Простые схемы для начинающих

Реле времени для фотопечати

Исходя из названия, реле времени позволяет управлять включением и выключением приборов в автоматическом режиме с помощью временных интервалов. Самый простой вариант можно собрать на транзисторах (из восьми элементов).

Важно! Такие реле активно применяются в системе «умный дом» для автоматизации осветительных приборов. Состоит устройство из следующих элементов:

Состоит устройство из следующих элементов:

  • Резисторы (2 штуки) на 100 Ом и 2.2 мОм;
  • Транзистор биполярного типа КТ937А;
  • Реле для переключения нагрузки;
  • Резистор на 820 Ом;
  • Конденсатор на 3300 мкФ;
  • Диод выпрямительного типа;
  • Переключатель для запуска отсчета времени.

Схема автоматического реле

Работает электросхема на батарейках  (9 Вольт) или на аккумуляторах (12 Вольт). Питать реле можно и обычным переменным током из домашней электрической сети. Последний способ возможен лишь при использовании специального преобразователя на постоянный ток с напряжением в 12 Вольт.

Внешний вид реле

В статье были приведены описания и подробно разобраны простые электрические схемы для детей и начинающих радиолюбителей. Они помогут понять основные принципы электроники, базовые обозначения радиоэлементов на схемах и, в конечном итоге, применить свои теоретические знания  на практике.

Какими компаниями изготавливаются?

Сегодня шарошечные долота производят порядка 20 компаний. Исходя из технического уровня и показателей качества в число лучших производителей вошли американские торговые марки: Hughes Christensen, Smith, Reed, Security DBS. Достойную продукцию, отвечающую стандартам качества, выпускает и производитель Varel.

Среди компаний с меньшим объемом выпуска стоит выделить производителей Rock Bit, Walker-McDonald, TIX, Industrial, DKG, Kingdream PLC.

Детекторный с частотным детектором

Радикальный способ улучшения приема состоит в использовании частотного детектора вместо амплитудного. На рис. 2 показана схема портативного детекторного УКВ приемника с простым частотным детектором, выполненным на одном высокочастотном германиевом транзисторе УТ1.

Применение германиевого транзистора обусловлено тем, что его переходы открываются при пороговом напряжении около 0,15 В, что позволяет детектировать довольно слабые сигналы. Переходы кремниевых транзисторов открываются при напряжении около 0,5 В, и чувствительность приемника с кремниевым транзистором получается значительно ниже.

Рис. 2. Детекторный УКВ приемник с частотным детектором.

Как и в предыдущей конструкции, антенна связана с входным контуром L1С1, настраиваемым на частоту сигнала с помощью КПЕ С1. Сигнал с входного контура подается на базу транзистора. С входным контуром индуктивно связан другой — L2С2, также настраиваемый на частоту сигнала.

Колебания в нем, благодаря индуктивной связи, сдвинуты по фазе на 90° относительно колебаний во входном контуре. С отвода катушки L2 сигнал подается на эмиттер транзистора. В коллекторную цепь транзистора включены блокировочный конденсатор С3 и высокоомные телефоны BF1.

Транзистор открывается, когда на его базе и эмиттере действуют положительные полуволны сигнала, причем мгновенное напряжение на эмиттере больше. При этом в его коллекторной цепи через телефоны проходит продетектированный и сглаженный ток. Но положительные полуволны перекрываются лишь частично при сдвиге фаз колебаний в контурах на 90°, поэтому продетектированный ток не достигает максимального значения, определяемого уровнем сигнала.

При ЧМ, в зависимости от отклонения частоты, сдвиг фазы также изменяется, в соответствии с фазочастотной характеристикой (Ф4Х) контура L2С2. При отклонении частоты в одну сторону сдвиг фазы уменьшается и полуволны сигналов на базе и эмиттере перекрываются больше, в результате чего продетектированный ток возрастает.

При отклонении частоты в другую сторону перекрытие полуволн уменьшается и ток падает. Так происходит частотное детектирование сигнала.

Коэффициент передачи детектора прямо зависит от добротности контура L2С2, она должна быть как можно выше (в пределе, как мы сосчитали, до 700), поэтому-то связь с эмиттерной цепью транзистора выбрана слабой. Конечно, такой простейший детектор не подавляет АМ принимаемого сигнала, более того, его продетектированный ток пропорционален уровню сигнала на входе, что является очевидным недостатком. Оправдание — лишь в исключительной простоте детектора.

Так же, как и предыдущий, приемник собран в небольшом корпусе, из которого кверху выдвигается телескопическая антенна, а снизу расположены гнезда телефонов. На переднюю панель выведены ручки обоих КПЕ. Эти конденсаторы не следует объединять в один блок, поскольку, настраивая их раздельно, удается получить и большую громкость, и лучшее качество приема.

