Подшипник

Краткая характеристика основных типов

Шариковые подшипники

Радиальные, однорядные шариковые подшипники в основном предназначены для восприятия радиальных нагрузок, но могут воспринимать и осевую нагрузку в обе стороны до 70% от неиспользованной допустимой радиальной нагрузки, поэтому эти подшипники можно применять для фиксации вала или корпуса в осевом направлении. Допускают перекос осей колец подшипника на угол не более 0,25°.

Радиальные, двухрядные, сферические шариковые подшипники предназначены для восприятия радиальных нагрузок в условиях возможных значительных перекосов колец подшипников (до 2–3°). Подшипники допускают осевую фиксацию вала в обе стороны с нагрузкой до 20% от неиспользованной допустимой радиальной нагрузки. Дорожку качения наружного кольца выполняют по сферической поверхности, описанной из центра подшипника, что обеспечивает подшипнику самоустанавливаемость, поэтому их можно применять в узлах машин с отдельно стоящими корпусами при несовпадении осей посадочных мест под подшипники или в качестве опор длинных прогибающихся от действия нагрузок валов.

Радиально-упорные шариковые подшипники предназначены для восприятия совместно действующих радиальных и односторонних осевых нагрузок. Могут воспринимать чисто осевую нагрузку. Один из бортов наружного или внутреннего кольца срезан почти полностью, что позволяет закладывать в подшипники на 45% больше шариков того же диаметра, чем в обычные радиальные подшипники, что способствует повышению их грузоподъемности. Подшипники по конструктивным особенностям выполняют с расчетными углами контакта шариков с кольцами: α= 12° (тип 36000), α= 26° (тип 46000) и α= 36° (тип 66000). Радиально-упорные подшипники применяют в опорах жестких коротких валов и в опорах, требующих регулировки внутреннего зазора в подшипниках. Подшипники, у которых угол контакта α= 45°, называются упорно-радиальными.

Упорные шариковые подшипники предназначены для восприятия односторонних осевых нагрузок. На горизонтальных валах они работают хуже, чем на вертикальных валах, и требуют хорошей регулировки или поджатия колец пружинами. Упорные подшипники часто устанавливают в одном корпусе в паре с радиальными подшипниками. 

Роликовые подшипники

Радиальные роликовые подшипники с короткими цилиндрическими роликами предназначены для восприятия больших радиальных нагрузок. Их грузоподъемность на 70% выше грузоподъемности однорядных радиальных шариковых подшипников одинакового типоразмера. Подшипники легко разбираются в осевом направлении, допускают некоторое осевое взаимное смещение колец, что облегчает монтаж и демонтаж подшипниковых узлов и позволяет применять их в плавающих опорах, как правило, жестких коротких валов.


Радиальные двухрядные подшипники с короткими цилиндрическими роликами
применяют для опор быстроходных коротких валов, требующих точного вращения. Ролики расположены в шахматном порядке. Сепаратор – массивный бронзовый.

Радиальные двухрядные сферические роликовые подшипники предназначены для восприятия особо больших радиальных нагрузок при возможности значительных (2–3°) перекосов колец, а также двухстороннюю осевую нагрузку до 25% неиспользованной допустимой радиальной нагрузки. Могут работать и при только осевом усилии. Дорожка качения наружного кольца выполнена по сферической поверхности. Ролики имеют форму бочки. Подшипники этого типа применяют в опорах длинных двух- и многоопорных валов, подверженных значительным прогибам под действием внешних нагрузок, а также в узлах машин с отдельно стоящими корпусами.

Конические роликовые подшипники являются радиально-упорными и предназначены для восприятия значительных совместно действующих радиальных и односторонних осевых нагрузок. Радиальная грузоподъемность в среднем на 90% выше, чем у радиальных однорядных подшипников такого же типоразмера. Эти подшипники имеют широкое применение в машиностроении. Отличаются удобством сборки и разборки, регулировки зазоров и компенсации износов. Угол контакта (половина угла при вершине конуса дорожки качения наружного кольца) α = (9 — 17°) (тип 7000), α= (25 — 29°) (тип 27000). Конические роликовые подшипники применяют в узлах машин с жесткими, двух опорными, короткими валами.

