Основные узлы силового трансформатора

Немного об этапах развития

При производстве трансформаторов используют свойства материалов: металлические, магнитные, неметаллические. Для производства современного оборудования применили свои знания и открытия многие исследователи прошлых лет. А. Г. Столетов выявил петлю гистерезиса и особенную структуру ферромагнитного сплава. Теорию электромагнитных цепей разработали Братья Гопкинсоны.

Электромагнитная индукция открыта М. Фарадеем, это явление заложено в основу действия трансформатора. Схема первого трансформатора впервые появилась в работах Генри и Фарадея в 1831 году. Но ученые тогда еще не рассматривали прибор в качестве преобразователя переменного тока.

Француз-механик в 1848 году запатентовал индукционную катушку, которая стала прообразом трансформатора. В 1876 году впервые изобрел трансформатор Яблочков П. Н. , прибор представлял собой стержень с несколькими обмотками. Трансформаторы, имеющие замкнутые сердечники, были сконструированы братьями Гопкинсами в 1884 году.

С применением масляного охлаждения прибор стал выполнять свои функции более надежно. Устройство помещалось в сосуды из керамики с маслом, это вело к повышению надежности обмоток. Русский изобретатель механик Доливо-Добровольский М. О. сконструировал первый трехфазный двигатель асинхронного типа, трехфазную систему переменного тока и впервые сделал трёхфазный трансформатор с мощностью 230 КВт, работающий от напряжения 5 В.

Силовые трансформаторы начали выпускать в 1928 году с открытием Московского завода трансформаторов. В начале 1900 годов английский металлург сделал первую тонну трансформаторной стали для производства сердечников. А в начале 30-х годов XX века отмечено появление магнитного насыщения на 50%, уменьшение потерь на гистерезис в 4 раза, возрастание магнитной проницаемости в 5 раз при комбинированном применении нагревания и прокатки.

Условное обозначение трансформаторов

Структурная схема условного обозначения трансформатора

Буквенная часть условного обозначения должна содержать обозначения в следующем порядке:

  1. Назначению трансформатора (может отсутствовать)
    А — автотрансформатор
    Э — электропечной
  2. Количество фаз
    О — однофазный трансформатор
    Т — трехфазный трансформатор
  3. Расщепление обмоток (может отсутствовать)
    Р — расщепленная обмотка НН;
  4. Система охлаждения
    1. Сухие трансформаторы
      С — естественное воздушное при открытом исполнении
      СЗ — естественное воздушное при защищенном исполнении
      СГ — естественное воздушное при герметичном исполнении
      СД — воздушное с дутьем
    2. Масляные трансформаторы
      М — естественное масляное
      МЗ — с естественным масляным охлаждением с защитой при помощи азотной подушки без расширителя
      Д — масляное с дутьем и естественной циркуляцией масла
      ДЦ — масляное с дутьем и принудительной циркуляцией масла
      Ц — масляно-водяное с принудительной циркуляцией масла
    3. С негорючим жидким диэлектриком (совтолом)
      Н — естественное охлаждение негорючим жидким диэлектриком
      НД — охлаждение негорючим жидким диэлектриком с дутьем
  5. Конструктивная особенность трансформатора (в обозначении может отсутствовать)
    Л — исполнение трансформатора с литой изоляцией;
    Т — трехобмоточный трансформатор (Для двухобмоточных трансформаторов не указывают);
    Н — трансформатор с ;
    З — трансформатор без расширителя и выводами, смонтированными во фланцах на стенках бака, и с азотной подушкой;
    Ф — трансформатор с расширителем и выводами, смонтированными во фланцах на стенках бака ;
    Г — трансформатор в гофробаке без расширителя — «герметичное исполнение»;
    У — трансформатор с симметрирующим устройством
    П — подвесного исполнения на опоре ВЛ
    э — трансформатор с пониженными потерями холостого хода (энергосберегающий)
  6. Назначение (в обозначении может отсутствовать)
    С — исполнение трансформатора для собственных нужд электростанций
    П — для линий передачи постоянного тока
    М — исполнение трансформатора для металлургического производства
    ПН — исполнение для питания погружных электронасосов
    Б — для прогрева бетона или грунта в холодное время года (бетоногрейный), такой же литерой может обозначаться трансформатор для буровых станков
    Э — для питания электрооборудования экскаваторов (экскаваторный)
    ТО — для термической обработки бетона и грунта, питания ручного инструмента, временного освещения

Для автотрансформаторов при классах напряжения стороны С.Н или НН 110 кВ и выше после класса напряжения стороны ВН через черту дроби указывают класс напряжения стороны СН или НН.