Катушки приемника бескаркасные, они намотаны проводом ПЭЛ 0,7 на оправке диаметром 8 мм. L1 содержит 5 витков, а L2 — 7 витков с отводом от 2-го витка, считая от заземленного вывода. Если есть возможность, катушку L2 желательно намотать посеребренным проводом для повышения ее добротности, диаметр провода при этом некритичен.

Индуктивность катушек подбирается сжиманием и растягиванием витков так, чтобы хорошо слышимые УКВ станции оказались в середине диапазона перестройки соответствующего КПЕ. Расстояние между катушками в пределах 15…20 мм (оси катушек параллельны) подбирают подгибанием их выводов, припаянных к КПЕ.

С описанным приемником можно провести массу занимательных экспериментов, исследуя возможность детекторного приема на УКВ, особенности прохождения волн в условиях городской застройки и т. д. Не исключены и эксперименты по дальнейшему усовершенствованию приемника.

Однако качество звука при приеме на высокоомные головные телефоны с жестяными мембранами оставляет желать лучшего. В связи со сказанным, был разработан более совершенный приемник, обеспечивающий лучшее качество звука и позволяющий использовать различные наружные антенны, соединенные с приемником фидерной линией.

Напряжение

 

Мера силы, с которой носители электрического заряда хотят приблизиться друг к другу. Упрощенно, но отражает суть. Выше значение — больше сила притяжения зарядов. Когда показатель равен нулю — притяжения нет. Величина измеряется между двумя точками (как измеряется высота гор относительно уровня моря). Всегда нужно иметь две точки для сравнения.

Для наглядности часто используют аналогию с более осязаемой проточной водой. Например, водный поток, собранный перед плотиной. Уровень измеряется между двумя условными точками. Больше жидкости  быстрее будет вытекать через шлюз в плотине.

Стоит помнить: величина устойчива и может долго «существовать». Не используемая долгое время батарейка AA будет сохранять заряд в течение нескольких лет, как река перед плотиной при закрытом шлюзе.
 

Сверхрегенеративный радиоприемник на FM диапазон

Сверхрегенеративный радиоприемник обладает высокой чувствительностью (до ед. мкВ) при достаточной простоте. На рис. 4 приведен фрагмент схемы сверхрегенеративного радиоприемника Е. Солодовникова (без УНЧ, который может быть выполнен по одной из приводимых ранее схем — Простейшие усилители низкой частоты на транзисторах) [Рл 3/99-19].

Рис. 4. Схема сверхрегенеративного радиоприемника Е. Солодовникова.

Высокая чувствительность приемника обусловлена наличием глубокой положительной обратной связи, благодаря которой коэффициент усиления каскада после включения радиоприемника довольно быстро возрастает до бесконечности, схема переходит в режим генерации.

Для того чтобы самовозбуждение не происходило, а схема могла работать как высокочувствительный усилитель высокой частоты, используют очень оригинальный прием. Как только коэффициент усиления каскада усиления возрастет выше некоторого заданного уровня, его резко снижают до минимума.

График изменения коэффициента усиления от времени напоминает пилу. Именно по этому закону изменяют коэффициент усиления усилителя. Усредненный же коэффициент усиления может доходить до миллиона. Управлять коэффициентом усиления можно при помощи специального дополнительного генератора пилообразных импульсов.

На практике поступают проще: в качестве такого генератора используется по двойному назначению сам высокочастотный усилитель. Генерация пилообразных импульсов происходит на неслышимой ухом ультразвуковой частоте, обычно десятки кГц. Для того чтобы ультразвуковые колебания не проникали на вход последующего каскада УНЧ, используют простейшие фильтры, выделяющие сигналы звуковых частот (R6C7, рис. 4).

Сверхрегенеративные приемники обычно используют для приема высокочастотных (свыше 10 МГц) сигналов с амплитудной модуляцией. Прием сигналов с частотной модуляцией возможен за счет преобразования частотной модуляции в амплитудную и последующего детектирования эмиттерным переходом транзистора полученного таким образом амплитудно-модулированного сигнала.

Преобразование частотной модуляции в амплитудную происходит в случае, если приемник, предназначенный для приема амплитудно-модулированных сигналов, настроить неточно на частоту приема частотно-модулированного сигнала.

При такой настройке изменение частоты принимаемого сигнала постоянной амплитуды вызовет изменение амплитуды сигнала, снимаемого с колебательного контура: при приближении частоты принимаемого сигнала к частоте резонанса колебательного контура амплитуда выходного сигнала растет, при удалении от резонансной — снижается.

