Выбор и параметры сердечника трансформатора

Трансформаторы закалочные

Таблица 3

Обозначение Наименование Частота номинальная,кГц Напряжение первичное,В Напряжение вторичное при Х.Х., В Мощность номинальная,кВА
Тз ТЗ1-800С2 2,4; 4; 8; 10 400 от 40 до 132 800 — 560
Тз ТЗ1-1600С4 2,4; 4; 8; 10 800 от 40 до 266 1600 — 1120
Тз ТЗ1-3200С4 1; 2,4; 4; 8; 10 800 от 67 до 534 3200 — 2400

Трансформаторы согласующие (таблица 1).

Выпускаемые в настоящее время источники питания (генераторы) для индукционных электротермических установок могут различаться по величине номинального выходного напряжения. Обычно выходное напряжение источников питания 400В, 800В. Для нагрузочных контуров индукционных установок, включающих индукторы, конденсаторы, возможно и трансформаторы, может не подходить напряжение источника питания. Поэтому вопрос согласования напряжений генератора и нагрузки весьма актуален и решается путём применения согласующих трансформаторов. Также согласующий трансформатор может быть использован для сокращения потерь в линии соединяющей генератор с нагрузкой, за счёт снижения величины тока в линии, путём повышения напряжения его передачи.

Для реализации перечисленных целей используются трансформаторы ТСС1-250-2,4 и ТСС1-250-10, работающие на частотах 2,4 и 10 кГц, повышающие (понижающие) напряжение с 400В до 800В. Коэффициент трансформации в этих трансформаторах фиксирован. При необходимости, могут быть поставлены трансформаторы с другими соотношениями напряжений на обмотках.

Также выпускаются трансформаторы, служащие для гальванической развязки источника питания и колебательного контура. К ним относятся трансформаторы типа ТСС3-250-2,4 и ТСС3-250-10, имеющие коэффициент трансформации равный единице и первичное напряжение 400В.

В номенклатуре согласующих трансформаторов имеется трансформатор типа

ТРС1-1600С4 мощностью до 1600 кВА. Первичное напряжение трансформатора U1=800В (допускается повышение напряжения до1000В по согласованию с изготовителем). Вторичное напряжение U2=800÷240B (допускается расширение диапазона по согласованию с изготовителем). В отличие от трансформаторов типа ТСС, в трансформаторе ТРС1-1600С4 имеется возможность переключения количества витков, как на одной обмотке, так и на другой. Трансформатор имеет расширенный диапазон изменения коэффициента трансформации. Вторичное напряжение U2=800÷240B (допускается расширение диапазона по согласованию с изготовителем).

Новые конструктивные решения, найденные при разработке закалочного трансформатора ТЗ1-1600С4 были перенесены на трансформатор ТРС1-1600С4, что повысило его энергетические показатели, снизило массу и габариты, в сравнении с более известным ТРС1-800. При разработке этого трансформатора не ставилась задача повышения мощности до 1600кВА, поскольку область применения трансформатора это согласование параметров нагрузочного контура с генератором, а потребности в согласующих устройствах столь большой мощности нет. Однако, известно, что использование устройств, при пониженной относительно номинальной, мощности, повышает ресурс их работы и это достоинство наряду со сниженными массогабаритными показателями должно быть интересно потребителю

Следует обратить внимание на то, что согласующие трансформаторы, даже такие мощные, как ТРС1-1600С4 не могут быть использованы в качестве контурных понижающих (закалочных) (рис.3)

Автотрансформаторы (таблица 2).

Для согласования работы генератора с индукционным нагревателем, например, кузнечным, оснащённым сменными индукторами может быть применён автотрансформатор. Автотрансформатор позволяет менять напряжение с достаточно мелким шагом. Коэффициент трансформации автотрансформатора, как правило, лежит в диапазоне -1÷2.

Автотрансформатор не обеспечивает гальванической развязки генератора с контуром. В таблице 2 приведены два типа автотрансформаторов с мощностью 500 кВА на частоты 2,4 кГц и 8-10 кГц. На рис.4 представлен вариант схемы содержащей автотрансформатор.

Техника безопасности при сварке

Нельзя думать только о сварке, открывая кейс с инструментами и приступая к рабочему процессу. Для начала необходимо подумать и о своей безопасности. Ведь сварные швы не стоят ни потерянного зрения из-за некачественной маски, ни возможных ожогов и высоковольтных ударов током. Здоровье в этих случаях не вернется, будь сварщик, который работал без должной защиты, хоть трижды профессионал.