Примечание. Для трансформаторов, разработанных до 01.07.87, допускается указывать последние две цифры года выпуска рабочих чертежей.

Соответствие условных обозначений видов систем охлаждения, принятых по ГОСТ, СЭВ и МЭК.
Условное обозначение вида охлаждения Вид системы охлаждения трансформатора
ГОСТ СЭВ и МЭК
Сухие трансформаторы
С AN Естественное воздушное при открытом исполнении
СЗ ANAN Естественное воздушное при защищенном исполнении
СГ Естественное воздушное при герметичном исполнении
СД ANAF Воздушное с принудительной циркуляцией воздуха
Масляные трансформаторы
М ONAN Естественная циркуляция воздуха и масла
Д ONAF Принудительная циркуляция воздуха и естественная циркуляция масла
МЦ OFAN Естественная циркуляция воздуха и принудительная циркуляция масла с ненаправленным потоком масла
НМЦ ODAN Естественная циркуляция воздуха и принудительная циркуляция масла с направленным потоком масла
ДЦ OFAF Принудительная циркуляция воздуха и масла с ненаправленным потоком масла
НДЦ ODAF Принудительная циркуляция воздуха и масла с направленным потоком масла
Ц OFWF Принудительная циркуляция воды и масла с ненаправленным потоком масла
НЦ ODWF Принудительная циркуляция воды и масла с направленным потоком масла
Трансформаторы с негорючим жидким диэлектриком
Н LNAF Естественное охлаждение негорючим жидким диэлектриком
НД LNAF Охлаждение негорючим жидким диэлектриком с принудительной циркуляцией воздуха
ННД LDAF Охлаждение негорючим жидким диэлектриком с принудительной циркуляцией воздуха и с направленным потоком жидкого диэлектрика

Ремонт расширителя

При ремонте расширителя проверяют целость стеклянной трубки маслоуказателя, состояние уплотняющих прокладок. Неисправное плоское стекло или стеклянная трубка маслоуказателя заменяются. Потерявшие упругость резиновые прокладки и уплотнения меняют на новые, изготовленные из маслостойкой резины. Со дна расширителя удаляют осадок и промывают его чистым маслом. Пробку притирают мелким абразивным порошком. Сальниковую набивку заменяют новой, которую готовят из асбестового шнура, пропитанного в смеси из жира, парафина и графитового порошка.

Проверяют прочность и герметичность крепления стеклянной диафрагмы у предохранительной трубы; внутреннюю часть трубы очищают от грязи и промывают чистым трансформаторным маслом.

При ремонте трансформаторов особое внимание обращают на сохранность изоляторов и армировку вводов. Сколы площадью до 3 см² или царапины глубиной до 0,5 мм промывают ацетоном и покрывают двумя слоями бакелитового лака, просушивая каждый слой в сушильном шкафу при температуре 50 —60°С

Типы трансформаторов

В соответствии со своими параметрами и характеристиками, все трансформаторы разделяются на следующие виды:

  • По количеству фаз могут быть одно- или трехфазными.
  • В соответствии с числом обмоток, трансформаторы бывают двух- или трехобмоточными, а также двух- или трехобмоточными с расщепленной обмоткой.
  • По типу изоляции – сухие (С) и масляные (М) или с негорючим заполнением (Н).
  • По видам охлаждения – с естественным масляным охлаждением (М), с масляным охлаждением и воздушным дутьем (Д), принудительная циркуляция масляного охлаждения (Ц), сухие трансформаторы с воздушным охлаждением (С). Кроме того, существуют устройства без расширителей, для защиты которых используется азотная подушка.

