5 механические свойства металлов и сплавов

Химические свойства металлов и сплавов металлов

К ним относятся растворимость, окисляемость, коррозионная стойкость.

Способность металлов растворять различные элементы позволяет при повышенных температурах атомам вещества, окружающего поверхность металла, диффундировать внутрь него, создавая поверхностный слой измененного состава. При этой обработке изменяется не только состав, но и структура поверхностных слоев, а также часто и сердцевина. Такая обработка называется химико-термической.

Коррозия (лат. corrosio — разъедание) — разрушение твердых тел, вызванное химическими и электрохимическими процессами, развивающимися на поверхности тела при его взаимодействии с внешней средой.

Коррозионная стойкость — способность материалов сопротивляться коррозии.

У металлов и сплавов коррозионная стойкость определяется скоростью коррозии, т. е. массой материала, превращенной в продукты коррозии, с единицы поверхности в единицу времени либо толщиной разрушенного слоя в миллиметрах в год.

Коррозионная усталость — понижение предела выносливости металла или сплава при одновременном воздействии циклических напряжений и коррозионной среды.

Различают, по крайней мере, 3 формы коррозионного разрушения: равномерную, местную, межкристаллическую коррозию.

Равномерная коррозия разрушает металл, мало влияя на его механическую прочность. Она встречается у серебряного припоя (см. табл. 102).

Местная коррозия приводит к разрушению только отдельных участков металла и проявляется в виде пятен и точечных поражений различной глубины. Она возникает в случае неоднородной поверхности, при наличии включений или внутренних напряжений, при грубой структуре металла. Этот вид коррозии снижает механические свойства деталей.

Межкристаллическая коррозия характеризуется разрушением металла по границе зерен (кристаллов). При этом нарушается связь между кристаллами, и агрессивная среда, проникая вглубь, разрушает металл. Ей особенно подвержены нержавеющие стали.

Кристаллы (греч. Krystallos, первоначально — лед) — твердые тела, атомы или молекулы которых образуют упорядоченную периодическую структуру (кристаллическую решетку).

Кристаллы обладают симметрией атомной структуры, соответствующей ей симметрией внешней формы, а также анизотропией физических свойств (т. е. зависимостью свойств от формы и вида кристалла). Кристаллы — равновесное состояние твердых тел: каждому веществу, находящемуся при данных температуре и давлении, в кристаллическом состоянии соответствует определенная атомная структура. При изменении внешних условий структура кристаллов может измениться.

Химическая коррозия — взаимодействие металла с агрессивными средами, не проводящими электрического тока. Так, сильное нагревание железа в присутствии кислорода воздуха сопровождается образованием оксидов (окалины). Образующаяся окисная пленка может защищать металл от диффузии в него агрессивного агента.

Физические свойства металлов

В данном случае речь идет о различных визуальных аспектах, а также параметрах, связанных с физикой. Можно привести сравнительную таблицу:

Показатели Категории Примеры
Электрическая проводность проводник

диэлектрик

железо

магний

Температура плавления низкая

высокая

ртуть

хром

Удельный вес малый

большой

берилий

осьмий

твердость мягкий

высокотвердый

натрий

вольфрам

На практике знание физических свойств металла описывает сферу использования того или иного мономатериала. В частности, электропроводность определяет область применения в электронике, как вариант, германий – полупроводники, серебро – дорожки микросхем.

К физ. характеристикам также относят цветопередачу – зрительный параметр, который может изменяться под воздействием различных факторов, например, температуры или наличия-отсутствия защитного покрытия. Многие цвета, кстати, были названы в честь хим. элементов – золотой, серебристый, медный и так далее.

Лаковое покрытие

Классификация металлов

Металлы разделяются на две большие группы — черные и цветные. Представители обоих видов различаются не только характеристиками, но и внешним видом.

Черные

Представители этой группы считаются самыми распространёнными и недорогими. В большинстве своем имеют серый или тёмный цвет. Плавятся при высокой температуре, обладают высокой твердостью и большой плотностью. Главный представитель этой группы — железо. Эта группа разделяется на подгруппы:

  1. Железные — к представителям этой подгруппы относится железо, никель и кобальт.
  2. Тугоплавкие — сюда входят металлы температура плавления которых начинается с 1600 градусов. Их применяют при создании основ для сплавов.
  3. Редкоземельные — к ним относятся церий, празеодим и неодим. Обладают низкой прочностью.