Поэтому перед началом сварки еще раз прочитайте инструкцию по ТБ конкретно Вашего устройства. А мы поможем Вам разобраться, какие меры нужно предпринять, чтобы не пострадать, и опишем какие опасности в основном Вас подстерегают во время рабочего процесса и как их избежать.

К главным аспектам, на которые обязательно стоит обращать внимание перед началом процесса сварки, можно отнести обеспечение должного уровня ТБ в следующих моментах:

  • электробезопасность;
  • противопожарная защита;
  • взрывозащита;
  • оптическая защита;
  • использование специальной защитной одежды;

Давайте рассмотрим их более подробно.

Электробезопасность при сварке

Во время использования сварочного аппарата, независимо от его типа и технических характеристик, нужно помнить, что это электрический прибор, и работает он от сети, а значит необходимо обеспечить должную защиту от возможного удара током как самого сварщика, так и окружающих его людей.

Для этого надо соблюдать несколько достаточно простых правил, представленных ниже:

  • Каждый раз осуществлять проверку кабелей и электродержателей, исправность их изоляции и надежность всех контактов;
  • Категорически запрещается проводить какую-либо деятельность под дождем или снегом, даже если в руководстве по эксплуатации написано, что Ваш аппарат для этого годится. В таких случаях, как правило, устройства рассчитаны на небольшой моросящий дождь или легкие снежные осадки, но никак не на ливень или снегопад. И кроме того сваривание изделий в условиях высокой влажности, будь то непогода или нахождение внутри подвалов или бойлерных, требует от сварщика особенных навыков, исключающих возможность получения удара электричеством или порчи электрооборудования;
  • Обязательно выключайте инвертор на время периода простоя, перемещения и в прочих ситуациях, не относящихся к рабочей деятельности напрямую;
  • Все увиденные поломки или неисправности нужно исправлять только после того, как инвертор будет полностью отключен от электропитания;
  • Используйте защитную одежду из специальных материалов. О том какую именно одежду лучше использовать мы поговорим чуть позже.

Техника противопожарной безопасности

Здесь особое внимание стоит обратить как на сам процесс поджига сварной дуги, так и на то, что нужно постоянно следить за ее горением, поскольку этот процесс относится к периоду более высокой опасности и отвлекаться ни на что не следует. Даже несмотря на то, что с увеличением опыта сваривания металлов брызг от него будет становиться все меньше – ни в коем случае нельзя проводить сваривать в расстегнутой или закатанной одежде

Даже несмотря на то, что с увеличением опыта сваривания металлов брызг от него будет становиться все меньше – ни в коем случае нельзя проводить сваривать в расстегнутой или закатанной одежде.

Обязательно соблюдайте ТБ и надевайте защитные рукавицы не только в рабочем процессе, но и при контакте с изделием, которое на первый взгляд кажется уже холодным – это позволяет по максимуму исключить ожоги на Ваших руках.

Не ленитесь также покупать себе специальную обувь, маски, ширмы, одежду и прочие защитные атрибуты во избежание всевозможных рабочих травм.

Конструкция (виды) импульсных трансформаторов

В зависимости от формы сердечника и размещения на нем катушек, ИТ выпускаются в следующих конструктивных исполнениях:

  • стержневом; Конструкция стержневого импульсного трансформатора
  • броневом; Конструкция импульсного трансформатора в броневом исполнении
  • тороидальном (не имеет катушек, провод наматывается на изолированный сердечник); Конструктивные особенности бронестержневого импульсного трансформатора

На рисунках обозначены:

  • A – магнитопроводный контур, выполненный из марок трансформаторной стали, изготовленной по технологии холодного или горячего металлопроката (за исключением сердечника тороидальной формы, он изготавливается из феррита);
  • В – катушка из изолирующего материала
  • С – провода, создающие индуктивную связь.

Заметим, что электротехническая сталь содержит мало добавок кремния, поскольку он становится причиной потери мощности от воздействия вихревых токов на контур магнитопровода. В ИТ тороидального исполнения сердечник может производится из рулонной или ферримагнитной стали.

Пластины для набора электромагнитного сердечника подбираются толщиной в зависимости от частоты. С увеличением этого параметра необходимо устанавливать пластины меньшей толщины.

