огнетушителях и для изготовления газировки, для охлаждения продуктов и для создания инертной среды при сварке.

Основное применение углекислого газа

Применение углекислого газа отмечено в таких отраслях, как:

для чистки поверхностей сухим льдом.

Фармацевтика

  • для химического синтеза компонентов лекарственных средств;
  • создания инертной атмосферы;
  • нормализация индекса pH отходов производства.

Углекислый газ в фармацевтике

Пищевая отрасль

  • производство газированных напитков;
  • упаковка продуктов питания в инертной атмосфере для продления срока годности;
  • декаффеинизация кофейных зерен;
  • замораживание или охлаждение продуктов.

Углекислый газ в пищевой отрасли

Медицина, анализы и экология

  • Создание защитной атмосферы при полостных операциях.
  • Включение в дыхательные смеси в качестве стимулятора дыхания.
  • В хроматографических анализах.
  • Поддержание уровня pH в жидких отходах производства.

Углекислый газ и экология

Электроника

  • Охлаждение электронных компонентов и устройств при тестировании на температурную стойкость.
  • Абразивная очистка в микроэлектронике (в твердой фазе).
  • Очищающее средство в производстве кремниевых кристаллов.

Химическая отрасль

Широко применяется в химическом синтезе в качестве реагента и в качестве регулятора температур в реакторе. CO2 отлично подходит для обеззараживания жидких отходов с низким индексом pH.

Использование углекислого газа

Применяется также для осушения полимерных веществ, растительных или животных фиброматериалов, в целлюлозном производстве для нормализации уровня pH как компонентов основного процесса, так и его отходов.

Металлургическая отрасль

В металлургии CO2 в основном служит делу экологии, защиты природы от вредных выбросов путем их нейтрализации:

Применение углекислого газа в металлургии

  • В черной металлургии — для нейтрализации плавильных газов и для донного перемешивания расплава.
  • В цветной металлургии при производстве свинца, меди, никеля и цинка — для нейтрализации газов при транспортировке ковша с расплавом или горячих слитков.
  • В качестве восстановительного агента при организации оборота кислотных шахтных вод.

Сварка в углекислой среде

Процесс сварки с применением углекислого газа

Разновидность сварки под флюсом является сварка в углекислой среде. Операции сварочных работ с углекислым газом осуществляется плавящимся электродом и распространен  в процессе монтажных работ, устранении дефектов и исправления деталей с тонкими стенками.

Углекислый газ и его физические свойства

Углекислый газ состоит из углерода и кислорода. Формула углекислого газа выглядит так – CO₂. В природе он образуется при сжигании или гниении органических веществ. В воздухе и минеральных источниках содержание газа также достаточно велико. кроме того люди и животные также выделяют диоксид углерода при выдыхании.

Рис. 1. Молекула углекислого газа.

Диоксид углерода является абсолютно бесцветным газом, его невозможно увидеть. Также он не имеет и запаха. Однако при его большой концентрации у человека может развиться гиперкапния, то есть удушье. Недостаток углекислого газа также может причинить проблемы со здоровьем. В результате недостатка это газа может развиться обратное состояние к удушью – гипокапния.

Если поместить углекислый газ в условия низкой температуры, то при -72 градусах он кристаллизуется и становится похож на снег. Поэтому углекислый газ в твердом состоянии называют «сухой снег».

Рис. 2. Сухой снег – углекислый газ.

Углекислый газ плотнее воздуха в 1,5 раза. Его плотность составляет 1,98 кг/м³ Химическая связь в молекуле углекислого газа ковалентная полярная. Полярной она является из-за того, что у кислорода больше значение электроотрицательности.

Важным понятием при изучении веществ является молекулярная и молярная масса. Молярная масса углекислого газа равна 44. Это число формируется из суммы относительных атомных масс атомов, входящих в состав молекулы. Значения относительных атомных масс берутся из таблицы Д.И. Менделеева и округляются до целых чисел. Соответственно, молярная масса CO₂ = 12+2*16.