Существуют урановые и щелочноземельные металлы, однако они менее популярны.

Цветные

Представители этой группы отличаются яркой окраской, меньшей прочностью, твердостью и температурой плавления (не для всех). Разделяется эта группа на следующие подгруппы:

  1. Лёгкие — подгруппа, включающая в себя металлы с плотностью до 5000 кг/м3. Это такие материалы, как литий, натрий, калий, магний и другие.
  2. Тяжёлые — сюда относится серебро, медь, свинец и другие. Плотность превышает 5000 кг/м3.
  3. Благородные — представили этой подгруппы имеют высокую стоимость и устойчивость к коррозийным процессам. К ним относятся золото, палладий, иридий, платина, серебро и другие.

Выделяются тугоплавкие и легкоплавкие металлы. К тугоплавким относится вольфрам, молибден и ниобий, а к легкоплавким все остальные.

Классификация веществ. Металлы | Химия 11 класс #20 | Инфоурок

Как получают твердые сплавы

Соединения металлов представляют собой смесь порошков, которые прессуются и запекаются. В её состав входят карбиды и кобальт. Смешивают порошки в формах для запекания, прессуют под давлением от 200 кгс/см2. После обработки давлением формы разогреваются до температуры в 1500 градусов. Готовые соединения используют при получении труднообрабатываемых материалов.

Свойства твердых сплавов

Чтобы понять, какой металл или смесь самый прочный в мире, необходимо знать их свойства. Основные характеристики помогут разбираться в тех или иных видах материалов и грамотно использовать их при производстве. Свойства твердых сплавов:

  1. Высокая механическая и термоударная прочность.
  2. Износоустойчивость.
  3. Красностойкость. Этот показатель проявляется при температурах от 900 и до 1000 градусов.

Такие свойства твердых сплавов, как ударопрочность, пластичность, прочность при сжатии или изгибе и твердость напрямую зависят от количества кобальта, содержащегося в соединениях. Также важен размер зерна карбида вольфрама.

Характеристики твердых сплавов

Чтобы определить самый твердый сплав, необходимо разбираться в характеристиках. К ним относится химический состав соединения металлов, его механические и физические свойства, процесс получения готовых сплавов.

Механические и физические характеристики:

  1. Жаропрочность.
  2. Плотность (14,9г/см3–15,2г/см3).
  3. Твердость (89,5HRA-91 HRA).
  4. Теплопроводность — 51 Вт.
  5. Допустимая прочность — 2150 Мпа.

Также к этим характеристикам можно отнести устойчивость соединений к воздействию коррозийных процессов. Самый твердый сплав обладает завышенным физико-механическими характеристиками.

Жаропрочный металл

Марки

По государственным ГОСТам устанавливается специальная маркировка, которой отмечаются все соединения твердых металлов. Она представляет собой заглавные буквы и цифры:

  1. ВК6М — вольфрамокобальтовая смесь. Цифра 6 указывает на количество кобальта в составе. Буква «В» указывает на вольфрам, соответственно буква «К» — кобальт. Буква «М» обозначает то, в какой сфере применяется этот сплав. Из него изготавливают инструменты для обработки металлов.
  2. ВК2 — в этом случае в смеси содержится 2% кобальта и 98% вольфрама.
  3. ВК8 — в этой смеси кобальта содержится до 8%.
  4. Т14К8 — в таких соединениях содержится третий элемент — титан. Его в составе содержится 14%. Кобальта 8%. Всё остальное это вольфрам.
  5. Т5К10 — аналогична предыдущей смеси, в которой 5% титана, 10% кобальта и 85% вольфрама.
  6. ТТ7К12 — к указанным выше элементам добавляется тантал. Его процентное содержание такое же, как и у титана.

Марки сплава указываются на готовых деталях и заготовках.