Как измерить в домашних условиях

Приборы для непосредственного измерения индуктивности имеют высокую стоимость и редко используются в домашних условиях. С приемлемой точностью результаты можно получить, используя обычные приборы для измерения переменного тока: амперметр и вольтметр. Также необходим омметр.

Порядок действий следующий:

  1. При помощи омметра определяют активное сопротивление обмотки R.
  2. Подключают трансформатор последовательно с амперметром в сеть.
  3. Параллельно обмотке подключают вольтметр.
  4. По показаниям приборов определяют полное сопротивление трансформатора: Z=U/I
  5. Индуктивное сопротивление находят, вычитая из полного сопротивления активное: XL=Z-R
  6. Индуктивность определяется по формуле: L=XL/(2πf), где π – число пи 3.14, f – частота измерений.

Как правило, активное сопротивление намотки значительно (на несколько порядков) меньше индуктивного, поэтому можно его не учитывать. Именно поэтому, включение трансформатора в цепь постоянного напряжения вызывает короткое  замыкание. Ток обмотки при этом будет ограничиваться только активным сопротивлением.

Отличия тороидальных трансформаторов

Автором тороидальных трансформаторов признан Майкл Фарадей. Возможно встретить в отечественной литературе (особенно, коммунистических времен) утопичную идею: первым собрал подобное Яблочков, сравнив указываемую дату – обычно, 1876 год – с ранними опытами по электромагнитной индукции (1830). Просится вывод: Англия опередила Россию на полвека. Интересующихся подробностями отошлем к обзору Закон электромагнитной индукции. Приводятся детальные сведения о конструкции первого в мире тороидального трансформатора. Изделие отличает форма сердечника. Помимо тороидальных принято по форме различать:

  1. Броневые. Отличаются избыточностью ферромагнитного сплава. Для замыкания линий поля (чтобы проходили внутри материала) ярма охватывают обмотки с внешней стороны. В результате входная и выходная наматываются вокруг общей оси. Одна поверх другой или рядом.
  2. Стержневые. Сердечник трансформатора проходит внутри витков обмотки. Пространственно входная и выходная разнесены. Ярма вбирают малую часть линий напряженности магнитного поля, проходящих за пределами витков. Фактически нужны, чтобы соединить стержни.

Тороидальный трансформатор

Новичку приходится туго, нелишне пояснить подробнее. Стержнем называется часть сердечника, проходящая внутри витков. На остов наматывается проволока. Ярмом называется часть сердечника, соединяющая стержни. Нужны передавать линии магнитного поля. Ярма замыкают сердечник, формируя цельную конструкцию. Замкнутость требуется для свободного распространения внутри материала магнитного поля.

В состав стержневого сердечника ярмо входит минимальным составом. В броневом охватывает дополнительно обмотки снаружи вдоль длины, как бы защищая. От аналогии произошло название. Майкла Фарадея выбрал тор скорее интуитивно. Формально можно назвать стержневым сердечником, хотя направляющая оси симметрии обмоток идет дугой.

Тор навивают единой лентой. Подобные сердечники называют спиральными в отличие от броневых и стержневых, которые фигурируют в литературе за термином пластинчатые. Это введет в заблуждение. Лишний раз следует сказать: тороидальный сердечник, будучи намотанным отдельными пластинами, называется спиральным. Разбивать частями приходится, когда отсутствует лента. Это вызвано чисто экономическими причинами.

7 Мнение эксперта

«Лучше всего сразу взять шкурку поменьше и работать с ней долго. Это позволит избавиться от появления больших царапин на поверхности и сохранить структуру металла. На дрель можно намотать шерстяную нитку, что станет аналогом «болгарки». Также ее можно намазать пастой, что усилит эффект и ускорит процесс», — пишет пользователь интернета Владимир.

Источник

Принцип работы

Самый просто тороидальный трансформатор состоит из двух обмоток на кольце и сердечнике из стали. Первичная обмотка подключается к источнику электрического тока, а вторичная – к потребителю электроэнергии. За счет магнитопровода осуществляется соединение отдельных обмоток между собой и усиления их индуктивной связи. При включении питания в первичной обмотке создается переменный магнитный поток. Сцепляясь с отдельными обмотками, этот поток создает в них электромагнитную силу, которая зависит от количества витков намотки. Если изменять число обмоток, то можно сделать трансформатор для преобразования любого напряжения.