Чтобы вычислить массовые доли элементов в углекислом газе необходимо следовать формулерасчета массовых долей каждого химического элемента в веществе.

n – число атомов или молекул.
Ar – относительная атомная масса химического элемента.Mr – относительная молекулярная масса вещества.
Рассчитаем относительную молекулярную массу углекислого газа.

Формула углекислого газа

Двуокись углерода (двуокись углерода, двуокись углерода, моноксид углерода (IV), карбоновый ангидрид, сухой лед) представляет собой бесцветный газ без запаха со слегка кислотным вкусом. Сформировано путем объединения двух элементов: углерода и кислорода.

Химические, структурные и электронные формулы двуокиси углерода

Химическая формула: ( mathrm 2 )

Структурная формула: ( O=C=O )

Химические, структурные и электронные формулы двуокиси углерода

Молярная масса: 44,01 г / моль.

Физические свойства двуокиси углерода

В стандартных условиях — газ без цвета и запаха, с кислым вкусом. При атмосферном давлении в жидком состоянии не существует, а сильное охлаждение кристаллизуется в виде «сухого льда» — белой снежной массы. Температура сублимации составляет -78 ° С. В обычных условиях 0,9 объема двуокиси углерода растворяют в одном объеме воды.

Химические свойства двуокиси углерода

Это оксид кислоты.

При растворении в воде образуется угольная кислота:

( C O_+H_ O leftrightarrow H_ C O_ )

Он взаимодействует с основными оксидами и основаниями с образованием карбонатов и бикарбонатов (соли углекислоты):

( N a_ O+C O_ rightarrow N a_ C O_ )

( 2 K O H+C O_ rightarrow K_ C O_+H_ O )

( mathrm+mathrm_(избыток) rightarrow K H C O_ )

Не поддерживает горение, но при нагревании может окислять активные металлы:

( C O_+2 M g rightarrow 2 M g O+C )

Качественная реакция — мутность извести ( (mathrm(mathrm) 2) ) из-за образования белого осадка карбоната кальция:

( mathrm(mathrm)_+mathrm_ rightarrow mathrm_ downarrow+mathrm_ mathrm )

Углекислый газ образуется гниением и сжиганием органического вещества. Содержится в воздухе и минеральных источниках, высвобождаемых во время дыхания животных и растений.

В промышленности углекислый газ производится термическим разложением карбонатов:

В лаборатории — действием сильных кислот на карбонаты или бикарбонаты:

( mathrm_+2 mathrm rightarrow mathrm_+mathrm_ mathrm+mathrm_ uparrow )

Примеры решения проблем

Рассчитать количество двуокиси углерода ( (mathrm) ), которое может быть получено путем сжигания 12 тонн угля, если выход продукта составляет 90% от теоретически возможного.

Напишите уравнение для реакции горения:

Рассчитайте количество углеродного вещества по формуле:

Согласно уравнению реакции

( n(C)=nleft(C O_right)=1000000 моль )

1 моль газа в нормальных условиях составляет 22,4 литра.

Рассчитайте теоретический объем углекислого газа:

( Vteorleft(C O_right)=1000000 cdot 22,4=2240000=22400м3 )

Мы вычисляем практический объем углекислого газа:

( Vpractleft(C O_right)=22400 cdot 0,9=20160м3 )

Объем производимого диоксида углерода равен 20160 м3.

Рассчитать объем 20% раствора соляной кислоты (плотность = 1,1 г / мл), что необходимо для получения 5,6 литров диоксида углерода из образца известняка, который содержит 5% примесей.

Напишите уравнение реакции:

( mathrm_+2 mathrm rightarrow mathrm_+mathrm_ mathrm+mathrm_ uparrow )

Во время реакции образуется углекислота ( (mathrm 2 mathrm 3) ), которая сразу же разлагается в воду ( (mathrm 2 mathrm) ) и двуокись углерода ( (mathrm 2) ).