Области применения

Существует множество сфер применения твердых сплавов. К ним относятся:

  1. Производство инструмента для обработки металла.
  2. Изготовление деталей для промышленного оборудования.
  3. Оснастка для работы с металлическими заготовками.

Часто твердые сплавы используются в качестве напыления на более мягкие. Сферы применения доходят вплоть до постройки крупного транспорта.

Вы здесь

Какие металлы относятся к благородным, их свойства

Название «благородные» эта группа металлов получила благодаря особым характеристикам. В зависимости от разновидности физико-химические свойства у них могут проявляться в разной степени, но они всегда остаются уникальными.

Родий

Родий – представитель платиновой группы. Принадлежит к числу легких металлов, имеет бледно-голубой цвет. Отличается высокой степенью твердости и, вместе с тем, хрупкости.

Ценится за высокую отражательную способность, устойчивость к химическому воздействию. Окислить родий можно только горячей серной кислотой. Процесс плавления начинается при нагреве почти до 2000 °С.

Платина

Из-за белого блеска платина, открытая на рудниках Америки, изначально называлась «серебришком». Только в 1751 году платина получает статус драгметалла, а ее стоимость мгновенно обгоняет известные тогда серебро и золото. Она обладает высокой пластичностью, отлично поддается ковке (из-за чего и полюбилась ювелирам). Вместе с тем платина тверже золота, тугоплавка, устойчива к химическим воздействиям, не подвержена окислению.

Золото

Как и платина, обладает хорошей пластичностью, ковкостью, но имеет более низкие температуры плавления. Реагирует только с царской водкой, неуязвимо для щелочей, солей и кислот. В природе редко встречаются экземпляры чистого золота с выраженной желтой окраской и характерным блеском. Чаще всего старатели сталкиваются с блеклой рудой зеленого цвета.

Осмий

Самый тугоплавкий из благородных металлов. Температура плавления достигает 2700 °С. Кроме того, осмий не растворяется в кислотах. По внешним характеристикам белый и твердый. Принадлежит к группе тяжелых металлов.

Иридий

Как и осмий, относится к тяжелым металлам. Самый прочный, плотный, тугоплавкий и не растворяющийся в кислотах, серо-белого цвета. Температура плавления немного ниже, чем у осмия, и составляет 2454 °С.

Рутений

По внешним характеристикам рутений легко спутать с платиной. По температуре плавления благородный металл напоминает иридий, обладает повышенной прочностью и плотностью. Интересно, что только рутений и осмий под действием щелочи, окислителя и высоких температур образовывают растворимые в воде спеки.

Палладий

Мягкий, ковкий, белого цвета с серебристым отливом. При нагревании до 860 ° C палладий образует оксиды, но при дальнейшем повышении температуры снова становится чистым. Температура плавления составляет 1554 °С.

Серебро

Среди благородных металлов серебро отличается наименьшей плотностью и относительно низкой температурой плавления – 960 °С. Лучше всего поддается ковке, служит отличным тепло- и электропроводником. Практически не реагирует с кислотами, но темнеет под действием сероводорода, входящего в состав атмосферы.

Список полудрагоценных металлов

В ювелирном производстве и приборостроении активно используют металлы, не являющиеся по сути драгоценными, но представляющие определенную ценность. Они условно называются полудрагоценными. Среди наиболее востребованных можно выделить такие виды:

  • титан;
  • вольфрам;
  • мельхиор.

Цена на них колеблется в среднем ценовом диапазоне и не превышает 2 долларов за грамм.

Маркировка и свойства

Отечественная промышленность маркирует магниевые сплавы на основе двухбуквенной маркировки с дополнительными цифрами:

  • литейные — МЛ1 – МЛ20;
  • деформируемые — МА1 – МА19;
  • жаропрочные магниевые сплавы ВМЛ1 – ВМЛ2.

Литейные сплавы производятся в большинстве на основе системы Mg – Al – Zn, которая представляет собой твердый раствор алюминия и цинка в магнии. Наилучшими литейными свойствами обладают такие виды растворов, как марки МЛ4 – МЛ6. Данные сплавы обладают высокой текучестью, малой усадкой и не склонны к образованию раковин. Такие характеристики позволяют применять указанные марки при точном литье заготовок любых форм и габаритов.

