Содержание
- 1 3 ошибки и как их избежать.
- 2 Простой ШИМ-регулятор мощности своими руками
- 3 Устройство системы
- 4 Регулятор для печки автомобиля
- 5 Простой регулятор скорости для коллекторного двигателя.
- 6 Преобразователи на электронных ключах
- 7 Простейший регулятор оборотов электродвигателя своими руками
- 8 Одноканальный регулятор для мотора
- 9 Как выбрать регулятор
- 10 Китайский регулятор мощности на симисторе
- 11 Регуляторы оборотов
3 ошибки и как их избежать.
- Ножки транзистора и резистора спаяны друг с другом полностью. Чтобы этого избежать, нужно внимательно читать инструкцию.
- Хоть и поставлен радиатор, перегрелся прибор.Это связано с тем, что во время того, как детали спаиваются, происходит перегрев. Для этого нужно, ножки транзистора держать пинцетом для отвода тепла.
- Реле не стало работать после починки. Выгоняет проволоку после того как отпустил кнопку. Проволока по инерции тянется. Значит, не работает электротормоз. Берем реле с хорошими контактами и подключаем к кнопке. Подключить провода для питания. Когда на реле не подается напряжение, контакты становятся замкнутыми, поэтому обмотка замыкается сама на себя. Когда на реле подается напряжение(плюс), меняются контакты в схеме и напряжение подается на мотор.
Простой ШИМ-регулятор мощности своими руками
Вам понадобится
- — микросхема NE555
- — два резистора по 1 кОм
- — резистор 100 Ом
- — переменный резистор 50 кОм
- — три диода 1N4148
- — конденсатор 2,7 нФ
- — конденсатор 1 нФ
- — транзистор IRFZ44
Инструкция
Первым делом необходимо приготовить все необходимые детали для сборки схемы. Желательно точно придерживаться точных номиналов, но если найти их не удалось — не беда, можно ставить самые ближайшие. Диоды 1N4148 можно заменить на КД522 или 1N4007, транзистор IRFZ44 можно смело поменять на IRF730, IRF630 или другие аналогичные.
Когда все детали собраны, можно приступить к изготовлению печатной платы, на которой будет собрана схема. Изготавливается она методом ЛУТ, т.к. это самый доступный и простой метод изготовления печатных плат в домашних условиях.
Сам рисунок можно нарисовать в компьютерных программах, например, Sprint Layout, либо от руки лаком. Рисунок должен полностью соответствовать схеме, только тогда плата будет работоспособна. Соседние дорожки не должны проходить слишком близко друг к другу, иначе не избежать замыкания.
После нанесения на текстолит защитного слоя дорожек, плату можно вытравливать. Для этого в плоскую пластиковую ёмкость наливаем стакан воды, насыпаем столовую ложку лимонной кислоты и чайную ложку соли. Перемешиваем, кладём плату, примерно через 20-30 минут лишняя медь сойдёт с платы, а раствор станет зеленоватым.
Теперь осталось лишь снять защитный слой растворителем, просверлить отверстия, залудить дорожки, и плата готова.
Когда плата готова, можно запаивать детали. Сначала на плату устанавливаются резисторы, диоды, затем конденсаторы, и уже в последнюю очередь транзистор и микросхема.
Провода для подключения нагрузки и питания удобнее всего вывести через клеммник. После завершения пайки обязательно нужно проверить правильность монтажа, смыть остатки флюса и прозвонить соседние дорожки на замыкание.
ШИМ-регулятор готов, можно подключать его к источнику питания, нагрузке и проверять работу.
Обратите внимание
Полевые транзисторы довольно чувствительны к статике, поэтому во время установки транзистора на плату желательно соединить его выводы полоской из фольги. Тогда они будут замкнуты и не пострадают от статики.
Полезный совет
Перед установкой на плату каждой детали желательно её прозвонить, убедится в исправности. Ни в коем случае нельзя торопиться, ведь даже малейшая ошибка может привести к тому, что регулятор не заработает.
Устройство системы
Коллекторный тип двигателя состоит главным образом из ротора, статора, а также щёток и тахогенератора.
- Ротор — это часть вращения, статор — это внешний по типу магнит.