Рассчитайте количество вещества диоксида углерода по формуле:

где ( mathrm ) — молярный объем, т. е. объем, который занимает один моль газа в нормальных условиях. ( mathrm=22,4 л/моль )

Для расчета количества вещества соляной кислоты мы составляем пропорцию в соответствии с уравнением реакции:

2 моля ( mathrm ) приводят к образованию 1 моль ( mathrm 2 )

x моль ( mathrm )приводит к образованию 0,25 моль ( mathrm 2 )

Молярная масса соляной кислоты составляет 36,5 г / моль. Рассчитайте массу соляной кислоты:

( m(H C l)=n(H C l) cdot M(H C l)=0,5мольcdot 36,5г/моль=18,25г )

Выражение для массовой доли вещества в растворе:

Рассчитайте массу раствора соляной кислоты по формуле:

Если раствор ( mathrm ) составляет 20%, то массовая доля соляной кислоты в нем будет равна 0,20.

Рассчитайте объем раствора соляной кислоты по формуле:

Объем 20% -ного раствора соляной кислоты составляет 82,95 мл.

Физические свойства углекислого газа:

Наименование параметра: Значение:
Химическая формула CO2
Синонимы и названия иностранном языке углерода двуокись (рус.)

углерода диоксид (рус.)

угольный ангидрид (рус.)

оксид углерода (IV)

carbon dioxide (англ.)

Тип вещества неорганическое
Внешний вид бесцветный газ
Цвет бесцветный
Вкус кисловатый вкус
Запах почти без запаха (в больших концентрациях с кисловатым «содовым» запахом)
Агрегатное состояние (при 20 °C и атмосферном давлении 1 атм.) газ
Плотность (состояние вещества – твердое вещество, при -79 °C и атмосферном давлении 1 атм.), кг/м3 1561
Плотность (состояние вещества – твердое вещество, при -79 °C и атмосферном давлении 1 атм.), г/см3 1,561
Плотность (состояние вещества – жидкость, при -60 °C и атмосферном давлении 1 атм.), кг/м3 1190
Плотность (состояние вещества – жидкость, при -60 °C и атмосферном давлении 1 атм.), г/см3 1,19
Плотность (состояние вещества – жидкость, при -37 °C и атмосферном давлении 1 атм.), кг/м3 1101
Плотность (состояние вещества – жидкость, при -37 °C и атмосферном давлении 1 атм.), г/см3 1,101
Плотность (состояние вещества – жидкость, при 0 °C и атмосферном давлении 35,5 атм.), кг/м3 925
Плотность (состояние вещества – жидкость, при 0 °C и атмосферном давлении 35,5 атм.), г/см3 0,925
Плотность (состояние вещества – газ, при 0 °C и атмосферном давлении 1 атм.), кг/м3 1,9768
Плотность (состояние вещества – газ, при 0 °C и атмосферном давлении 1 атм.), г/см3 0,0019768
Температура сублимации (возгонки), °C -78,5
Критическая температура*, °C 31
Критическое давление, МПа 7,387
Критический удельный объём,  м3/кг 0,468
Критическая точка 31 °C, 7,38 МПа
Тройная точка −56,6 °C, 0,52 МПа
Молярная масса, г/моль 44,01
Растворимость в воде, г/100 г 0,3803 при 16 °C,

0,3369 при 20 °C,

0,2515 при 30 °C

Теплопроводность, Вт/(м·K) 0,0166
Удельная теплоемкость, Дж/(кг·К) 849
Удельная теплота испарения, кДж/кг 379,5
Удельная теплота плавления, кДж/кг 205
Стандартная энтальпия образования ΔH (при 298 К, для состояния вещества – газ), кДж/моль -393,51
Стандартная энергия Гиббса образования ΔG (при 298 К, для состояния вещества – газ), кДж/моль -394,38
Стандартная энтропия вещества S (при 298 К, для состояния вещества – газ) 213,68
Стандартная мольная теплоемкость Cp (298 К, для состояния вещества – газ), Дж/(моль·K) 37,11
Энтальпия плавления ΔHпл, кДж/моль 8,37
Энтальпия возгонки ΔHвозг, кДж/моль 25,23
Скорость звука в веществе (при 20°C, состояние среды – газ), м/с 274,6
Давление паров, мм.рт.ст. 0,000001 (при -186,4°C),

0,00001 (при -180,7°C),

0,0001 (при -174,3°C),

0,001 (при -166,8°C),

0,01 (при -158°C),

2,31 (при -130°C),

9,81 (при -120°C),

34,63 (при -110°C),

104,81 (при -100°C),

279,5 (при -90°C),

672,2 (при -80°C),

1486,1 (при -70°C),

3073,1 (при -60°C),

5127,8 (при -50°C),

7545 (при -40°C),

10718 (при -30°C),

14781 (при -20°C),

19872 (при -10°C),

26142 (при 0°C),

33763 (при 10°C),

42959 (при 20°C),

54086 (при 30°C)

* при температуре выше критической температуры газ невозможно сконденсировать ни при каком давлении.