Наряду с неоспоримыми достоинствами, схема «сверхрегенератора» обладает массой недостатков. Это — невысокая избирательность, повышенный уровень шумов, зависимость порога генерации от частоты приема, от напряжения питания и т.д.

При приеме радиовещательных ЧМ-сигналов в диапазоне FM —  100…108 МГц или сигналов звукового сопровождения телевидения, катушка L1 представляет собой полувиток диаметром 30 мм с линейной частью 20 мм. Диаметр провода — 1 мм. L2 имеет 2…3 витка диаметром 15 мм из провода диаметром 0,7 мм, расположенных внутри полувитка.

Для диапазона 66…74 МГц катушка L1 содержит 5 витков диаметром 5 мм из провода 0,7 мм с шагом 1…2 мм. L2 имеет 2…3 витка такого же провода. Обе катушки не имеют каркасов и расположены параллельно друг другу. Антенна выполнена из отрезка монтажного провода длиной 50… 100 см. Настройку устройства осуществляют потенциометром R2.

Материаловедение полимеров

Как научиться читать электрические схемы

Любая радиоэлектронная аппаратура состоит из отдельных радиодеталей, спаянных (соединенных) между собой определенным образом. Все радиодетали, их соединения и дополнительные обозначения отображаются на специальном чертеже. Такой чертеж называется электрической схемой. Каждая радиодеталь имеет свое обозначение, которое правильно называется условное графическое обозначение, сокращенно – УГО. К УГО мы вернемся дальше в этой статье.

Принципиально можно выделить два этапа совершенствования чтения электрических схем. Первый этап характерен для монтажников радиоэлектронной аппаратуры. Они просто собирают (паяют) устройства не углубляясь в назначение и принцип работы основных его узлов. По сути дела – это скучная работа, хотя, хорошо паять, нужно еще поучиться. Лично мне гораздо интересней паять то, что я полностью понимаю, как оно работает. Появляются множества вариантов для маневров. Понимаешь какой номинал, например резистора или конденсатора критичный в данной случае, а каким можно пренебречь и заменить другим. Какой транзистор можно заменить аналогом, а где следует использовать транзистор только указанной серии. Поэтому лично мне ближе второй этап.

Второй этап присущ разработчикам радиоэлектронной аппаратуры. Такой этап является самый интересный и творческий, поскольку совершенствоваться в разработке электронных схем можно бесконечно.

По этому направлению написаны целые тома книг, наиболее известной из которых является «Искусство схемотехники». Именно к этому этапу мы будем стремиться подойти. Однако здесь уже потребуются и глубокие теоретические знания, но все оно того стоит.

Учиться читать электрические схемы мы будем из самых простых примеров и постепенно продвигаться дальше.

Начало изучения радиотехники начинающими

Перед тем, как изучать радиотехнику или электронику, нужно понять, зачем именно это нужно человеку

Если это увлечение на пару дней или месяцев, то лучше сразу бросить затею, поскольку, если относиться к электронике халатно и не соблюдать меры предосторожности, можно нанести сильный вред своему организму. Если данная сфера увлекала еще с детства, но не было времени начать заниматься, то сейчас самое время начать

Постепенное погружение подразумевает:

  • Получение или закрепление теоретических знаний физики. Для начала достаточно будет школьных знаний по электрофизике, включающих подробное изучение закона Ома – основы всей электрики.
  • Ознакомление с теорией. От более абстрактных вещей физики следует перейти к более осязаемым. Теория подразумевает точное и полное описание всех понятий, деталей, инструментов и приборов, которые будут использоваться на практике. Садиться и начать что-либо паять без теоретических основ не получится.
  • Применение на практике. Логическое завершение теории, позволяющее закрепить весь изученный материал и применить его при создании конкретных схем или приборов.

Закон Ома

Как измерить напряжение

 

Единицей измерения является вольт, который обозначается буквой V. В первых экспериментах лучше работать с безопасным для здоровья диапазоном от 0 до 9 В. Чтобы проверить, действительно ли батарея, входящая в комплект, составляет 9 В, нужно установить ручку измерителя и выбрать диапазон 20 В. Батарея 9 В измеряется в диапазоне 20 В, но источник питания 21 В относится уже к диапазону 200 В.
 

Не забудьте подключить испытательные щупы (цветные кабели с острыми кончиками) в соответствующие гнезда: черный провод к разъему COM, красный провод к розетке. Затем приложите к батарее два тестовых стержня. Красный — к плюсу, черный — к минусу. 
Щупы держат за пластмассовые части корпуса. Касание металлических наконечников может исказить результаты и, в некоторых случаях, к электро-удару. 