- Щётки, которые произведены из графита — это главная часть скользящего контакта, через которую на вращающийся якорь и стоит подавать напряжение.
- Тахогенератор —это устройство, которое производит слежку за характеристикой вращения прибора. Если происходит нарушение в размеренности процесса вращения, то он корректирует поступающий в двигатель уровень напряжения, тем самым делая его наиболее плавным и медленным.
- Статор. Такая деталь может включать в себя не один магнит, а, к примеру, две пары полюсов. Вместе с этим на месте статических магнитов здесь будут находиться катушки электромагнитов. Совершать работу такое устройство способно как от постоянного тока, так и от переменного.
Схема регулятора оборотов коллекторного двигателя
В виде регуляторов оборотов электродвигателей 220 В и 380 В применяются особые частотные преобразователи. Такие устройства относят к высокотехнологическим, они и помогают совершить кардинальное преобразование характеристики тока (форму сигнала, а также частоту). В их комплектации имеются мощные полупроводниковые транзисторы, а также широтно-импульсный модулятор. Весь процесс осуществления работы устройства происходит с помощью управления специальным блоком на микроконтроллере. Изменение скорости во вращении ротора двигателей происходит довольно медленно.
Именно по этой причине частотные преобразователи применяются в нагруженных устройствах. Чем медленнее будет происходить процесс разгона, тем меньшая нагрузка будет совершена на редуктор, а также конвейер. Во всех частотниках можно найти несколько степеней защиты: по нагрузке, току, напряжению и другим показателям.
Некоторые модели частотных преобразователей совершают питание от однофазового напряжения (оно будет доходить до 220 Вольт), создают из него трехфазовое. Это помогает совершить подключение асинхронного мотора в домашних условиях без применения особо сложных схем и конструкций. При этом потребитель сможет не потерять мощность во время работы с таким прибором.
Зачем используют такой прибор-регулятор
Если говорить про двигатели регуляторов, то обороты нужны:
- Для существенной экономии электроэнергии. Так, не любому механизму нужно много энергии для выполнения работы вращения мотора, в некоторых случаях можно уменьшить вращение на 20−30 процентов, что поможет значительно сократить расходы на электроэнергию сразу в несколько раз.
- Для защиты всех механизмов, а также электронных типов цепей. При помощи преобразовательной частоты можно осуществлять определённый контроль за общей температурой, давлением, а также другими показателями прибора. В случае когда двигатель работает в виде определённого насоса, то в ёмкости, в которую совершается накачка воздуха либо жидкости, стоит вводить определённый датчик давления. Во время достижения максимальной отметки мотор попросту автоматически закончит свою работу.
- Для процесса плавного запуска. Нет особой необходимости применять дополнительные электронные виды оборудования — все можно осуществить при помощи изменения в настройках частотного преобразователя.
- Для снижения уровня расходов на обслуживание устройств. С помощью таких регуляторов оборотов в двигателях 220 В можно значительно уменьшить возможность выхода из строя приборов, а также отдельных типов механизмов.
Схемы, по которым происходит создание частотных преобразователей в электродвигателе, широко используются в большинстве бытовых устройств. Такую систему можно найти в источниках беспроводного питания, сварочных аппаратах, зарядках телефона, блоках питания персонального компьютера и ноутбука, стабилизаторах напряжения, блоках розжига ламп для подсветки современных мониторов, а также ЖК-телевизоров.
Регулятор для печки автомобиля
Отопительная система автомобиля состоит из радиатора, через который течет горячая охлаждающая жидкость и вентилятора, благодаря которому воздух поступает с улицы в салон. Регулировка печки осуществляется двумя органами: — краном, благодаря которому изменяется напор жидкости протекающей через радиатор печки; — переключателем, который регулирует скорость вращения вентилятора.
В подавляющим большинстве отечественных автомобилей, регулировка переключателем очень примитивна. При этом вентилятор работает создавая много шума, а уменьшить частоту вращения не представляется возможным. В автоматическом же режиме, частота вращения вентилятора так же не снижается, он просто периодически включается и выключается. И все же, данный вентилятор — это обычный двигатель постоянного тока, поэтому организовать плавную регулировку частоты вращения не так уж и сложно, для этого можно применить широтно-импульсный модулятор тока, протекающего через него.