СО2 необходим животным

Круговорот веществ в природе обеспечивает относительно стабильный уровень углекислоты в атмосфере. При содержании животных крайне важным является поддержания естественного уровня СО2 в помещении. Соответствующая чистота, вентиляция и правильное размещение животных решают проблему перенасыщения углекислого газа. Напомним, что его нормальное содержание  – 0,3-0,4 мл на 1 литр воздуха. При несоблюдении условий содержания животных количество углекислоты может увеличиться до 1% и более.

Например, лошадь выделяет около 130 л СО2 в час, корова – до 200 л, овцы – до 30 л, свиньи – до 90 л. Если в закрытом помещении концентрация углекислого газа превысит 0,5%, это будет негативно сказываться на жизнедеятельности организма, наступает отравление, снижается продуктивность и иммунитет, проявляется вялость, апатия, потеря аппетита, животные худеют.

Углекислота жизненно необходима для всех живых организмов нашей планеты. Если его не станет, все живое погибнет, но если его будет очень много, результат окажется тот же.

Молярная масса элементов и соединений

Соединения — вещества, состоящие из различных атомов, которые химически связаны друг с другом. Например, приведенные ниже вещества, которые можно найти на кухне у любой хозяйки, являются химическими соединениями:

  • соль (хлорид натрия) NaCl
  • сахар (сахароза) C₁₂H₂₂O₁₁
  • уксус (раствор уксусной кислоты) CH₃COOH

Молярная масса химических элементов в граммах на моль численно совпадает с массой атомов элемента, выраженных в атомных единицах массы (или дальтонах). Молярная масса соединений равна сумме молярных масс элементов, из которых состоит соединение, с учетом количества атомов в соединении. Например, молярная масса воды (H₂O) приблизительно равна 1 × 2 + 16 = 18 г/моль.

Источники углекислоты

Большая часть диоксида углерода планеты естественного происхождения. Но также источниками СО2 являются промышленные предприятия и транспорт, которые обеспечивают выброс в атмосферу углекислого газа искусственного происхождения.

Природные источники

При перегнивании деревьев и травы каждый год выделяется 220 миллиардов тонн углекислого газа. Океанами выделяется 330 миллиардов тонн. Пожары, которые образовались в связи с природными факторами приводят к выбросу СО2, равному по количеству антропогенной эмиссии.

Естественными источниками углекислоты являются:

  • Дыхание флоры и фауны. Растения и животные поглощают и вырабатывают СО2, так устроено их дыхание.
  • Извержение вулканов. Вулканические газы содержат двуокись углерода. В тех регионах, где есть активные вулканы, углекислый газ способен выходить из земных трещин и разломов.
  • Разложение органических элементов. Когда органические элементы горят и перегнивают появляется СО2.

Диоксид углерода хранится в углеродных комбинациях: угле, торфе, нефти, известняке. В качестве резервных хранилищ можно назвать океаны, в которых содержатся большие резервы углекислоты и вечную мерзлоту. Однако, вечная мерзлота начинает таять, это можно заметить по уменьшению снежных шапок самых высоких гор мира. При разложении органики наблюдается рост выделения в атмосферу углекислого газа. В результате чего хранилище преобразуется в источник.

  • Ледники Боливии
  • Ледники Тибета

  • Ледник Петерманна
  • Ледник Кори Калис
  • Гора Килиманджаро
  • Ледник Муир

Северные районы Аляски, Сибири и Канады — это в основном вечная мерзлота. В ней содержится много органического вещества. Из-за нагрева арктических регионов вечная мерзлота тает и происходит гниение ее содержимого.