Фото – Принцип действия

Также преобразователи такого типа бывают понижающими и повышающими. Тороидальный понижающий трансформатор имеет высокое напряжение на выводах вторичной обмотки и низкое на первичной. Повышающий наоборот. Помимо этого, обмотки могут быть высшего напряжения или низшего, в зависимости от характеристик сети.

Трансформатор напряжения принцип работы

Для непосредственного включения на высокое напряжение потребовались бы очень громоздкие приборы и реле вследствие необходимости их выполнения с высоковольтной изоляцией. Изготовление и применение такой аппаратуры практически неосуществимо, особенно при напряжении 35 кВ и выше.

Применение трансформаторов напряжения позволяет использовать для измерения на высоком напряжении стандартные измерительные приборы, расширяя их пределы измерения; обмотки реле, включаемых через трансформаторы напряжения, также могут иметь стандартные исполнения.

Кроме того, трансформатор напряжения изолирует (отделяет) измерительные приборы и реле от высокого напряжения, благодаря чего он обеспечивает безопасность их обслуживания на подстанции.

В то же время, если силовые трансформаторы предназначены для передачи транспортируемой мощности с минимальными потерями, то измерительные трансформаторы напряжения конструируются с целью высокоточного повторения в масштабе векторов первичного напряжения.

измерительный трансформатор напряжения

Принципы работы трансформатора напряжения

Конструкцию трансформатора напряжения, как и трансформатора тока, можно представить магнитопроводом с намотанными вокруг него двумя обмотками:

  • первичной;
  • вторичной.

Специальные сорта стали для магнитопровода, а также металл их обмоток и слой изоляции подбираются для максимально точного преобразования напряжения с наименьшими потерями. Число витков первичной и вторичной катушек рассчитывается таким образом, чтобы номинальное значение высоковольтного линейного напряжения сети, подаваемое на первичную обмотку, всегда воспроизводилось вторичной величиной 100 вольт с тем же направлением вектора для систем, собранных с заземленной нейтралью.

Если же первичная схема передачи энергии создана с изолированной нейтралью, то на выходе измерительной обмотки будет присутствовать 100/√3 вольт.

Для создания разных способов моделирования первичных напряжений на магнитопроводе может располагаться не одна, а несколько вторичных обмоток.

Устройство однофазного трансформатора напряжения

устройство однофазного трансформатора напряжения

Устройство однофазного трансформатора напряжения:

  • а — общий вид трансформатора напряжения;
  • б — выемная часть;
  • 1,5 — проходные изоляторы;
  • 2 — болт для заземления;
  • 3 — сливная пробка;
  • 4 — бак;
  • 6 — обмотка;
  • 7 — сердечник;
  • 8 — винтовая пробка;
  • 9 — контакт высоковольтного ввода

Однофазные трансформаторы напряжения получили наибольшее распространение. Они выпускаются на рабочие напряжения от 380 В до 500 кВ.

Конструктивные размеры и масса ТН определяются не мощностью, как у силовых трансформаторов, а в основном объемом изоляции первичной обмотки и размерами её выводов высокого напряжения.

Трансформаторы напряжения с номинальным напряжением от 380 В до 6 кВ имеют исполнение с сухой изоляцией (обмотки выполняются проводом марки ПЭЛ и пропитываются асфальтовым лаком).

Свердловский завод трансформаторов тока выпускает трансформаторы напряжения на 6, 10, 35 кВ с литой изоляцией.

У трансформаторов напряжением 10 — 500 кВ изоляция масляная (магнитопровод погружен в трансформаторное масло).

Пример назначение и область применение трансформаторов напряжения ЗНОЛ-НТЗ

Трансформаторы предназначены для наружной установки в открытых распределительных устройствах (ОРУ). Трансформаторы обеспечивают передачу сигнала измерительной информации измерительным приборам и устройствам защиты и управления, предназначены для использования в цепях коммерческого учета электроэнергии в электрических установках переменного тока на класс напряжения 35 кВ. Трансформаторы выполнены в виде опорной конструкции.

Корпус трансформаторов выполнен из компаунда на основе гидрофобной циклоалифатической смолы «Huntsman», который одновременно является основной изоляцией и обеспечивает защиту обмоток от механических и климатических воздействий. Рабочее положение трансформаторов в пространстве — вертикальное, высоковольтными выводами вверх.