Жаропрочные сплавы, к которым относятся также марки МЛ9 – МЛ14, способны длительное время выдерживать температуру до 350 ˚С и кратковременно до 400 ˚С. В основе состава система Mg –  Zn с добавкой циркония. Кроме жаропрочности, данные сплавы хорошо выдерживают статические и усталостные нагрузки.

Деформированные сплавы производят на основе систем Mg – Al, Mg – Zn, Mg – Mn. Алюминий и цинк способствуют повышению пластичности и позволяют производить с отливками такие действия давлением, как ковка, прессовка, штамповка, а также холодная и горячая прокатка.

Как и литейные, деформируемые дополнительно легируют редкоземельными металлами, однако здесь нашли также и другие материалы. К ним можно отнести кадмий и серебро, которые повышают прочность при одновременном увеличении пластичности.

Марки МА11 — МА12  деформируемых магниевых сплавов относятся к жаростойким материалам, как и аналогичные литейные.

Сплавы МА14 и МА19 характерны тем, что не допускают применение сварки при дальнейшем применении, в отличие от большинства остальных составов.

Основные виды сплавов

Существуют различные виды сплавов металлов, однако стоит поговорить только об основных.

Самыми популярными считаются составы на основе железа. К ним относится сталь, чугун и ферриты. Если с первыми двумя сплавами всё понятно, то стоит кратко сказать о том, что такое ферриты. Это соединения металлов, в которых содержится большое количество углерода. Их используют для изготовления катушек индуктивности. Также стоит упомянуть другие основные сплавы металлов.

Изделия выполненные из металлических сплавов

Магниевые сплавы

Обладают высокой прочностью при малом размере и массе заготовки. Слабо защищены от коррозии, не обладают достаточной пластичностью для удобной обработки. Используются в машиностроении. Главная особенность сплавов на основе магния — свойство поглощать вибрации подвижных элементов.

Бериллиевые сплавы

Устойчивы к коррозийным процессам. Бериллий чаще всего смешивается с медью. Такая смесь называется Бериллиевой бронзой. Её используют для изготовления шестерней, контактов, часовых механизмов, подшипников.

Цинковые сплавы

Особенности этих соединений заключаются в низкой температуре плавления, высоким показателе пластичности, устойчивости к коррозиям. Используются для изготовления подшипников, бытовой техники, в машиностроении.

Титановые сплавы

Тяжелый в обработке материал. Сплавы на его основе обладают малым весом, высокой прочностью, стойкостью к воздействию факторов окружающей среды. Чтобы облегчить обработку металла, его необходимо нагреть. Используется в различных направлениях промышленности.

Алюминиевые сплавы

Сплавы на основе этого материала считаются наиболее популярными. Встретить их можно в большинстве сфер жизни человека. У них такие преимущества:

  • коррозийная устойчивость;
  • малый вес;
  • пластичность;
  • электропроводность.

Главный недостаток этого материала — низкая температура плавления. Уже к 200 градусам, свойства сплава ухудшаются. Алюминиевые сплавы используются в различных направлениях промышленности. Благодаря малому удельному весу алюминий получил большую популярность в строительстве самолётов.

Медные сплавы

Большинство соединений на основе меди представляют собой латунь. В зависимости от содержания меди в составе сплава выделяется красная и жёлтая латунь. Из этого материала изготавливаются маленькие детали для высокоточных и миниатюрных механизмов. Обладает высоким показателем пластичности, благодаря чему с соединениями на основе меди легко работать.

Диаграмма состояния «железо — цементит»

Диаграмма (рис. 7) показывает фазовый состав и структуру сплавов с концентрацией от чистого железа до цементита (6,67%). Сплавы с содержанием углерода 2,14% называют сталью, а от 2,14 до 6,67% — чугуном.

Первичная кристаллизация, т.е. затвердевание жидкого сплава, начинается при температурах, соответствующих линии ликвидуса. Точка А на этой диаграмме соответствует температуре плавления 1539°С (затвердевания) железа, точка D — температура плавления (затвердения) ~ 1600°С цементита.