Подшипники скольжения – ключевые достоинства, недостатки, основные типы

Исторически подшипники скольжения стали первой опорой, применяемой в создаваемых людьми механизмах. Они встречаются уже в неолитических раскопках и первоначально используются для сверлильных устройств, веретен прядильных. До середины девятнадцатого века они были основной опорой в технике, но начали уступать первенство шарикоподшипникам. Однако и в настоящее время опоры скольжения широко распространены в технике.

Для них специально подбирают материалы с минимальным коэффициентом трения, образующие пару трения. Для уменьшения тепловыделения, снижения трения в зону контакта обычно подается смазка. Но некоторые пары трения, например, фторопласт-сталь в смазке не нуждаются.

Наиболее распространены подшипники скольжения конструкция, которых включает корпусную деталь 3 с установленным вкладышем антифрикционным 2. В отверстии вкладыша с зазором вращается шейка вала 5 либо линейно перемещается шток. Через систему отверстий 1 и распределяющих канавок в зазор подается смазка 4, разделяющая контактирующие поверхности.

Смазка может подаваться специальным шприцем через масленку. В сложных конструкциях с большим числом точек смазки используют централизованные системы с нагнетанием смазки масляным насосом из центрального бака по трубопроводам. Нередко вместо отдельного корпуса используют расточки деталей конструкции, в которые запрессовываются антифрикционные втулки.

Преимущества опор скольжения:

  • малые радиальные габариты;
  • стойкость к ударам, вибрациям;
  • повышенная работоспособность на больших скоростях;
  • возможность выдерживать значительные нагрузки;
  • точность установки;
  • невысокая стоимость, особенно, в случае больших диаметров валов;
  • возможность использования аналогичных конструкций, как для вращательного движения, так и для линейных перемещений (разница в геометрии смазочных канавок втулок);
  • простота изготовления;
  • точность установки вала;
  • для некоторых пар трения (капролон, зеламид, фторопласт со сталью) возможна работа без смазки;
  • возможность выполнения разъемных конструкций;
  • допустимость работы в воде, пищевых или агрессивных средах при соответственном подборе материалов.

К их недостаткам можно отнести:

  • значительные линейные размеры;
  • из-за малой номенклатуры покупных серийных изделий в большинстве случаев требуется самостоятельное изготовление;
  • больший чем в шарикоподшипниках коэффициент трения и соответственно меньший кпд;
  • необходимость в хорошей смазке для большинства пар трения;
  • значительное тепловыделение, нагрев, износ при недостаточности смазки;
  • необходимость в дорогостоящих антифрикционных материалах, например оловянистой бронзе, фторопласте;
  • неравномерность износа втулок и цапф.

ГОСТ 18282 на подшипники скольжения устанавливает ключевые определения и термины.

Материалы

Основными
требованиями, предъявляемыми к материалу
вкладыша, является:

  1. Малый
    в паре с валом.

  2. Износоустойчивость.

  3. Прирабатываемость.

  4. Смачиваемость
    маслом.

  5. Теплопроводность.

Вкладыши подшипников
скольжения бывают металлические,
металлокерамические и неметаллические.

Наибольшее
распространение имеют металлические
вкладыши, благодаря своей высокой
прочности и хорошей теплопроводности.
Наиболее часто употребляют следующие
сплавы: баббиты — сплавы на основе олова,
свинца, сурьмы и др., марки Б83, Б90, Б92, БС;
они имеют небольшую твердость (HB
20…35) и мало изнашивают вал.

Металлические
вкладыши
выполняют
из бронзы, алюминиевых сплавов и
антифрикционных чугунов. Наилучшими
антифрикционными свойствами обладают
оловянистые бронзы Бр010Ф1, Бр04Ц4С17 и др.
Алюминиевые (БрА9Ж3Л и др.) и свинцовые
(БрС30) бронзы применяют с закаленными
цапфами.

Вкладыши с баббитовой
заливкой применяют для ответственных
под­шипников при тяжелых и средних
режимах работы (компрессоры, дизели и
др.).

Баббит-сплав на
основе олова и свинца является одним
из лучших антифрикционных материалов.
Его заливают тонким слоем на рабочую
поверхность втулки.

В малоответственных
тихоходных механизмах используются
чугунные вкладыши (АЧС-1 и др.).