Антропогенные источники

Главными искусственными источниками CO2 считаются:

  • Выбросы предприятий, которые происходят в процессе сгорания. Результатом является значительное повышение концентрации углекислого газа в атмосфере планеты.
  • Транспорт.
  • Превращение хозяйственных земель из лесов в пастбища и пахотные земли.


В мире растет количество экологических машин, но их процент по отношению к машинам внутреннего сгорания очень мал. Стоимость электрокаров выше обычных машин, поэтому многие не имеют финансовой возможности приобрести такой вид транспорта.

Химические и физические свойства углекислого газа.

Углекислый газ (двуокись углерода), называемый также углекислотой, — важнейший компонент в составе газированных напитков. Он обусловливает вкус и биологическую стойкость напитков, сообщает им игристость и освежающие свойства.

Химические свойства. В химическом отношении углекислый газ инертен. Образовавшись с выделением большого количества тепла, он, как продукт полного окисления углерода, весьма стоек. Реакции восстановления двуокиси углерода протекают только при высоких температурах. Так, например, взаимодействуя с калием при 230° С, углекислый газ восстанавливается до щавелевой кислоты:

Вступая в химическое взаимодействие с водой, газ, в количестве не более 1% от содержания его в растворе, образует угольную кислоту, диссоциирующую на ионы Н+, НСО3-, СО23-. В водном растворе углекислый газ легко вступает в химические реакции, образуя различные углекислые соли. Поэтому водный раствор углекислого газа обладает большой агрессивностью по отношению к металлам, а также разрушающе действует на бетон.

Физические свойства. Для сатурации напитков используется углекислый газ, приведенный в жидкое состояние сжатием до высокого давления. В зависимости от температуры и давления углекислый газ может находиться также в газообразном и твердом состоянии. Температура и давление, соответствующие данному агрегатному состоянию, приведены на диаграмме фазового равновесия (рис. 13).

Рис. 13. Диаграмма фазового равновесия углекислого газа.

При температуре минус 56,6° С и давлении 0,52 Мн/м2 (5,28 кГ/см2), соответствующих тройной точке, углекислый газ может одновременно находиться в газообразном, жидком и твердом состоянии. При более высоких температуре и давлении углекислый газ находится в жидком и газообразном состоянии; при температуре и давлении, которые ниже этих показателей, газ, непосредственно минуя жидкую фазу, переходит в газообразное состояние (сублимирует). При температуре, превышающей критическую температуру 31,5° С, никакое давление не может удержать углекислый газ в виде жидкости.

В газообразном состоянии углекислый газ бесцветен, не имеет запаха и обладает слабовыраженным кислым вкусом. При температуре 0° С и атмосферном давлении плотность углекислого газа составляет 1,9769 кг/ж3; он в 1,529 раз тяжелее воздуха. При 0°С и атмосферном давлении 1 кг газа занимает объем 506 л. Связь между объемом, температурой и давлением углекислого газа выражается уравнением:

где V — объем 1 кг газа в м3/кг; Т — температура газа в ° К; Р — давление газа в н/м2; R — газовая постоянная; А — дополнительная величина, учитывающая отклонение от уравнения состояния идеального газа;

Ожиженный углекислый газ — бесцветная, прозрачная, легкоподвижная жидкость, напоминающая по внешнему виду спирт или эфир. Плотность жидкости при 0° С равна 0,947. При температуре 20°С ожиженный газ сохраняется под давлением 6,37 Мн/м2 (65 кГ/см2) в стальных баллонах. При свободном истечении из баллона жидкость испаряется с поглощением большого количества тепла. При снижении температуры до минус 78,5° С часть жидкости замерзает, превращаясь в так называемый сухой лед. По твердости сухой лед близок к мелу и имеет матово-белый цвет. Сухой лед испаряется медленнее жидкости, при этом он непосредственно переходит в газообразное состояние.

При температуре минус 78,9° С и давлении 1 кГ/см2 (9,8 Мн/м2) теплота сублимации сухого льда составляет 136,89 ккал/кг (573,57 кдж/кг).

Оцените статью
Рейтинг автора
5
Материал подготовил
Андрей Измаилов
Наш эксперт
Написано статей
116
Добавить комментарий