Использование ацетилена

Масляные трансформаторы

Данный тип трансформаторов считается наиболее экономичным. Они лучше всего подходят для наружной установки. Внутри помещений они могут устанавливаться на уровне первого этажа, в специальных камерах с двумя наружными дверьми.

Эксплуатация масляных трансформаторов отличается специфическими особенностями. Они должны обязательно оборудоваться маслоприемными устройствами в виде ям или приямков, способных к сбору примерно 20-30% общего количества масла, залитого в трансформатор. Глубина таких ям должна быть не менее 1 м. Следует помнить, что масляные установки запрещается размещать в подвалах и на вторых этажах зданий.

Монтаж и дальнейшая эксплуатация силовых трансформаторов

Большинство конструкций силовых трансформаторов обладают значительным весом. Поэтому для их транспортировки к месту монтажа используется специальный транспорт. Оборудование поставляется полностью собранным и готовым к подключению.

Монтаж силового трансформатора выполняется на заранее подготовленном фундаменте или в специальном помещении. Во избежание воздушных мешков под крышкой бака в процессе установки, под катки со стороны расширителя подкладываются стальные пластинки. Их толщина должна обеспечивать подъем 1% с узкой и 1,5% с широкой стороны трансформатора. Длина прокладок составляет не менее 150 мм. При массе устройства до 2 тонн установка выполняется непосредственно на фундамент. Корпус в обязательном порядке соединяется с системой заземления.

Перед началом установки силовые трансформаторы проходят испытания в лабораторных условиях. В это время измеряется коэффициент трансформации, проверяется качество соединений, изоляции, а также соответствие трансформаторного масла.

Расшифровка основных параметров

Разнообразие в конструкции и широкий диапазон параметров трансформаторов привели к необходимости их маркировки по специальному стандарту. Не имея под рукой технического описания, характеристики устройства можно выяснить по нанесённой на его поверхности информации, выраженной буквенно-цифровым кодом.

Маркировка силовых трансформаторов содержит 4 блока.

Скачать и посмотреть ГОСТ 15150 можно здесь(откроется в новой вкладе в PDF формате):Смотреть файл

Расшифруем первые три блока:


Расшифровка маркировки: 1,2,3 блока

  1. Первая буква «А» прикреплена за автотрансформаторами. При её отсутствии буквы «Т» и «О» соответствуют трёхфазным и однофазным трансформаторам.
  2. Наличие далее буквы «Р» информирует об устройствах с расщеплённой обмоткой.
  3. Третья буква означает охлаждение, масляной естественной системе охлаждения присвоена литера «М». Естественному воздушному охлаждению выделена буква «С», масляное с принудительным обдувом обозначается «Д», с принудительной циркуляцией масла – «Ц». Сочетание «ДЦ» указывает на наличие принудительной циркуляции масла с одновременным воздушным обдувом.
  4. Литерой «Т» помечаются трёхобмоточные преобразователи.
  5. Последний знак характеризует особенности трансформатора:
  • «Н» – РПН(регулировка напряжения под нагрузкой);
  • пробел – переключение без возбуждения;
  • «Г» – грозозащищенный.

Условные обозначения и параметры

Приобретая трансформатор, необходимо понимать, что написано на его корпусе или в сопроводительных документах. Ведь существует определенная маркировка трансформаторов, которые определяют его назначение

Основное, на что необходимо обратить внимание, до какого показателя этот прибор может снизить напряжение. К примеру, 220/24 говорит о том, что на выходе получится ток напряжением 24 вольта

А вот буквенные обозначения чаще всего говорят о типе устройства. Кстати, имеется в виду буквы, стоящие после цифр. К примеру, О или Т – одно- или трехфазный соответственно. То же самое можно сказать о количестве обмоток, о типе охлаждения, о способе и месте установки (внутренние, наружные и прочее).


Расшифровка маркировки трансформатора

Что касается параметров трансформатора, то существует определенный стандартный ряд, который и определяет характеристики прибора. Их несколько:

  • Напряжение в первичной катушке.
  • Напряжение во вторичной катушке.
  • Первичная сила тока.
  • Вторичная сила тока.
  • Общая мощность аппарата.
  • Коэффициент трансформации.
  • КПД.
  • Коэффициент мощности и нагрузки.