схема включения обмоток трансформатора напряжения ЗНОЛ-НТЗ

См.  трансформаторы ЗНОЛ, схемы характеристики в таблице

Типы трансформаторов

В соответствии со своими параметрами и характеристиками, все трансформаторы разделяются на следующие виды:

  • По количеству фаз могут быть одно- или трехфазными.
  • В соответствии с числом обмоток, трансформаторы бывают двух- или трехобмоточными, а также двух- или трехобмоточными с расщепленной обмоткой.
  • По типу изоляции – сухие (С) и масляные (М) или с негорючим заполнением (Н).
  • По видам охлаждения – с естественным масляным охлаждением (М), с масляным охлаждением и воздушным дутьем (Д), принудительная циркуляция масляного охлаждения (Ц), сухие трансформаторы с воздушным охлаждением (С). Кроме того, существуют устройства без расширителей, для защиты которых используется азотная подушка.

Мягкая мебель от Rival

Фабрика имеет многолетний опыт работы в производстве диванов с трансформацией, кресел, стульев, пуфов. Первая чехловая мебель была выпущена данной фирмой, благодаря чему облегчился уход за обивкой. Механизмы трансформации применяются российского (в соответствии с ГОСТ) либо франко-бельгийского производства, проходящие жесткий контроль. Гарантия на любое изделие составляет 18 месяцев.

Преимущества мебели от Rival:

  • комфорт,
  • привлекательный вид,
  • наличие съемных чехлов, ящиков, подушек,
  • присутствие качественных наполнителей, не вызывающих аллергии,
  • сравнительная долговечность (сиденья, спинки, матрасы не проваливаются по истечении длительного времени),
  • невысокая цена.

Недостатки:

Качество съемных чехлов не на высоте. В результате использования они стираются, сминаются и портят внешний вид модели.

Основные преимущества и недостатки

При использовании тороидальных трансформаторов, поставляемых со свободными витыми выводами, можно добиться экономии до 64 % занимаемого объёма по сравнению с обычными трансформаторами с шихтованными сердечниками (очень часто легче подключить оборудование именно с помощью выводов из трансформатора, а не клеммников).

Тороидальный (кольцевой) сердечник имеет идеальную форму, позволяющую изготовить трансформатор, используя минимальное количество материала. Все обмотки симметрично распределены по всей окружности сердечника, благодаря чему значительно уменьшается длина обмотки.

Главные плюсы и минусы тороидальных трансформаторов.

Это ведёт к уменьшению сопротивления обмотки и повышению коэффициента полезного действия. Возможна более высокая магнитная индукция, так как магнитный ток проходит в том же направлении, в каком ориентирована кремнистая сталь ядра во время прокатки. Также можно отметить плюсы:

  • низкие показатели рассеивания;
  • меньший нагрев;
  • низкий вес и размер;
  • компактен, удобен в установке в электроаппаратуре.

Можно использовать более высокую плотность тока в проводах, так как вся поверхность тороидального сердечника позволяет эффективно охлаждать медные провода. Потери в железе очень низки – типическое значение составляет 1,1 Вт при индукции 1,7 Тл и частоте 50/60 Гц. Это обеспечивает очень низкий ток намагничивания, способствующий изумительной тепловой нагрузочной способности тороидального трансформатора.

Тороидальный трансформатор

Почему это самый популярный вид трансформаторов

Любой специалист скажет, что тороидальная форма сердечника является идеальной для трансформатора по нескольким причинам: во-первых, экономия материалов на производстве, во-вторых, обмотки равномерно заполняют весь сердечник, распределяясь по всей его поверхности, не оставляя неиспользованных мест, в-третьих, поскольку обмотки имеют меньшую длину, КПД тороидальных трансформаторов получается выше в силу меньшего сопротивления провода обмоток.

Экономия электроэнергии — еще один плюс в пользу тороидального трансформатора. Примерно на 30% больше энергии сохраняется при полной нагрузке, и примерно 80% на холостом ходу, в сравнении с шихтованными магнитопроводами иных форм. Показатель рассеяния у тороидальных трансформаторов в 5 раз меньше, чем у броневых и стержневых трансформаторов, поэтому их можно безопасно использовать с чувствительным электронным оборудованием.

Обмотка тороидального трансформатора.