Смысл в том, чтобы управление вентилятором осуществлять не при помощи переключателя, а при помощи переменного резистора. Регулировка будет плавной, от максимальной до некоторой минимальной, а в конце, при повороте ручки переменного резистора в сторону уменьшения питание мотора и вовсе будет полностью отключаться.
Принципиальная схема расположена на рисунке выше, рассмотрим ее. Импульсы, широту которых можно регулировать переменным резистором, генерирует мультивибратор на элементах DD1.1 и DD1.2 микросхемы К561ЛН2. Очень желательно взять именно микросхему К561ЛН2, а не инверторы, такие как К561ЛА7, К561ЛЕ5. Дело в том, что выходы у инверторов К561ЛН2 наиболее мощные, плюс их не четыре, а шесть. Благодаря этому, есть возможность изготовить мультивибратор на двух элементах, а оставшиеся четыре объединить в мощный буфер, который будет драйвером для полевого транзистора VT1. Как многим известно, одной из проблем мощных полевых транзисторов является большая емкость затвора. Статически, сопротивление их затвора весьма высоко ( т.е. стремится к бесконечности), но в реальности, имеется очень существенная емкость затвор-исток, которая создает значительный бросок тока в тот момент, когда на затвор поступает высокий логический уровень. Поэтому здесь и необходим усиленный буферный каскад, который способен поглотить этот бросок тока.
Частота импульсов составляет порядка 15 кГц и зависит от емкости конденсатора C1 и половины сопротивления резистора R1
При регулировке резистора R1, частота практически не изменяется, однако изменяется скважность импульсов, так как изменяется сопротивление заряда-разряда конденсатора C1. Диоды VD1 и VD2 коммутируют части сопротивления для разных полуволн
Максимальная частота вращения вентилятора будет в нижнем (по схеме) положении резистора R1. При этом, длительность нулевого перепада на затворе VT1 будет минимальная, а длительность единичного перепада — максимальная. Резистор R3 используется для того, чтобы не нарушать режим работы элемента DD1.1, не допуская опасного для него состояния. Минимальная частота вращения вентилятора, в верхнем (по схеме) положении резистора R1. В этом случае подбором резистора R2 необходимо выбрать минимальную скорость вращения вентилятора, при которой он еще работает без перебоев и остановок. Подбирать резистор необходимо под каждый электродвигатель индивидуально. Как следствие сопротивление резистора R2 может получится совершенно иным, нежели указанном на схеме.
В данном схеме, используется резистор R1 с выключателем на одном валу. Его необходимо подключить так, чтобы выключатель SB1 выключался при повороте в крайнее верхнее (по схеме) положение резистора R1, то есть — меньше минимума. При вращении резистора R1 в выключенное состояние, контакты выключателя SB1 размыкаются и на объединенные входы элементов DD1.3-DD1.6 поступает напряжение логической единицы через резистор R4. В то время же время, на выходах DD1.3-DD1.6 будет логический ноль. Как следствие, транзистор VT1 будет закрыт и вентилятор M1 работать не будет.
Для включения вентилятора печки, необходимо повернуть резистор R1 из выключенного положения
После чего контакты выключателя SB1 замкнуться и на затвор транзистора VT1 начнут приходить импульсы, скважность которых будет соответствовать минимальной частоте вращения вентилятора ( которую предварительно необходимо задать подбором резистора R2). Если продолжать поворачивать резистор R1, то скважность импульсов поступающих на затвор транзистора VT1 будет увеличиваться, естественно будет возрастать и частота вращения вентилятора
Источник
Простой регулятор скорости для коллекторного двигателя.
Предлагаю простой самодельный регулятор скорости для коллекторного двигателя, который можно сделать буквально за один вечер. Схема выполнена на широкодоступной элементной базе и легко повторяема. Регулятор многократно был мною изготовлен и использовался детишками в простых моделях автомашин, танков, кораблей. Сразу хочу сказать, что микроконтроллер (а так же прошивки и программатор) в этом регуляторе НЕ используются в целях облегчения повторения конструкции, так как не все моделисты имеют такую возможность, особенно в небольших городах. И вообще, акцент статьисделан на энтузиастов паяльника.