Есть так называемая внешняя характеристика трансформатора. Это зависимость вторичного напряжения от вторичной силы тока, при условии, что сила тока первичной обмотки будет номинальной, а cos φ= const. По-простому – чем выше сила тока, тем ниже напряжение. Правда, второй параметр изменяется всего лишь на несколько процентов. При этом внешняя характеристика трансформатора определяется относительными характеристиками, а именно коэффициентом загрузки, который определяется по формуле:


Обозначение на схемах

K=I2/I2н, где второй показатель силы – это сила тока при номинальном напряжении.

Конечно, характеристики трансформатора – это достаточно большой ряд всевозможных показателей, от которых зависит сама работа прибора. Здесь и мощность потерь, и внутреннее сопротивление в обмотке.

Ремонт и защита силового трансформатора тока

Отремонтировать силовой трансформатор достаточно сложно. Этот процесс отнимает не только много времени, но и денег. Выполнять этот процесс должен только специалист со стажем. Если в его конструкции будут неправильные соединения, то это может поставить вашу жизнь под угрозу. Существует немного заводов, которые могут выполнить его ремонт. Вот основные компании, которые могут взяться за эту работу:

  • Siemens.
  • СВЭЛ.
  • ABB.

Дифференциальная защита должна обеспечиваться в силовом трансформаторе. Она считается более эффективной, чем релейная защита. Для того чтобы надежно защитить современные силовые трансформаторы можно использовать специальную программу Transformer Designer.

Дифференциальное реле должно сравнивать между собою мощность первичного и вторичного тока. Если в вашем трансформаторе образуется дисбаланс, то реле активизируется, и будет защищать реакторы. Вторичная обмотка должна быть подключена к текущей катушке реле. Защита трансформатора должна быть пропорциональна смещению и или отклонению коэффициента разности токов.

Обмотку трансформатора можно провести самостоятельно. В обмотке должен находиться четный слой обмотки. Провод должен быть выведен обратно через выходное отверстие. Между слоями обмотки необходимо устанавливать хлопковые полосы, которые будут использованы от перегревания. Следить за повышением температуры можно также с помощью специальной жидкости, которая будет пропитывать слой изоляции. Собирать силовой трансформатор можно только опытным электрикам. Многие изготовители трансформаторов заботятся о том, чтобы вы самостоятельно смогли определить причину поломки. Определить поломку можно с помощью релейной защиты.

Монтаж, подключение, опасные факторы

При пробое изоляции обмоток возникает возможность поражения током, но риск предотвращается заземлением вывода (обозначается на корпусе) вторички.

На выводы вторичной катушки И1 и И2 токи полярные, они обязательно постоянно подсоединены на нагрузку. Идущая по первичной цепи энергия со значительным потенциалом (S=UI). В другой происходит трансформация, и при обрыве в ней там падает напряжение. Потенциал разомкнутых концов при протекании энергии большой, что представляет значительную опасность.

По описанным выше причинам все вторичные цепи ТТ собирают особо тщательно и надежно, на них и кернах, выведенных из функционирования, всегда ставят шунтирующие закоротки.

Как подключается ТТ

Есть несколько схем для изделий защитного типа. Рассмотрим подключение ТТ на трехфазное напряжение.

Полная звезда:

  • самая распространенная, защита одно- и многофазных систем от КЗ;
  • три ТТ соединяются в звезду.

Если ток ниже настроек на реле КА1–КА3, то это нормальная ситуация, защита не активируется. Ток на К0 — это сумма всех 3 фаз. При возрастании величин в одной из них растет ток и в ТТ. Произойдет сработка реле при КЗ и при превышении нагрузок.

Неполная звезда:

  • защита от межфазных замыканий для создания цепей с нейтралью с заземлением;
  • для маломощных приемников с другими вариантами защиты.

Схема «треугольник и звезда» — для дифференциальной защиты.

Схема без обесточивания при КЗ на землю используется, но редко по этой же причине. Для защиты от замыканий между фазами и всплесков в одной из них.

ТТИ подсоединяются простым последовательным подключением первичных витков изделия.