Охлаждение обмоток — еще один важный фактор. Обмотки эффективно охлаждаются, будучи расположены в форме тороида, следовательно плотность тока может быть более высокой. Потери в железе при этом минимальны и ток намагничивания сильно меньше. В итоге тепловая нагрузочная способность тороидального трансформатора оказывается очень высокой.

При мощности тороидального трансформатора до киловатта, он настолько легок и компактен, что для монтажа достаточно применить прижимную металлическую шайбу и болт. Потребителю всего то и нужно выбрать подходящий трансформатор по току нагрузки и по первичному и вторичному напряжениям. При изготовлении трансформатора на заводе рассчитывают площадь сечения сердечника, площадь окна, диаметры проводов обмоток, – и выбирают оптимальные габариты магнитопровода с учетом допустимой индукции в нем.

Литье алюминия в гипсовую форму — Справочник металлиста

Конструктивные особенности

Виды магнитопроводов подразделяются на стержневые и броневые виды.

  • Стержневой тип. При такой конструкции, вертикальный стержень имеет ступенчатое сечение, которое вписывается в окружность. На этих вертикальных элементах в виде цилиндра располагают обмотки магнитопровода. Части всей этой конструкции, которые не имеют обмоток и предназначены для образования замкнутой цепи, называются ярмами.
  • Броневой тип. В такой конструкции стержни с поперечным сечением имеют прямоугольную форму. Расположены они горизонтально. Поэтому обмотки трансформатора также имеют прямоугольную конструкцию. Этот вид оборудования имеет сложную производственную технологию, поэтому применяется нечасто, лишь для небольшого вида специальных трансформаторов.

Обзор моделей оборудования

Стоимость неполной линии: 4 500 000 рублей

Комплектующие:

  1. Дробилка для мелкой фракции. Модель: ДМ27 И ДМ35. Мощность: 35,5 Квт. Стоимость по закупочной цене: 500 000 рублей.
  2. Сушилка. Модель: TYT-1300 или FET-RC1121. Производительность: 9 кВт. Сушит до 11 500 кг Сушилка. Мощность: 50 кВт. Температура тёплого воздуха до 300 градусов. Удаление влажности с 2 000 кг гранул в час. Стоимость: 2 000 000 рублей.
  3. Гранулятор от китайского производителя. Модель: SKJ550 или КЛ600 с мощностью 55 кВт. Диаметр продукции от 10 мм. Стоимость: 1 000 000 рублей.
  4. Охладитель. Модель: SKLN4. Стоимость: 1 000 000. Охлаждает до 2 300 кг пеллет в час. Мощность вентилируемого механизма: 20 кВт. С гарантией на 2 года.

Стоимость моделей указана без НДС и монтажа при установке. На сушилки и охладители показатели указаны с учетом влажности не больше 50 % на всю продукцию.

Вопрос 2 Конструкция обмоток трансформатора.

Обмоткой трансформатораназывают
совокупность витков, образующих
электрическую цепь, в которой складываются
э. д. с., индуктированные в отдельных
витках. Обмотки трансформатора состоят
из обмоточного провода и изоляционных
деталей, предусмотренных конструкцией,
которые не только защищают витки от
электрического пробоя и препятствуют
их смещению под действием электромагнитных
сил, но и создают необходимые каналы
для охлаждения. Обмотки трансформаторов
различных мощностей и напряжений
различаются типом намотки, количеством
витков, направлением намотки, числом
параллельных проводов в витке, схемой
соединения отдельных элементов обмотки
между собой.

Обмотки трансформаторов
выполняют из медных проводов круглого
и прямоугольного сечения, изолированных
хлопчатобумажной пряжей или кабельной
бумагой.

Рис. 3

Конструкции обмоток по
взаимному расположению и по способу их
размещения на стержнях:

  • концентрические (рис. 3,
    слева);

  • дисковые(Чередующиеся)
    (рис. 3, справа).

В масляных трансформаторах
магнитопровод с обмотками помещается
в бак, заполненный маслом, которое
отбирает от них тепло, передавая его
стенкам бака. Кроме того, электрическая
прочность масла выше, чем у воздуха, что
обеспечивает более надежную работу
высоковольтных трансформаторов.

Концентрические
обмотки

— это обмотки, изготовленные в виде
цилиндров и концентрически расположенные
на стержне магнитопровода.