Металлокерамические
изготавливают
прессованием и последующим спеканием
порошков меди или железа с добавлением
графита, олова или свинца. Пористость
этих вкладышей позволяет пропитывать
их маслом, что позволяет их использовать
долго, без подвода смазочного материала.
Их применяют в тихоходных механизмах
и в местах, труднодоступных для подвода
масла.

Неметаллические
материалы
применяют
в подшипниках гребных винтов, насосов,
пищевых машин и др. Материал неметаллических
вкладышей: текстолит, фторопласт,
древеснослоистые пластики, резина. Эти
материалы хорошо прирабатываются, могут
работать при смачивании водой.

Назначение и устройство подшипников

Подшипник – узел механизма или машины, являющийся частью опоры, которая поддерживает вал, обеспечивая вращение или линейное перемещение с минимальным сопротивлением, воспринимающий и передающий нагрузку от вала на корпусные детали механизма или машины . Опора с упорным подшипником называется подпятником.

Подшипники характеризуются следующими основными параметрами:

  • максимальные динамическая и статическая нагрузки;
  • максимальная скорость вращения для радиальных подшипников;
  • посадочные размеры;
  • класс точности;
  • группа зазоров.

Нагружающие подшипник силы подразделяют на следующие виды:

  • радиальная сила, действующая в направлении перпендикулярном к оси вращения подшипника;
  • осевая сила, действующая в направлении параллельном к оси вращения подшипника.

По конструкции, обуславливающей различный принцип работы, все подшипники можно разделить на несколько типов:

  • подшипники качения;
  • подшипники скольжения;
  • газостатические подшипники;
  • газодинамические подшипники;
  • гидростатические подшипники;
  • гидродинамические подшипники;
  • магнитные подшипники.

Основные типы подшипников, которые применяются в машиностроении, – это подшипники качения и скольжения.

Достоинства подшипников скольжения: малые радиальные размеры; возможность работы при ударных нагрузках и применения при больших нагрузках и высоких скоростях вращения. Недостатки: не могут работать без смазки, не допускают перекосов валов, сложны в установке (требуют пришабривания).

Подшипники качения по сравнению с подшипниками скольжения имеют следующие преимущества :

  • значительно меньшие потери на трение, а, следовательно, более высокий коэффициент полезного действия (до 0,995) и меньший нагрев;
  • в 10…20 раз меньше момент трения при пуске машин;
  • экономия дефицитных цветных материалов, которые чаще всего используются при изготовлении подшипников скольжения;
  • меньшие габаритные размеры в осевом направлении;
  • простота обслуживания и замены;
  • меньший расход смазочного материала;
  • невысокая стоимость вследствие массового производства стандартных подшипников.

К недостаткам подшипников качения можно отнести :

  • ограниченную возможность применения при очень больших нагрузках и высоких скоростях;
  • непригодность для работы при значительных ударных и вибрационных нагрузках из‑за высоких контактных напряжений и плохой способности демпфировать колебания;
  • значительные габаритные размеры в радиальном направлении и масса;
  • шум во время работы, обусловленный погрешностями форм и размеров деталей;
  • сложность установки и монтажа подшипниковых узлов;
  • повышенную чувствительность к неточности установки в подшипниковый узел;
  • высокая стоимость при мелкосерийном производстве уникальных по размерам подшипников.

Конструкция подшипников качения состоит из двух колец, тел качения (шариков или роликов) и сепаратора (некоторые типы подшипников могут быть без сепаратора), отделяющего тела качения друг от друга, удерживающего на равном расстоянии и направляющего их движение (рис. 1). По наружной поверхности внутреннего кольца и внутренней поверхности внешнего кольца (на торцевых поверхностях колец упорных подшипников качения) выполнены желоба – дорожки качения, по которым при работе подшипника катятся тела качения.

Рис. 1. Устройство радиального шарикоподшипника: 1 – внешнее кольцо; 2 – шарик (тело качения); 3 – сепаратор; 4 – дорожка качения; 5 – внутреннее кольцо

В некоторых узлах механизмов и машин в целях уменьшения габаритов, а также повышения точности и жёсткости применяют совмещённые опоры: дорожки качения в этом случае выполняют непосредственно на валу или на поверхности корпусной детали.