Линия солидуса AEСF соответствует температурам конца затвердевания. При температурах, соответствующих линии АС, из жидкого сплава кристаллизуется аустенит, а линии CD — цементит, называемый первичным цементитом.

В точке С при 1147°С и содержании углерода 4,3% из жидкого сплава одновременно кристаллизуются аустенит (А) и цементит (Ц) (первичный), образуя эвтектику — ледебурит (Л).

При температурах, соответствующих линии солидуса АЕ, сплавы с содержанием углерода до 2,14% окончательно затвердевают с образованием аустенита. На линии солидуса ECF сплавы с содержанием углерода от 2,14 до 6,67% окончательно затвердевают с образованием эвтектики (ледебурита) и структур, образовавшихся ранее из жидкого сплава, а именно: в интервале 2,14…4,3%, С — аустенита, а в интервале 4,3…6,67% С — цементита первичного.

В результате первичной кристаллизации во всех сплавах с содержанием углерода до 2,14% (т.е. в сталях) образуется однофазная структура — аустенит. В сплавах с содержанием углерода более 2,14% (т.е. в чугунах) при первичной кристаллизации образуется эвтектика ледебурита.

Вторичная кристаллизация (превращение в твердом состоянии) происходит при температурах, соответствующих линиям GSE, PSK и GPQ. Превращения в твердом состоянии происходят вследствие перехода железа из одной аллотропической модификации в другую ( в ) и в связи с изменением растворимости углерода в аустените и феррите. С понижением температуры растворимость уменьшается. Избыток углерода выделяется из твердых растворов в виде цементита. В области диаграммы AGSE находится аустенит.

Расчет оптимальной мощности котла

Чтобы выполнить данный расчет понадобятся:

Схема устройства газового котла.

  1. Статистические данные.
  2. Рулетка.
  3. Генплан.
  4. Калькулятор.

Первое, на что следует сразу же обратить внимание – максимально низкая температура в вашем регионе. Так, для более северных регионов нужен будет котел чуть большей мощности. Для данных целей лучше всего внимательно изучить статистические данные по области

Чем холоднее регион, в котором расположено здание, тем большая мощность нужна будет прибору отопления. Кроме того, необходимо учитывать, что иногда температура зимой может упасть слишком сильно. Это значит, что для северных регионов, подбирая котел, стоит остановиться на приборе чуть большей мощности, чем рассчитано по приведенной ниже формуле

Для данных целей лучше всего внимательно изучить статистические данные по области. Чем холоднее регион, в котором расположено здание, тем большая мощность нужна будет прибору отопления. Кроме того, необходимо учитывать, что иногда температура зимой может упасть слишком сильно. Это значит, что для северных регионов, подбирая котел, стоит остановиться на приборе чуть большей мощности, чем рассчитано по приведенной ниже формуле.

При расчете мощности котла учитывается регион проживания, площадь и утепленность помещения.

Второе, что может повлиять на необходимую мощность – размер отапливаемого помещения и степень его утепленности. В расчет обязательно вносить поправки с учетом этих особенностей строения. Так, для домов с хорошим утеплением можно меньшей мощности. Едва ли это сильно повлияет на температурный режим в помещении. Ведь в таком случае тепло будет хорошо сохраняться внутри, а процент потерь тепла будет минимальным.

Третье – площадь помещения. Расчет мощности обязательно учитывает этот фактор. Чем больше здание или комната, тем большая мощность котла понадобиться для его качественного отопления. Площадь можно узнать, измерив помещение рулеткой или изучив генплан. В данной формуле выполняется расчет без учета высоты потолка, поэтому ее можно применять исключительно для типовых строений, у которых высота потолка не более 2-3-х метров. Если здание имеет большую высоту помещений, то тогда нужно будет воспользоваться другой формулой, которая сможет дать более точные результаты.

M=S*U/10*k. Где

  • M – мощность;
  • S – площадь помещения;
  • U – удельная мощность;
  • K-коэффициент рассеивания.

Удельная мощность имеет различные значения для разных регионов страны. Для Москвы и области данный показатель составляет приблизительно 1,2-1,5 кВт. В северной части России – 1,5-2,0 кВт. Для южной части РФ – 0,7-1 кВт. Кроме того, в расчет вноситься поправка в соответствии с утепленностью здания.