Монтаж

Монтаж трансформаторов тока:

  1. Ревизия устройства, проверка изоляции (должно быть выше 1 кОм на 1 В);
  2. Отключают ЭУ;
  3. Убедится в обесточивании, зафиксировать заземления.
  4. Разметка, установка креплений. Запрещено размещать трансформатор вплотную к ЭУ (минимальный зазор — 10 см).
  5. Выставляются таблички, ограждения.
  6. Первичные витки подсоединяются последовательно, но с нагрузкой на вторичных. Если нет возможности подключить измеритель, то ее контакты замыкают, чтобы не было высоких мощностей на ней, которые приведут его повреждению.

ТТ не допускает холостого функционирования, его режим близок к КЗ: вторичные витки при подключении прибора к измеряемому току обязательно замыкаются. Иначе происходит перегревание, повреждающее изоляцию. Перед отсоединением измерителей сначала закорачивают катушки. У некоторых моделей для этого есть узлы клеммы, перемычки.

Расчет

Расчет трансформатора тока можно провести по онлайн-калькуляторам, подобрать по номиналу (например, для 10 кВ). Но это слишком упрощенные инструменты. Исчисления и параметры для выбора — чрезвычайно обширная тема, поэтому опишем основы.

Точность чрезвычайно важная, поэтому потребуются тщательные исчисления специалистами. Необходимо знать множество специфических нюансов, например:

  • при разных схемах подсоединения, видах КЗ, есть разные формулы определения сопротивления;
  • проверяют первичный ток на термо- и электродинамическую стойкость;
  • есть свои нюансы для ТТ, для релейной защиты и для учетных целей, измерений.

Правила, как выбрать трансформатор тока в общих чертах:

  • номинальное рабочее напряжение ТТ должно превышать или сравниваться с номиналом ЭУ (стандартные значения 0.66, 3, 6, 10, 15, 20, 24, 27, 35, 110, 150, 220, 330, 750 кВ). Если обслуживаемое оборудование имеет 10 кВ, то изделие должно быть рассчитано на этот показатель;
  • первичный ток ТТ — больше номинального тока у ЭУ, но учитывая перегрузочную способность;
  • оценивают ТТ по номинальной мощности вторичной нагрузки, которая должны превышать расчетное ее значение. (Sном>=Sнагр);
  • оценивают размеры и расположение для установки, номинальные нагрузки (есть таблица), наработка до отказа, срок службы, класс точности.

Проверка после расчета

Правила:

  • после расчета ТТ проверяют по загрузке при макс. и мин. значениях, протекающих через него нагрузок;
  • по п. 1.5. 17 ПУЭ при макс. подключенной нагрузке ток во вторичной катушке — не менее 40 % номинала счетчика, при мин. — не менее 5 %;
  • макс. загрузка должна быть от 40 %, а мин. — от 5 %, и в любом случае она не должна превышать 100 %, иначе возникнет перегрузка трансформатора;
  • если рассчитанные величины макс./мин. загрузок меньше 40 % и 5 % соответственно, то надо подбирать изделие с меньшим номиналом, а если этого нельзя сделать по параметрам макс. нагрузки, надо предусмотреть монтаж двух счетчиков — для макс. и мин. нагрузки.

Основные составляющие

В их качестве вступают:

  • магнитная система (сердечник, магнитопровод);
  • обмотки;
  • охладительная система.

Магнитная система

Состоит из элементов в комплекте, чаще всего применяются пластины из ферромагнитного материала или электротехнических сталей, которые компонуются в определенной геометрической форме. Ее выбор определяется локализацией в ней основного трансформаторного магнитного поля. Система магнитного воздействия одновременно со всеми узлами, элементами и деталями для соединения частей в общую конструкцию, носит название остова трансформатора.

Часть магнитной системы, включающая основные обмотки, называется стержнем. Другая часть магнитного комплекта, на которой нет рабочих обмоток, и она служит для соединения магнитной цепи, имеет наименование ярмо. В зависимости от того, как расположены стержни, подразделяют:

  • плоская система, где продольные стержни и ярма расположены в одной плоскости;
  • пространственная система включает разно плоскостное расположение сердечников и ярм;
  • симметричная система отличается одинаковой формой и длиной стержней, а их расположение по отношению к ярмам является стандартным для всех элементов;
  • несимметричная система, в ней все стержни различаются по форме и размеру, а их расположение не отличается симметрией и отлично от других элементов.