Существуют подшипники качения, изготовленные без сепаратора. Такие подшипники имеют большое число тел качения и большую грузоподъёмность. Однако предельные скорости вращения бессепараторных подшипников значительно ниже вследствие повышенных моментов сопротивления вращению.

Закрытые подшипники качения (имеющие защитные крышки) практически не требуют обслуживания (замены смазки), открытые – чувствительны к попаданию инородных тел, что может привести к быстрому разрушению подшипника и выходу механического оборудования из строя.

Конструкция и материалы

Подшипник скольжения представляет собой собранные корпус и вкладыш, то есть его конструктивная схема более проста по сравнению с подшипником качения. Корпус может быть цельным или разъёмным. В последнем случае обе его части скрепляются шпильками или болтами. Вкладыш выполнен в виде втулки. В неразъёмном подшипнике вкладыш может быть выполнен в виде двух отдельных половинок, верхней и нижней. Втулка подшипника скольжения запрессовывается в корпус. Хотя неразъёмный подшипник по конструкции проще, разъёмный вариант намного удобнее для монтажа.

Если вал подвержен большой деформации или невозможен точный монтаж механизма, применяются самоустанавливающиеся подшипники. Иначе говоря, требуется сферический подшипник скольжения.

Конструкционные материалы: чугун для корпуса (марок СЧ 12-28 и СЧ 18-36), бронзы, чугун и пластмасса для вкладышей. Баббиты и свинцовосодержащие бронзы, лёгкие антифрикционные материалы монтируются на стальную, бронзовую или чугунную основу. Применяются и чугунные или бронзовые вкладыши с баббитовой заливкой. Встречаются и деревянные вкладыши и даже втулки из ДСП!

Некоторые материалы позволяют изготовить вкладыши, способные работать без дополнительной смазки.

Геометрия рабочих поверхностей у подшипников скольжения может быть различной. Цилиндрические, конические, плоские или сферические формы применимы в соответствующих условиях, такой же формы должна быть сопрягаемая поверхность вала. Конические и сферические подшипники применяются нечасто – первые удобны при небольших нагрузках в условиях систематической потребности регулировки зазора. Вторые – самоустанавливающиеся – способны работать в условиях перекоса вала в подшипниковом узле.

Литература

  • Анурьев В. И. Справочник конструктора-машиностроителя: В 3 т. / Под ред. И. Н. Жестковой. — 8-е изд., перераб. и доп.. — М.: Машиностроение, 2001. — Т. 2. — 912 с. — ISBN 5-217-02964-1 (5-217-02962-5), ББК 34.42я2, УДК 621.001.66 (035).
  • Ничипорчик С. Н., Корженцевский М. И., Калачёв В. Ф. и др. Глава 13. Подшипники скольжения // Детали машин в примерах и задачах: / Под общ. ред. С. Н. Ничипорчика. — 2-е изд. — Мн.: Выш. школа, 1981. — 432 с. — ISBN ББК 34.44 Я 73, УДК 621.81 (075.8).
  • Леликов О. П. Основы расчёта и проектирования деталей и узлов машин. Конспект лекций по курсу «Детали машин». — М.: Машиностроение, 2002. — 440 с. — ISBN 5-217-03077-1, УДК 621.81.001.66, ББК 34.42.
  • Иосилевич Г. Б. Детали машин: Учебник для студентов машиностроит. спец. вузов. — М.: Машиностроение, 1988. — 368 с. — ISBN 5-217-00217-4, УДК 62-2(075.8), ББК 34.44.

Виды смазок для подшипников

При выборе смазывающего вещества в первую очередь уделяется внимание показателю вязкости, так как она определяет допустимую скорость работы устройства и некоторые другие моменты. Принятая система стандартизации определяет выделение следующих основных классов:

  1. GA – смазывающее вещество, предназначенное для малонагруженных подшипников, которые эксплуатируются в диапазоне от 20 до 70 градусов Цельсия. Этот класс наиболее распространен в области машиностроения.
  2. GB – класс, связанный с эксплуатацией при средних нагрузках. Температурный режим существенно расширен, составляет 40-120 градусов Цельсия. Применяется для смазывания нагруженных подшипников большинства автомобилей.
  3. GC – вариант исполнения, который часто применяется для обслуживания грузовых автомобилей, а также некоторой спортивной техники. За счет добавления особых веществ в состав повышается эксплуатационная температура до 160 градусов Цельсия.