Основные определения

Людям, работающим в сфере металлообработки, необходимо знать строение металлов и сплавов, чтобы понимать как происходят те или иные процессы в ходе обработки. Металлические материалы образую группу простых веществ, которые имеют собственные характерные свойства.

Структура представляет собой совокупность атомов, которые выстраиваются в отдельные ячейки. Ячейки, в свою очередь, объединяются между собой, образуя кристаллическую решётку. Внутреннюю часть решётки образуют атомные ядра. Вокруг них располагаются электроны. Кристаллическая решётка представляет собой совокупность простых геометрических форм.

Свойства металлов

Эту группу веществ определяют по характерным признакам. Механические свойства алюминия, стали, железа, свинца, олова и других видов металлов давно известны науке:

  1. Твёрдость — этот параметр определяет устойчивость материала к проникновению посторонних примесей.
  2. Пластичность — показатель, определяющий сохранение формы предмета под воздействием посторонних сил.
  3. Вязкость — определяет целостность изделия под физическим давлением.
  4. Прочность — показатель сохранения формы материала после воздействия извне.
  5. Износоустойчивость — изменение поверхности материла после трения.
  6. Упругость — изменение формы детали или заготовки с возможностью самостоятельного восстановления к изначальному состоянию.

Признаки металлов

Изначально считалось, что металлы и сплавы обладают тремя характерными признаками — ковкость, пластичность и блеск. Однако оказалось, что некоторые неметаллические вещества также обладают блеском. Сейчас главным признаком металла считается понижение электропроводности при изменении температуры.

Механические свойства металлов

Данные сведения не рассматриваются как расчетные величины. Они определяются в процессе экспериментальных изысканий, в частности, деформации заготовок на растяжение и сжатие с применением специализированного оборудования.

Основными называют:

  1. Прочность. Под этим аспектом принято понимать способность сохранять кристалическую целостность под воздействием мех. нагрузок различного типа, как статических, так и динамических, в том числе ударного формата. Чем прочнее монометалл, тем он долговечнее в тех конструкциях, где материал подвергается серьезным перегрузкам. Особенно это бывает актуально в тех областях, где от прочностных показателей зависит жизнь и здоровье человека, например, на транспорте.
  2. Пластичность – характеристика, отражающая потенциал того или иного моноэлемента либо сплава под усилиями от внешних сил изменять свою геометрию и объем. При этом, опять же, физического разрушения кристаллической решетки не должно быть.
  3. Твердость. Понятно, что подавляющее большинство металлических брусков руками не проверишь – для железа и алюминия ощущения будут одинаковыми. Для этого используются специальные приспособления – приборы Бриннеля или изобретение Роквелла. В первом случае в образец пытаются «впихнуть» сильнозакаленный шар, во втором – алмазную пирамиду. По размеру следа от давления и устанавливается плотность того или иного состава.

Здесь важно понимать, что прочность и твердость – это разные механические свойства металлов, порой, даже не взаимозначимые. Твердые образцы могут быть хрупкими

  1. Ударная вязкость. Как следует из названия речь идет о возможности противостоять нагрузкам при целенаправленных ударах. Измеряется в джоулях на сантиметр кубический.
  2. Упругость. Под действием различного рода сил образец изменяет свою форму и объем. Способность восстановить свои начальные параметры и определяют упругость.

Также к механике относятся конструкторские особенности ­– надежность, живучесть, долговечность.

Основные механические свойства металлов

Что это за свойства? Под механическими понимают такие свойства субстанции, которые отражают ее умение противостоять действиям извне. Известно девять основных механических свойств металлов:

— Прочность — означает, что приложение статической, динамической или знакопеременной нагрузки не приводит к нарушению внешней и внутренней целостности материала, изменению его строения, формы и размеров.

— Твердость (часто путают с прочностью) — характеризует возможность одного материала противостоять прониканию другого, более твердого предмета.

— Упругость — означает способность к деформированию без нарушения целостности под действием определенных сил и возвращению первоначальной формы после освобождения от нагрузки.