Обмотки

Основным конструктивным элементом обмотки служит виток, являющийся рядом параллельных соединенных проводников (в многопроволочном варианте жилы), один раз охватывающий часть магнитного сердечника. Ток витка совместно с током других витков, проводников и частей трансформатора продуцирует магнитное трансформаторно поле, в котором наводится под действием магнитного поля сила, движущая ток.

Обмоткой называется общее число витков, образующих электрический контур для суммирования ЭДС в витках. Трехфазный трансформатор имеет в конструкции комплект обмоток из трех рабочих фаз. Проводник обычно квадратного сечения, чтобы увеличить площадь его делят на два или несколько проводящих стержня. Этот прием помогает снизить вихревые токи и облегчить работу обмотки. Квадратный проводник называется жилой. В качестве обмотки используется транспонированный кабель.

Изоляцию делают бумажной обмоткой или лаком на эмалевой основе. Две параллельные жилы могут выполняться в единой изоляции, такой комплект называется кабелем. Чтобы понять, как работает трансформатор, нужно знать разделение обмоток по типам. В зависимости от назначения обмотки бывают:

  • основные, те, что принимают преобразованную энергию или отводят переменный ток;
  • регулирующие предусмотрены для нормализации коэффициента напряжения при небольших показаниях тока в обмотках;
  • вспомогательные предназначены для электрического снабжения собственных нужд меньшей мощности, чем номинальная трансформаторная мощность, подмагничивания магнитной системы током постоянного значения.

В зависимости от варианта исполнения обмотки делят:

  • рядовые — витки делаются по всей длине в направлении оси, последующие витки наматывают плотно, без пробелов;
  • винтовые — имеют многослойное наложение, предусмотрены расстояния между витками или заходами обмотки;
  • дисковые обмотки содержат последовательно соединенные диски, при этом в центр каждого наматывается обмотка в форме спирали;
  • фольговый вид обмотки выполнен из листа алюминия или меди, разной толщины.

Бак для охлаждения

Представляет собой масляный резервуар, обеспечивает защиту активного ингредиента, служит опорой для приборов управления и вспомогательных приборов. Перед добавлением масла в баке выкачивают воздух для безопасной диэлектрической прочности изоляции. При изготовлении звуковые частоты от сердечника трансформатора и от элементов бака должны совпадать.

Конструкция предусматривает дополнительные параметры для расширения масла в условиях нагревания, иногда это дополнительный расширительный бак. Если увеличивается номинальная мощность трансформатора, то токи внутри и снаружи ведут к перегреву конструкции. Аналогично действует магнитный рассеянный поток внутри бака. Чтобы снизить отрицательное воздействие делают вставки из немагнитных материалов, окружая ими проходные сильноточные изоляторы.

Принцип действия трансформатора

Электромагнитная
схема однофазного двухобмоточного
трансформатора
состоит из двух обмоток
(рис. 2.1), разме­щенных на замкнутом
магнитопроводе, который выполнен из
ферромагнитного материала. Применение
ферромагнитного магнитопровода позволяет
усилить электромагнитную связь между
обмотками, т. е. уменьшить магнитное
сопротивление контура, по которому
проходит магнитный поток машины.
Первичную обмотку 1 подключают к источнику
переменного тока — электрической сети
с напряжением u1.Ко
вторичной обмотке 2 присоединяют
сопротивление нагрузки ZH.

Обмотку
более высокого напряжения называют обмоткой
высшего напряжения(ВН),
а низкого напряжения — обмоткой
низшего напряжения(НН).
Начала и концы обмотки ВН обозначают
буквами Аи X;обмотки
НН — буквами аи х.

При
подключении к сети в первичной обмотке
возникает переменный ток i1,который
создает переменный магнитный поток Ф,
замыкающийся по магнитопроводу. Поток
Ф индуцирует в обеих обмотках переменные
ЭДС — е1и е2,пропорциональные,
согласно закону Максвелла, числам витков
w1 и w2 соответствующей
обмотки и скорости изменения потока dФ/dt.