Довольно большое распространение получила высокотемпературная смазка для подшипников. Она обеспечивает требуемую степень смазки даже при существенном увеличении температуры, так как сохраняет свои свойства.

Рассматривая основные виды смазок для подшипников также уделим внимание нескольким распространенным группам:

  1. Литийсодержащие. Этот вариант исполнения считается одним из самых популярных, так как соотношение цены и качества находится на самом высоком уровне. Самым распространенным предложением можно назвать Литол 24. Подобное вещество характеризуется тем, что не обеспечивает требуемую защиту поверхности от воздействия повышенной влажности.
  2. Высокоскоростная смазка также пользуется весьма высокой популярностью. Основные свойства достигаются за счет добавления в состав различных порошков. Смазка красного цвета часто добавляется в подшипники, которые устанавливаются в механизмах, работающих на высокой скорости. Основными добавками зачастую становятся никелевые и медные порошки. Кроме этого, некоторые производители проводят добавление меди и натрия. Медная смазка характеризуется довольно большим количеством особенностей, которые должны учитываться перед непосредственным выбором вещества.
  3. На основе полимочевины. Подобная специальная смазка характеризуется тем, что в состав включается особое стабилизирующее вещество – кальций сульфат. Этот вариант исполнения практически во всех случаях входит в топ смазок для подшипников.
  4. Молибден также часто применяется в качестве основы при изготовлении смазок для подшипников. Этот вариант исполнения характеризуется тем, что способен выдерживать серьезное температурное воздействие. Часто низкотемпературная смазка для подшипников относится к этой группе, однако она характеризуется одним существенным недостатком – при контакте с водой проходит химическая реакция, в результате которой образуется серная кислота, за счет чего эксплуатационный срок существенно снижается.
  5. Перфторполиэфирные считаются самым совершенным, но и дорогим предложением на рынке. В большинстве случаев подобная смазка применяется при обслуживании спортивных автомобилей, которые эксплуатируются в сверх тяжелых условиях. Некоторые немецкие и японские автопроизводители применяют это веществ при сборке автомобилей премиального класса. Из-за высокой стоимости применение в быту нецелесообразно.

При этом она может быть зеленая или фиолетовая, цвет может изменяться в зависимости от состава вещества, а также типа применяемых красителей при изготовлении. Как правило, окрашивание проводится для того, чтобы контролировать степень смазывания поверхности.

Классификация также проводится по тому, в каком агрегатном состоянии вещество поступает в продажу. Среди особенностей отметим следующие:

  1. Чаще всего продается смазка в виде жировой консистенции, которую достаточно просто нанести на поверхность. Как правило, она достаточно густая, поэтому на момент эксплуатации подшипника не вытекает.
  2. В последнее время довольно большое распространение получил спрей. Это можно связать с тем, что наносить вещество достаточно просто. После распыления аэрозольная смазка загустевает, после чего приобретает требуемые эксплуатационные характеристики.

Приведенная выше информация указывает на то, что есть просто огромное количество различных вариантов исполнения смазки, выбор проводится в зависимости от того, какие эксплуатационные характеристики следует обеспечить. Кроме этого, при выборе довольно много внимания уделяется стоимости, так как она варьируется в достаточно широком диапазоне.

Виды подшипников скольжения

Одним из факторов дающих возможность опорам скольжения эффективно конкурировать с шарикоподшипниками является конструктивное разнообразие, позволяющее успешно решать множество задач.

Их классификация включает следующие виды подшипников скольжения:

  • по типу воспринимаемой нагрузки опоры для компенсации радиальных, осевых, комбинированных усилий;
  • разъемные и неразъемные;
  • в зависимости от типа движения для линейных перемещений или вращения;
  • по типу трения с сухим, полусухим, полужидким, жидким, граничным, газовым трением;
  • еще одна классификация, основанная на способе трения, выделяет гидростатические и гидродинамические, а также газостатические или газодинамические разновидности;
  • по материалам металлические и из неметаллов;
  • особые виды, например, сферические самоустанавливающиеся, самосмазывающиеся, сегментные.

Опоры радиальные обычно представляют собой антифрикционные втулки, зафиксированные в отдельных корпусах либо запрессованные в конструкционные элементы.