Описание регулятора скорости коллекторного двигателя.
Регулятор скорости коллекторного электродвигателя предназначен для работы с любой аппаратурой пропорционального управления и служит для плавного регулирования оборотов двигателя отминимальных до максимальных. Подключается к приемнику, как обычно, к каналу № 3. С КРЕНки регулятора поступает напряжение + 5….6 Вольт для питания приемника и рулевых машинок.
Принцип работы регулятора следующий. На микросхемы К561ЛА7 собран формирмирователь разностного импульса. На элементах 1 и 2 микросхемы собран ждущий мультивибратор. Он запускается PPM импульсом приходящим с канала 3 приемника. С выхода приемника импульсимеет положительную полярность, а ждущий мультивибратор срабатывает по спадуположительного импульса, поэтому на транзисторе КТ3102 собран инвертер импульса.При появлении на входе схемы РРМ сигнала, синхронно с ним запускается ждущий мультивибратор,который генерирует импульс фиксированной длительности – 1 мс. Его длительность (1 мс) задаетсяподбором резистора *150 Ком. Длительность импульса ждущего мультивибратора всегда постоянна иравна 1 мс. А длительность КИ, поступающего с приемника, изменяется пропорционально положениюручки ГАЗ передатчика. На элементах 3 и 4 МС К561ЛА7 собран формирователь разностного импульса. Этот импульс появляется на выводе 10 МС при превышении входным КИ, длительности импульса, сформированного ждущим мультивибратором. При отклонении ручки ГАЗ от минимального до максимального положения, длительность разностного импульса с выхода 10 МС изменяется от 1 мс до 2 х мс. Это изменение длительности разностного импульса управляет компаратором на МС К157УД2. Принцип его работы следующий — через делитель на резисторах по 100 Ком заряжается конденсатор 0,1 мкф, соединяющий анод диода КД522 с общим проводом, до напряжения порядка 3х Вольт.Это напряжение прикладывается к выводу 5 МС К157УД2. Подстроечным резистором 22 Ком навыводе 6 устанавливается пороговое напряжение срабатывания компаратора. Оно чуть менее 3 хВольт, порядка 2,7 Вольт. Катод диода подключен в к выводу 10. Когда на выводе 10 возникаетразностный импульс отрицательной полярности, конденсатор начинает разряжаться через диод ивнутреннее сопротивление выходного транзистора микросхемы. Таким образом степень разряда конденсатора (величина уменьшения напряжения на нем) зависит от длительности (ширины) разностного импульса, что в конечном счете определяет время нахождения компаратора вовключенном состоянии и ширину импульса на его выходе – вывод 9. Через резистивный делитель10 ком –100 ком выходные импульсы компаратора управляют затвором полевого транзистора.В цепи его стока и + шины питания 12 Вольт включен коллекторный электродвигатель.В результате при переводе ручки ГАЗ передатчика из положения минимум в положение максимум изменяется ширина разностного импульса, степень разряда конденсатора 0,1 мкф, время нахождения компаратора в открытом состоянии и изменяются обороты электродвигателя.На плату подается напряжение 12 Вольт от бортового аккумулятора. КРЕНка стабилизатора 5 вольтовая, но наличие в минусовом выводе резистора, позволяет подобрать на выходе стабилизаторанапряжение в пределах 5…..6 Вольт. Без резистора напряжение равно +5 Вольт. Ток нагрузки 1 Ампер. Этого более чем достаточно для питания приемника и рулевых машинок.Ключевой транзистор – полевой MOSFET.
Принципиальная схема узла выделения командного импульса.
Принципиальная схема регулятора скорости.
Рисунок печатной платы со стороны деталей.
Источник
Преобразователи на электронных ключах
Тиристорные регуляторы мощности являются одними из самых распространенных, обладающие простой схемой работы.
Тиристор, работает в сети переменного тока.
Отдельным видом является стабилизатор напряжения переменного тока. Стабилизатор содержит трансформатор с многочисленными обмотками.
Схема стабилизатора постоянного тока
Зарядное устройство 24 вольт на тиристоре
Принцип действия заключаются в заряде конденсатора и запертом тиристоре, а при достижении конденсатором напряжения, тиристор посылает ток на нагрузку.