Рис.
2.1. Электромагнитная система  
однофазного   трансфор­матора
: 1,2
—первичная
и вторичная обмот­ки; 3
—магнитопровод

Таким образом,
мгновенные значения ЭДС, индуцированные
в каждой обмотке,

е1=
— w1 dФ/dt;     
е2= -w2dФ/dt.

Следовательно,
отношение мгновенных и действующих ЭДС
в обмотках определяется выражением

E1/E2= e1/e2= w1/w2.

                                            
(2.1)

Если
пренебречь падениями напряжения в
обмотках тран­сформатора, которые
обычно не превышают 3 — 5% от номи­нальных
значений напряжений U1 и U2
считать E1≈U l и Е2≈U2,
то получим

U1/U2≈w1/w2.

                                            
(2.2)

Следовательно,
подбирая соответствующим образом числа
витков обмоток, при заданном напряжении
U1можно
получить желаемое напряжение U2.Если
необходимо повысить вторичное напряжение,
то число витков w2 берут
больше числа w1;
такой трансформатор называют повышающим.Если
требуется уменьшить напряжение U2,то
число витков w2 берут
мень­шим w1;
такой трансформатор называют понижающим,

Отношение
ЭДС ЕВН обмотки
высшего напряжения к ЭДС ЕНН обмотки
низшего напряжения (или отношение их
чисел витков) называют коэффициентом
трансформации

k= ЕВННН = wВН/wНН

                                            
(2.3)

Коэффициент kвсегда
больше единицы.

В
системах передачи и распределения
энергии в ряде слу­чаев применяют
трехобмоточные трансформаторы, а в
устрой­ствах радиоэлектроники и
автоматики — многообмоточные
трансформаторы. В таких трансформаторах
на магнитопроводе размещают три или
большее число изолированных друг от
друга обмоток, что дает возможность при
питании одной из обмоток получать два
или большее число различных напряжений (U2,
U3,
U4 и
т.д.) для электроснабжения двух или
большего числа групп потребителей. В
трехобмоточных силовых трансформаторах
различают обмотки высшего, низшего и
среднего (СН) напряжений.

В трансформаторе
преобразуются только напряжения и токи.
Мощность же остается приблизительно
постоянной (она несколько уменьшается
из-за внутренних потерь энергии в
трансформаторе). Следовательно,

I1/I2≈ U2/U1≈ w2/w1.

                                            
(2.4)

При
увеличении вторичного напряжения
трансформатора в kраз
по сравнению с первичным, ток i2 во
вторичной обмотке соответственно
уменьшается в kраз.

Трансформатор
может работать только в цепях переменного
тока.Если
первичную обмотку трансформатора
под­ключить к источнику постоянного
тока, то в его магнито-проводе образуется
магнитный поток, постоянный во времени
по величине и направлению. Поэтому в
первичной и вторичной обмотках в
установившемся режиме не индуцируются
ЭДС, а следовательно, не передается
электрическая энергия из первичной
цепи во вторичную. Такой режим опасен
для трансформатора, так как из-за
отсутствия ЭДС E1 первич­ной
обмотке ток I1 =U1R1 весьма
большой.

Важным
свойством трансформатора, используемым
в устройствах автоматики и радиоэлектроники,
является способность его преобразовывать
нагрузочное сопротивление. Если к
источнику переменного тока подключить
сопротивление R через
трансформатор с коэффициентом
трансформации к,то
для цепи источника

R’= P1/I12≈ P2/I12≈
I22R/I12≈ k2R

                                       
(2.5)

где Р1
мощность, потребляемая трансформатором
от источ­ника переменного тока,
Вт;
Р2 =
I22R≈ P1 —
мощность, по­требляемая сопротивлением R от
трансформатора.

Таким
образом, трансформатор
изменяет значение сопро­тивления R в
k2раз.Это
свойство широко используют при разработке
различных электрических схем для
согласования сопротивлений нагрузки
с внутренним сопротивлением источ­ников
электрической энергии.

Оцените статью
Рейтинг автора
5
Материал подготовил
Андрей Измаилов
Наш эксперт
Написано статей
116
Добавить комментарий