При выполнении корпуса из антифрикционного материала, например, серого чугуна он сам становится радиальной опорой. (Вариант б).

При использовании втулки с буртом мы получаем комбинированную опору, способную воспринимать кроме радиальных сил и небольшие осевые нагрузки. Бурт также упрощает монтаж втулки. На приведенном рисунке втулка 1 компенсирует нагрузку радиальную и осевое усилие, направленное вправо, со стороны вала 5. Фиксация втулки в корпусной детали 4 осуществляется винтом-гужоном 3. В зону канавки 2 подводится смазка.

Для компенсации больших осевых сил используются упорные подшипники.

Обычно подшипник скольжения упорный для вертикального вала называется подпятником. На иллюстрации показан упорно-сферический подпятник, воспринимающий вертикальную силу при перекосе вала.

Обычно используются неразъемные подшипники.

Нередко, например, для валов коленчатых возникает необходимость в разъемных подшипниках скольжения. Они позволяют значительно упростить сборку, а иногда являются единственным вариантом монтажа. Такая опора имеет разборный корпус. Основание и крышка корпуса стянуты гайками на шпильках. Вкладыш также состоит из двух половин. Подвод смазки производится через масленку, отверстие в крышке и каналы вкладыша.

Для компенсации перекоса вала используется сферический подшипник скольжения. Их выпускает, например, SKF. Шаровый подшипник скольжения допускает поворот втулки со сферической наружной поверхностью в соответствующем посадочном месте корпуса.

В сложных рычажных системах, шарнирных параллелограммах сложно добиться строгой параллельности расположения опор. В таких случаях часто используют шарнирный подшипник скольжения. Это разновидность сферического подшипника с соединением внешнего, внутреннего колец по сферической поверхности. Они выдерживают значительные радиальные и двухсторонние осевые усилия. В основном в них используется пара трения сталь – сталь со смазкой. Обычно применяется высокохромистая сталь типа ШХ с фосфатированием и нанесением дисульфида молибдена. Такое сочетание материалов отлично работает при больших нагрузках, выдерживает удары.

В пищевой индустрии, медицине и других условиях, где нежелательна смазка применяют пару трения с внутренним хромированным кольцом и покрытием контактной поверхности наружного кольца политетрафторэтиленом с усилением сеткой арматурной из сплава меди. Такие подшипники используют чаще в механизмах, реализующих повороты рычагов. Существуют стандартизованные серии шарнирных подшипников GE или ШС, ШЛ, ШП сталь-сталь, ШН сталь-металлофторопласт, ШЕ сталь-органоволокнит. Помимо материалов пар трения они различаются наличием и расположением точек подвода смазки, размещением канавок.

Технические условия на шарнирный подшипник скольжения приведены в ГОСТ 3635-78.

Основные типы

Все подшипники могут быть разделены на две основные группы – подшипники качения и скольжения. Конструкция первых состоит из

  • двух колец – внешнего и внутреннего;
  • шариков;
  • сепаратора, в котором установлены шарики.
  • Подшипники скольжения имеют следующую конструкцию:
  • внешняя обойма;
  • внутренняя обойма, выполненная из материала с низким коэффициентом трения, например, тефлон (фторопласт).

Задача, которую призваны решать подшипники любого типа – это снижение трения между вращающимся и стационарными узлами агрегата. Это необходимо для снижения потерь энергии, нагрева и износа деталей, вызываемыми силой трения.

Подшипники скольжения

Сферические подшипники скольжения

Этот узел обычно выполняют в виде массивной опоры, изготовленной из металла. В ней проделывают отверстие, куда вставляют втулку или вкладыш, выполненный из материала с низким коэффициентом трения.Для повышения эффективности работы этого узла и снижения трения в него вводят жидкую или плотную смазку. Это приводит к тому, что вал отделяется от втулки пленкой маслянистой жидкости. Эксплуатационные параметры подшипника скольжения зависят от следующих параметров:

  1. Размера элементов, входящих в этот узел.
  2. Скоростью вращения вала и размера нагрузок, приходящихся на него.
  3. Густотой смазки.

В некоторых конструкциях подшипников предусмотрена принудительная система смазки.

Подшипники качения

Внешний вид подшипника качения

В подшипниках этого типа трение скольжение подменяется трением качения. Благодаря такому решению происходит существенное снижение трения и износа.Подшипники качения имеют разнообразные конструкции и размеры. В качестве тел вращения могут быть использованы шарики, ролики, иголки.