Чередующиеся
обмотки

— это обмотки ВН и НН трансформатора,
чередующиеся в осевом направлении на
стержне. Чередующаяся обмотка обычно
подразделяется на симметричные группы,
каждая из которых состоит из одной или
нескольких частей обмотки ВН и
расположенных по обе стороны от них
частей обмотки НН

Основным
элементом обмоток трансформатора
является виток,в
котором наводится э.д. с. и который в
зависимости от величины тока нагрузки
может быть выполнен одним или несколькими
параллельными проводами. Ряд витков,
намотанных на цилиндрической поверхности,
называется слоем.Число
витков в одном слое может колебаться
от одного до нескольких десятков.

По
конструкции и способу намотки различают
обмотки цилиндрические (одно- или
многослойные), катушечные и
винтовые. Существуют также одно- или
двухвитковые листовые и шинные обмотки,
используемые в специальных трансформаторах
с большими вторичными токами.

Одно-
или многослойная цилиндрическая обмотка
получается при намотке одного (или
нескольких) слоев из обмоточного провода
прямоугольного или круглого сечения.
Наиболее простой является однослойная
обмотка из прямоугольного провода.Слой
обмотки составляют витки, наматываемые
по винтовой линии на бумажно-бакелитовый
цилиндр. Каждый виток в слое укладывается
вплотную к предыдущему в осевом
направлении обмотки. Соединение между
слоями обычно осуществляют переходом
без пайки. Витки цилиндрической обмотки
состоят из одного или нескольких
параллельных проводов, располагаемых
рядом и имеющих одинаковое положение
по отношению к полю рассеяния
трансформатора. Обычно обмотку из
прямоугольного провода наматывают
плашмя, но при необходимости возможна
намотка и на ребро.

Между
слоями двухслойной цилиндрической
обмотки прокладывают изоляцию из бумаги
или электрокартона или равномерно по
окружности устанавливают несколько
реек, образующих вертикальный охлаждающий
канал.

Одно-
и двухслойные цилиндрические обмотки
из прямоугольного провода обычно
применяют в качестве обмоток НН на
напряжение до 525 В в трансформаторах
мощностью до 630 кВ-А.

Многослойная
цилиндрическая обмотка наматывается,
как правило, из провода круглого сечения.
Намотка осуществляется плотной укладкой
витков одного к другому с переходами
из слоя в слой. Намотку первого слоя
обычно производят на бумажно-бакелитовом
цилиндре. Между последующими слоями
размещают несколько слоев кабельной
бумаги. Для увеличения поверхности
охлаждения между некоторыми слоями
обмотки создается осевой канал,
образованный рейками из электрокартона
или бука. Такие многослойные обмотки
применяют в качестве обмоток ВН для
масляных трансформаторов мощностью до
400 кВ-А при напряжении до 35 кВ.

Основные производители электротехнической стали

Если рассматривать выпуск данного вида металла в мировом масштабе, то основными игроками выступаю восточные страны: Китай и Япония. Их долевой вклад в производстве и потребление электротехнической стали составляет до 50%. Дисбаланс между странами состоит в том, что Китай – основной производитель, тогда как Япония преимущественно экспортирует этот сортамент стали.

Готовая продукция – рулоны электротехнической стали

Россия относится к числу тех государств, где объемы производства металла превышают внутреннее потребление сортамента электротехническая сталь. Цена этого вида продукции на отечественном рынке составляет от 80 до 180 рублей за килограмм. На сегодня РФ сумела выйти на объемы производства данного сортамента металла, которые составляют 10% от общего мирового импорта электротехнической стали. Основными производителями металла на российском рынке выступают:

Северсталь;

ВИЗ-Сталь;

Новолипецкий металлургический комбинат.

Объемы, производимой ими продукции троекратно превосходят потребности внутреннего рынка, что позволять импортировать электротехническую сталь как на Запад: Италия, Швейцария, так и в сторону Востока – Индия. Что касается долю конкретного вида стали в общем объеме, то две трети производственных мощностей ориентированы на выпуск динамного сортамента металла. И только 30% производства – это трансформаторная сталь, цена которой составляет 120 – 180 руб/кг.