— Пластичность (часто путают с упругостью и наоборот) — также способность к деформации без нарушения целостности, однако в отличие от упругости, пластичность означает, что объект способен сохранить полученную форму.

— Стойкость к трещинам — под воздействием внешних сил (ударов, натяжений и пр.) материал не образует трещин и сохраняет наружную целостность.

— Вязкость или ударная вязкость — антоним ломкости, то есть возможность сохранять целостность материала при возрастающих физических воздействиях.

— Износостойкость — способность к сохранению внутренней и внешней целостности при длительном трении.

— Жаростойкость — длительная возможность противостоять изменению формы, размера и разрушению при воздействии больших температур.

— Усталость — время и количество циклических воздействий, которые материал может выдержать без нарушения целостности.

Часто, говоряо тех или иных свойствах, мы путаем их названия: технологические свойства относим к физическим, физические к механическим и наоборот. И это неудивительно, ведь несмотря на глубинные отличия, лежащие в основе той или иной группы свойств, механические свойства не только крайне тесно связаны с другими характеристиками металлов, но и напрямую зависят от них.

Где можно купить или продать?

Основными лотами на рынке остаются платина и золото. Если вы представляете какую-то фирму или имеете ИП, выгоднее покупать металлы у официально зарегистрированных брокерских компаний, работающих с ведущими заводами производителями.

Мнение эксперта

Людмила Пестерева

Наш самый опытный инвестор в золото

Задать вопрос

Физическому лицу проще сотрудничать с банками, которые предлагают широкий спектр услуг по приобретению благородных металлов. Например, купить слитки и сложить их в собственную ячейку, открыть депозит и даже заработать на своих вложениях.

Какой драгметалл самый дорогой?

Если мы говорим о самых востребованных и популярных металлах, то лидирующую строчку в рейтинге цен занимают палладий, платина и золото.

Однако самым дорогим металлом на земле по праву считается калифорний.

Его добывают в процессе работы мощнейших ядерных реакторов. Цена за 1 грамм калифорния составляет 6,5 миллионов долларов. Следующий в списке дорогих металлов идет родий. Его оценивают в 225 тысяч долларов за грамм.

Литейные сплавы

Наиболее распространенным литейным материалом является серый чугун, так как он обладает хорошими литейными свойствами, недефицитен и имеет невысокую стоимость. Значительно меньшая часть отливок изготавливается из высокопрочных, ковких и легированных чугунов.

Сталь имеют более высокие механические свойства по сравнению с чугунами, но она значительно дороже, а изготовление из нее отливок связано с рядом трудностей из-за ее низких литейных свойств.

Среди литейных сплавов цветных металлов наиболее широкое применение нашли медные, алюминиевые, магниевые, цинковые и титановые сплавы.

К литейным сплавам предъявляется ряд различных требований, касающихся их механических и физико-химических свойств. Но независимо от этого все литейные сплавы должны обладать определенными литейными свойствами, без учета которых даже при самом совершенном технологическом процессе литья получить качественную отливку не удается.

Химические свойства металлов

Все мы, так или иначе, но сталкиваемся с химией в нашей повседневной жизни. Например, во время приготовления еды, растворение поваренной соли в воде является простейшей

химической реакцией. Вступают в разнообразные химические реакции и металлы, а их способность реагировать с другими веществами это и есть их химические свойства.

Среди основных химических свойств или качеств металлов можно выделить их окисляемость и коррозийную стойкость. Реагируя с

кислородом, металлы образуют пленку, то есть проявляют окисляемость.

Аналогичным образом происходит и коррозия металлов – их медленное разрушение по причине химического или электрохимического взаимодействия. Способность металлов противостоять коррозии называется их коррозийной стойкостью.

3.2. Характеристика сплавов, применяемых в ортопедической стоматологии

В настоящее время в стоматологии используется свыше 500 сплавов.

Международными стандартами (ISO, 1989) все сплавы металлов разделены на группы.

1. Сплавы благородных металлов на основе золота.

2. Сплавы благородных металлов, содержащих 25—50% золота или плати или других драгоценных металлов.

3. Сплавы неблагородных металлов.