Если читаем со счетчика 9,71 В, все хорошо. Существует большая разница между теоретическими и фактическими значениями и результаты могут отличаться. Новый аккумулятор часто будет иметь более 9 В, но со временем показатель будет падать.
 

Полимеры в различных отраслях науки и техники

Радио №1 2021

Примечания

Программы для разводки печатных плат

программы для радиолюбителей

На данный момент существует множество программ и онлайн сервисов для разводки печатных плат. Когда в интернете находишь интересную электронную схему то сразу хочется её собрать своими руками, но не всегда к ней прилагается рисунок печатной платы. Когда-то давно, дорожки рисовали лаком на фольгированном текстолите. Сейчас радиолюбители не рисуют дорожки от руки, а распечатывают с помощью лазерного принтера — эта технология называется ЛУТ. Можно отдать схему специалистам, которые за определённую сумму все сделают, но лучше освоить одну из программ и сделать все своими руками.

Я подобрал несколько программ для разводки (трассировки) печатной платы.

Sprint-Layout

Самая популярная программа среди радиолюбителей, почти все новички начинали именно с неё. Простой и понятный интерфейс, существует русифицированная версия. Спринт лайт имеет большую базу электронных компонентов (макросов), которые можно скачать в интернете. Огромное количество обучающих видеороликов на Ютубе, помогут освоить весь интерфейс и научат рисовать печатные платы. Программа является условно — бесплатной.

easyeda

Китайский онлайн сервис с большими возможностями. В Китае студенты создают проекты с помощью данного сервиса и его преподают в некоторых учебных заведениях. Основное удобство заключается в том что созданные проекты можно редактировать на любом компьютере с доступом в интернет, необходимо только пройти простую регистрацию для создания аккаунта. Easyeda имеет огромную базу электронных компонентов которые постоянно обновляются и добавляются самими пользователями. Данный сервис имеет функцию автоматической трассировки печатной платы и симуляцию электронных схем. Интерфейс интуитивно понятный с поддержкой русского языка. После того как печатная плата разведена на дорожки её можно заказать в этом сервисе, причем промышленного качества, а можно и не заказывать, а распечатать на принтере и сделать самому. Также можно открыть доступ к проекту и делится им с другими пользователями или совместно создавать один проект.

ZenitPCB

Простая и бесплатная программа для рисования принципиальных схем с возможностью трассировки. Минусом является ограничение контактных площадок в 800 штук. База элементов около 1000.

DesignSpark PCB

Мощная программа с возможностью автоматической трассировки печатных плат. Подходит как для новичков так и для профессионалов.
DesignSpark PCB это бесплатная программа со встроенными специализированными калькуляторами для разных расчётов облегчающими подбор компонентов. На официальном сайте можно скачать библиотеку готовых печатных плат. Единственный минус это отсутствие русского языка в интерфейсе.

Я пользуюсь двумя;
Программа Sprint-Layout
Онлайн сервис easyeda.com
Для моей деятельности, на данном этапе моего развития, этого вполне хватает. В освоении перечисленных программ, справится любой начинающий радиолюбитель.

Дальше »

Учимся читать принципиальные электрические схемы

В данном случае нельзя разделить цепи питания либо нужно иначе составлять схему и т. Они разделяются на замыкающие, размыкающие и переключающие, каждому из которых соответствует свой графический рисунок.
Особенно это актуально в приёмопередающей аппаратуре.
Другие электроприборы имеют еще более сложную конструкцию, дополненную различными реле, автоматическими выключателями, электродвигателями, трансформаторами и многими другими деталями. Плавкие предохранители, резисторы, конденсаторы.
Большую помощь при анализе схем оказывают временные диаграммы взаимодействия, отражающие динамику работы схемы, а не только какое-то установившееся ее состояние. Они указывают на соответствующую нумерацию или технические характеристики элементов. Поэтому каждый начинающий электрик должен в первую очередь овладеть способностями чтения разнообразных принципиальных схем. У постоянных резисторов значок может быть с отводами или без отводов.
Видео Каждая электрическая схема состоит из множества элементов, которые, в свою очередь, также включают в свою конструкцию различные детали. К первичным относятся цепи, по которым подаются основные технологические напряжения непосредственно от источников к потребителям или приемникам электроэнергии. Разница в размерах и яркости света. Здесь мы видим, что в схеме присутствуют одинаковые по номиналу и мощности резисторы R8 — R

В случае необходимости допускается изображение контактов в зеркально-перевернутом виде. Выключатели различаются по типу воздействия, они могут быть кнопочными или путевыми, с размыкающими и замыкающими контактами.