Шарикоподшипники

Шарикоподшипники являются самым распространенным типом подшипников. Он состоит из двух колец, между которыми устанавливают сепаратор с предустановленными шариками определенного размера. Шарики перемещаются по канавкам, которые, при изготовлении тщательно шлифуют. Ведь для полноценной работы подшипника необходимо, чтобы шарики не проскальзывали, и при этом у них была существенная площадь опоры.Сепаратор, в который устанавливают шарики, обеспечивает их точное положение и исключает какой-либо контакт между ними. Производители выпускают изделия, которые укомплектованы двухрядными сепараторами.

Подшипники этого класса применяют при довольно небольших радиальных нагрузках и большом количестве оборотов рабочего вала.

Роликоподшипники

В подшипниках этого класса в качестве тел вращения применяют ролики различной формы. Они могут иметь форму цилиндров, усеченных конусов и пр. Производители освоили выпуск широкой номенклатуры роликовых подшипников с разными размерами колец и тел вращения.Конический роликоподшипник используют для работы при наличии разнонаправленных нагрузках (осевой и радиальной) и больших оборотах на валу. Конструктивно роликовый подшипник похож на шариковый. Он также состоит из двух колец, сепаратора и роликов. Размеры роликовых подшипников определены в ряде стандартов, которые имеют силу в нашей стране. Например, ГОСТ 8328-75 определяет конструкцию, маркировку и размеры подшипников с короткими роликами. А ГОСТ 4657-82 регламентирует размеры и конструкцию игольчатых подшипников. То есть на каждый вид подшипников существует свой ГОСТ.

В этих нормативных документах приведены таблицы размеров подшипников, которыми должны руководствоваться конструкторы, при проектировании таких узлов.

Кстати, для облегчения жизни проектировщиков разработаны и успешно применяются справочники подшипников, в которых изложены принципы расчетов подшипниковых узлов, указаны размеры самих изделий и сопровождающих деталей, например, размеры заглушек.

Материал деталей

Материалы подшипников качения назначаются с учетом высоких требований к твердости и износостойкости колец и тел качения. Здесь используются шарикоподшипниковые высокоуглеродистые хромистые стали ШХ15 и ШХ15СГ, ШХ20СГ, ШХ20, а также цементируемые легированные стали 18ХГТ и 20Х2Н4А. Твердость колец и роликов обычно HRC 60…65, а у шариков немного больше –  HRC 62… 66, поскольку площадка контактного давления у шарика меньше.

Кольца, ролики или шарики при температурах работы до 100 градусов должны быть термически обработаны до твердости HRC 58-66 в зависимости от марки стали.

Сепараторы изготавливают из листовой стали, латуни, бронзы, дюралюминия, текстолита, полиамидов с различными уплотнителями. Пластмассовые сепараторы уменьшают величину инерционных нагрузок в подшипниках, дают возможность использовать упругие свойства пластмасс при монтаже тел качения.

Сепараторы, изготовленные из самосмазывающегося материала, служат источником твердой смазки. В качестве самосмазывающегося материала часто применяется аман. Его можно использовать для сепараторов обычных и высокоскоростных подшипников, работающих без жидкой смазки, при нормальных и повышенных температурах. Сепараторы из амана должны быть более массивны, чем обычные.

В зависимости от предъявляемых к подшипникам требований кольца и тела качения выпускаются и из других материалов. Так, для обеспечения повышенной коррозионной стойкости ряд подшипников изготовляют из коррозионностойкой стали. Для работы при высокой температуре подшипники выпускают из жаростойких материалов.

Крупногабаритные подшипники для лучшего восприятия ударных нагрузок изготавливаются из цементируемой хромоникелевой стали. Ряд подшипников выпускается из немагнитных и других материалов. Если подшипник используют для работы при повышенной температуре более 100 градусов, то для обеспечения стабилизации размеров детали подшипника подвергаются отпуску при более высокой температуре. При этом твердость деталей несколько снижается в зависимости от температуры отпуска.