4. Сплавы для металлокерамических конструкций:

─   с высоким содержанием золота (>75%);

─   с высоким содержанием благородных металлов (золота и платины или золота и палладия — >75%);

─   на основе палладия (более 50%);

─   на основе неблагородных металлов:

  • кобальта (+ хром >25%, молибден >2%),
  • никеля (+ хром >11%, молибден >2%).

Более упрощенно выглядит классическое подразделение на благородные и неблагородные сплавы.

В специальной литературе до последнего времени встречается лексическая подмена двух терминов — благородный металл и драгоценный металл, которые не являются синонимами: драгоценный указывает на стоимость металла, а благородный — относится к его химическим свойствам. Поэтому элементы золото и платина являются как благородными, так и драгоценными, палладий — благородный, но намного дешевле. Серебро завоевало место в классификации драгоценных металлов, но не является благородным металлом.

Кроме того, применяемые в ортопедической стоматологии сплавы можно классифицировать по другим признакам:

─   назначению (для съемных, металлокерамических, металлополимерных протезов);

─   количеству компонентов сплава;

─   физической природе компонентов сплава;

─   температуре плавления;

─   технологии переработки и т.д.

Обобщая изложенное выше о металлах и сплавах металлов, нужно еще раз подчеркнуть основные общие требования, предъявляемые к сплавам металлов, применяемым в клинике ортопедической стоматологии:

─   биологическая индифферентность и антикоррозионная стойкость к воздействию кислот и щелочей в небольших концентрациях;

─   высокие механические свойства (пластичность, упругость, твердость, высокое сопротивление износу и др.);

─   наличие набора определенных физических (невысокой температуры плавления, минимальной усадки, небольшой плотности и т.д.) и технологических (ковкости, текучести при литье и др.) свойств, обусловленных конкретным назначением.

Металлический каркас — это основа зубного протеза, которая должна полностью противостоять жевательным нагрузкам. Кроме того, он должен перераспределять и дозировать нагрузку, обладать определенными деформационными свойствами и не менять своих первоначальных свойств в течение длительного времени функционирования зубного протеза. То есть, кроме общих требований, к сплавам предъявляются и специфические требования.

Если сплав металлов предназначен для облицовывания керамикой (см. гл. 4), он должен отвечать следующим специфическим требованиям:

─   быть способным к сцеплению с фарфором (см. табл. 31);

─   температура плавления сплава должна быть выше температуры обжига фарфора;

─   коэффициенты термического расширения (КТР) сплава и фарфора должны быть сходными.

Особенно важно соответствие коэффициентов термического расширения двух материалов, что предупреждает возникновение силовых напряжений в фарфоре, которые могут привести к отколу или трещине покрытия. В среднем коэффициент термического расширения у всех типов сплавов, которые используются для облицовывания керамикой, колеблется от 13,8·10-6°С-1 до 14,8·10-6°С-1

Коэффициент термического расширения керамической массы можно менять, вводя определенные добавки. Так, фирма «Дентсплай» (США) запатентовала методику введения лейцита в керамическую массу, которая позволяет изменять коэффициент термического расширения от 12,5·10-6°С-1 до 16·10-6°С-1

Сочетание высоких прочностных свойств литого металлического каркаса зубного протеза и внешнего вида облицовки (см. с. 99), достаточно точно имитирующей внешний вид натуральных зубов, позволяет создать эффективные и эстетичные зубные протезы.

Как указывалось выше, применяющиеся в ортопедической стоматологии сплавы делятся на две основные группы — благородные и неблагородные.

Сплавы на основе благородных металлов подразделяются на:

─   золотые;

─   золото-палладиевые;

─   серебряно-палладиевые.

Сплавы металлов благородных групп имеют лучшие литейные свойства и коррозионную стойкость, однако по прочности уступают сплавам неблагородных металлов.

Сплавы на основе неблагородных металлов включают:

─   хромоникелевую (нержавеющую) сталь;

─   кобальтохромовый сплав;

─   никелехромовый сплав;

─   кобальтохромомолибденовый сплав;

─   сплавы титана;

Оцените статью
Рейтинг автора
5
Материал подготовил
Андрей Измаилов
Наш эксперт
Написано статей
116
Добавить комментарий