В номинальном режиме все элементы работают с тем током, напряжением и мощностью, которые указаны в паспорте устройства. Плавкие предохранители, резисторы, конденсаторы. Во всех схемах использована простейшая элементная база, не требуется сложная наладка и допускается замена элементов на аналогичные в широких пределах. Это резистор с мощностью рассеивания 0,25Вт и номиналом 10кОм на схеме 10К.

Для других видов полупроводников существуют собственные обозначения, определяемые стандартом. В связи с этим очень часто возникает вопрос, как научится читат ь электрические схемы, где все составляющие отображаются в виде условных графических обозначений.
ТОП 10 СХЕМ ДЛЯ НАЧИНАЮЩИХ РАДИОЛЮБИТЕЛЕЙ

Make. Lego and Arduino Projects

См. также

Ботаническое описание

Практическая энциклопедия юного радиолюбителя

Электроника шаг за шагом. Практическая энциклопедия юного радиолюбителя. В практическую энциклопедию радиолюбителя входят популярные рассказы об основах электротехники, электроники и радиотехники, о звукозаписи, телевидении, радиоприеме, электронной музыке, об автоматике и вычислительной технике. В книге много практических схем и описаний конструкций для самостоятельного изготовления. Большую помощь радиолюбителю в его практической работе окажет имеющийся в книге справочный материал. Оставив почти без изменений основную (учебную) часть книги, автор добавил к ней 128 коротких рассказов о современных приборах, методах и применениях электроники, а также разработал для книги 200 новых иллюстраций, объединив их в “Веселый конспект”.

Важный параметр

Электронные самоделки для радиолюбителей и начинающих электриков

Раз уж Вы решили стать электриком-самоучкой, то наверняка через небольшой промежуток времени Вам захочется сделать какой-нибудь полезный электроприбор для дома, автомобиля либо дачи своими руками. Одновременно с этим самоделки могут пригодиться не только в быту, но и изготовлены на продажу, к примеру, самодельное зарядное устройство для аккумулятора. На самом деле процесс сборки простых устройств в домашних условиях не представляет ничего сложного. Нужно всего лишь уметь читать схемы и пользоваться инструментом для радиолюбителей.

Что касается первого момента, то перед тем, как приступать к изготовлению электронных самоделок своими руками, Вам нужно научиться читать электросхемы. В этом случае хорошим помощником будет наш краткий обзор всех условных обозначений на электрических схемах.

Из инструментов для начинающих электриков Вам пригодится паяльник, набор отверток, плоскогубцы и мультиметр. Для сборки некоторых популярных электроприборов может понадобиться даже сварочный аппарат, но это редкий случай. Кстати, в этом разделе сайта мы рассказали даже, как сделать простой паяльник своими руками и тот же сварочный аппарат.

Отдельное внимание нужно уделить подручных материалам, из которых каждый электрик новичок сможет сделать элементарные электронные самоделки своими руками. Чаще всего в изготовлении простых и полезных электроприборов используются старые отечественные детали: трансформаторы, усилители, провода и т.д. В большинстве случаев начинающим радиолюбителям и электрикам достаточно поискать все нужные средства в гараже либо сарае на даче

В большинстве случаев начинающим радиолюбителям и электрикам достаточно поискать все нужные средства в гараже либо сарае на даче.

Напоследок хотелось бы отметить – если Вы знаете, как создать какой-нибудь интересный электроприбор своими руками, и желаете поделиться опытом, можете отправить собственную инструкцию нам на почту через форму Обратной связи. В свою очередь, мы обещаем сохранить авторство за Вами, чтобы остальные посетители знали, чья это электронная самоделка!

Транзистор — это просто!

02.01.2020 20:38 |

Виды транзисторов

Транзистор – это полупроводниковый активный радиоэлемент, который необходим для генерирования, преобразования и усиления электрического сигнала (его частоты и силы). Его еще называют полупроводниковым триодом. Этот элемент схемы необходим для работы практически всех известных электрических устройств (коммутатор зажигания, диодный мост, блок питания, переключатель нагрузки, датчик и т. д.). Он был запатентован в начале 20-го века при участии известного ученого-физика Юлия Эдгара Лилиенфельда, но его совершенствование произошло только на базе уже существующего биполярного в 60-х. Только спустя 20 лет Шокли, Бардином и Браттейном были созданы первые биполярные триоды.

Фото — конструкция

Оцените статью
Рейтинг автора
5
Материал подготовил
Андрей Измаилов
Наш эксперт
Написано статей
116
Добавить комментарий