Полная проверка учета НДС (БП 3.0, БП КОРП 3.0)

Разница между подшипниками скольжения и качения

Подшипник скольжения имеет ряд преимуществ, которые отличают его от подшипника качения:

  • Имеет разъемное исполнение. Это огромный плюс для использования в двигателе внутреннего сгорания. На коленчатый вал надеть подшипник качения не представляется возможным. И поэтому применяют подшипник скольжения.
  • Экономичный вариант для применения на больших по диаметру валах.
  • Способны работать в воде.
  • При ремонте не возникает необходимость демонтировать остальные детали.
  • В отличие от шарикоподшипников могут воспринимать большие вибрационные, а также ударные нагрузки.
  • Размеры подшипников радиального типа относительно небольшие.
  • Имеется возможность регулирования зазора между валом и вкладышем.
  • Просты в тихоходных машинах.
  • Надежны в приводах с высокой скоростью.
  • Бесшумная работа.

Однако и у подшипников качения есть свои преимущества:

  • Материалы для изготовления дешевле.
  • Не требуют постоянного надзора за смазкой.
  • Нет увеличенного трения при пуске.
  • Меньший расход смазочных материалов.
  • Меньше сила трения.
  • Размер подшипников упорного типа меньше.

У каждого вида подшипника есть свои преимущества и слабые стороны, что позволяет применять при отдельный вид при определённых условиях. Из общего же только предназначение – опора вала и создание минимального трения при работе.

Применение подшипников качения и их отличия

Подшипники качения – общий тип деталей, но внутри него различают много подвидов, отличающихся по свойствам, внешнему виду, условиям эксплуатации. Но обычно подбор подшипников осуществляется для конкретной детали и конструкции экспериментально, так как подобрать конкретный вид можно лишь условно, учитывая несколько факторов. Так, учитывают следующие моменты:

  • частота вращения конструкции;
  • нагрузка на деталь;
  • температура;
  • смазывание;
  • наличие вибраций и т. д.

Если учесть все характеристики, дефекты подшипников качения при работе будут минимальными. Исключеним составляют случаи, когда размер подшипника и его типе обусловлен диаметром конструкции. Тогда невозможно выбирать между вариантами.

Рассмотрим основные подшипники качения и скольжения и отличия между ними.

Если подшипники качения создаются для переноса радиальной нагрузки, то это радиальные подшипники. Преимущество их в том, что они могут выдерживать комбинированные нагрузки. Поэтому различают много их типов:

  • радиальные шарикоподшипники;
  • конические роликоподшипники;
  • двухрядные сферические роликоподшипники;
  • радиально-упорные шарикоподшипники и другие подтипы.

Игольчатые же подшипники и многие цилиндрические подобных преимуществ не имеют – они принимают только радиальную нагрузку.

Следующий тип подшипников – упорные. Это подшипники качения, которые воспринимают осевую нагрузку. Существуют также комбинированные варианты этих изделий, которые могут возпринимать и радиальную нагрузку.

Выбирая подшипник, анализируют, стеснено ли пространство в радиальном направлении. Если да, то устанавливают подшипники, в которых меньшая высота поперечного сечения (игольчатые без колец или с внутренним кольцом, радиальные шарикоподшипники и т. д.). Если же оно ограничено в осевом направлении, выбирают однорядные цилиндрические подшипники либо упорные игольчатые без колец.

Немаловажно и то, какой тип направления движения вала в подшипнике. Так, есть модели, имеющие возможность осевого сдвига, направляющие вал в нескольких аксиальных направлениях, а также те, которые имеют возможность углового смещения, за счет чего компенсируются возможные перекосы конструкций

Определяя нужный размер подшипника качения, учитывают несколько факторов. В первую очередь, рассчитывают будущую нагрузку на деталь, а также ее тип – динамическая или статическая. Также учитывают возможную грузоподъемность подшипника, сроки его эксплуатации, надежность и т. д. Так, вращающиеся подшипники имеют динамическую нагрузку. А те, что перемещаются крайне мало между кольцами, неподвижны или осуществляют колебательные движения, по сути имеют статическую нагрузку. Поэтому роликоподшипники имеют более высокое напряжение, чем шарикоподшипники. Первые применяют для большой нагрузки (валы, огромные конструкции), а вторые – для малой и средней.

Оцените статью
Рейтинг автора
5
Материал подготовил
Андрей Измаилов
Наш эксперт
Написано статей
116
Добавить комментарий