Отделка стен ламинатом — способы крепления, укладка своими руками

Коэффициент использования окна сердечника

Одним из параметров, влияющих на размер сердечника, является коэффициент использования окна сердечника ko, показывающий какое количество меди появится в окне сердечника. На величину данного параметра влияет несколько факторов: толщина изоляции провода и межслоевая изоляция, тип намотки (рядовая или «внавал»), эффективная площадь окна сердечника и человеческий фактор (качество намотки). Поэтому коэффициент заполнения ko рассчитывается по следующей формуле

где k1 – коэффициент, учитывающий наличие изоляции проводника обмотки,

k2 – коэффициент, учитывающий размер слоя обмотки в окне сердечника,

k3 – коэффициент, учитывающий величину эффективной площади окна,

k4 – коэффициент, учитывающий влияние изоляции.

Данные коэффициенты различны для разных типов сердечников и обмоточного провода, рассмотрим их подробнее.

Коэффициент k1, на который влияет толщина изоляции в зависимости от диаметра провода может иметь значение k1 = 0,94…0,67.

Сравнение относительной толщины изоляции проводов разного диаметра.

На рисунке показано примерное сечение обмоточных проводов различного диаметра. Видно, что чем больше диаметр провода, тем большую величину имеет коэффициент k1. Найти значение коэффициента k1 можно по следующей формуле

где SCu – площадь сечения провода «по меди»,

SИ – площадь сечения провода с изоляцией.

Коэффициент k2, называемый также коэффициентом заполнения обмоткой. Он учитывает плотность укладки витков относительно друг друга. При этом из практики известно, что реальная длина обмоточного провода оказывается на 10…15% больше расчётной длины. Размер слоя обмотки зависит от натяжения провода, его диаметра и техники укладки. Для  разных типов намотки данные представлены ниже

Диаметр провода, мм Рядовая намотка Намотка «внавал»
0,0635…0,0863 0,85 0,75
0,096…0,109 0,86 0,8
0,124…0,0152 0,87
0,17…0,267 0,88
0,294…0,452 0,89
0,505…2,67 0,9 0,9

Укладка провода может производится двумя способами: «квадратурным» и «гексагональным», сущность которых показана на рисунке ниже

Способы укладки провода в слоях: «квадратурный» (слева) и «гексагональный» (справа).

При этом теоретические коэффициенты укладки составляют:

— для «квадратурного»: 0,785;

— для «гексагонального»: 0,907.

Данные коэффициенты практически не достижимы, а следовательно они еще меньше. Ещё одним фактором влияющим на данный коэффициент является эффект вспучивания и закругления обмотки при ее намотке на сердечник прямоугольного сечения

Проявление эффекта вспучивания и закругления обмотки на прямоугольном сердечнике.

На рисунке показано, как идеальная намотка на сердечник с прямоугольным сечение отличается от реального. Количественно эта величина выражается в 15…20 % увеличении толщины реальной обмотки по сравнению с идеальной.

Таким образом, коэффициент заполнения обмоткой составляет

Коэффициент k3, определяющий какая доля площади окна может быть занята обмоткой за исключением изолирующих материалов. Конструкция обмоток трансформатора предполагает наличие межслоевой и межобмоточной изоляции, а также изоляции обмоток от сердечника, называемой полями и в общем случае она имеет вид показанный ниже

Обмотки трансформатора с изоляцией.

Размеры изоляции зависят от размера провода и имеет следующие размеры:

— для изоляционных полей от 1,57 до 6,35 мм;

— для межслойной изоляции от 0,013 до 0,254 мм.

В связи с этим значение коэффициента k3 для броневого ленточного сердечника

— для броневого ферритового сердечника

— для стержневого сердечника

— для тороидального сердечника

Коэффициент k4, характеризующий влияние изоляции, и учитывает наличие большого количества вторичных обмоток со значительным количеством изоляции. В результате каждая вторичная обмотка уменьшает значение коэффициента k4 на 5…10%.

В качестве примера вычислим значение коэффициента заполнения окна сердечника kо для некоторых видов трансформаторов.

Так для проводника диаметром d = 0,8 мм коэффициент заполнения окна в тороидальном ленточном сердечнике составит:

Для трансформатора выполненного на ферритовом Ш-образном сердечнике с обмоткой выполненной проводом диаметром d = 0,2 мм, обмотка намотана «внавал»:

Данные результаты являются расчётными, и на практике величина данного коэффициента получается несколько меньше.

Теория это хорошо, но без практического применения это просто слова.Здесь можно всё сделать своими руками.

Оцените статью
Рейтинг автора
5
Материал подготовил
Андрей Измаилов
Наш эксперт
Написано статей
116
Добавить комментарий