Процесс пропорциональных сигналов
Сигналы, поступающие на вход системы, образуют обратную связь. Подробнее рассмотрим с помощью микросхемы.
Микросхема TDA 1085
Микросхема TDA 1085, изображенная выше, обеспечивает управление электродвигателем 12в, 24в обратной связью без потерь мощности. Обязательным является содержание таходатчика, обеспечивающего обратную связь двигателя с платой регулирования. Сигнал стаходатчика идёт на микросхему, которая передаёт силовым элементам задачу – добавить напряжение на мотор. При нагрузке на вал, плата прибавляет напряжение, а мощность увеличивается. Отпуская вал, напряжение уменьшается. Обороты будут постоянными, а силовой момент не изменится. Частота управляется в большом диапазоне. Такой двигатель 12, 24 вольт устанавливается в стиральные машины.
При сборе регулятора правильно выбирать резистор. Так как при большом резисторе, на старте могут быть рывки, а при маленьком резисторе компенсация будет недостаточной.
Важно! При регулировке контроллера мощности нужно помнить, что все детали устройства подключены к сети переменного тока, поэтому необходимо соблюдать меры безопасности!
Регуляторы оборотов вращения однофазных и трехфазных двигателей 24, 12 вольт представляют собой функциональное и ценное устройство, как в быту, так и в промышленности.
Простейший регулятор оборотов электродвигателя своими руками
Изготавливая различные самоделки, приходится сталкиваться с рядом проблем и поиском их решений. Так и в случае с различными приспособлениями, которые имеют в своей конструкции коллекторный электродвигатель.
Очень часто нужно сделать так, чтобы двигатель имел регулируемые обороты. Для этих целей используется регулятор (контроллер) оборотов двигателя, который можно собрать своими руками.
Представленный ниже регулятор для электродвигателей позволяет не только обеспечить плавный пуск мотора и степень регулировки оборотов, но и защитить двигатель от перегрузок. Работать контроллер может не только от 220 Вольт, но и от пониженного напряжения, вплоть от 110 Вольт.
Одноканальный регулятор для мотора
Устройство управляет одним мотором, питание осуществляется от напряжения в диапазоне от 2 до 12 вольт.
Конструкция устройства
Основные элементы конструкции регулятора представлены на фото. 3. Устройство состоит из пяти компонентов: два резистор переменного сопротивления с сопротивлением 10 кОм (№1) и 1 кОм (№2), транзистор модели КТ815А (№3), пара двухсекционных винтовых клеммника на выход для подключения мотора (№4) и вход для подключения батарейки (№5).
Принцип работы
Порядок работы регулятора мотора описывает электросхема (рис. 1). С учетом полярности на разъем ХТ1 подают постоянное напряжение. Лампочку или мотор подключают к разъему ХТ2. На входе включают переменный резистор R1, вращение его ручки изменяет потенциал на среднем выходе в противовес минусу батарейки. Через токоограничитель R2 произведено подключение среднего выхода к базовому выводу транзистора VT1. При этом транзистор включен по схеме регулярного тока. Положительный потенциал на базовом выходе увеличивается при перемещении вверх среднего вывода от плавного вращения ручки переменного резистора. Происходит увеличение тока, которое обусловлено снижением сопротивления перехода коллектор-эмитттер в транзисторе VT1. Потенциал будет уменьшаться, если ситуация будет обратной.
Материалы и детали
Необходима печатная плата размером 20х30 мм, изготовленная из фольгированного с одной стороны листа стеклотекстолита (допустимая толщина 1-1,5 мм). В таблице 1 приведен список радиокомпонентов.
Процесс сборки
Для дальнейшей работы нужно скачать архивный файл, размещенный в конце статьи, разархивировать его и распечатать. На глянцевой бумаге печатают чертеж регулятора (файл termo1), а монтажный чертеж (файл montag1) – на белом листе офисной (формат А4).
Далее чертеж монтажной платы (№1 на фото. 4) наклеивают к токоведущим дорожкам на противоположной стороне печатной платы (№2 на фото. 4). Необходимо сделать отверстия (№3 на фото. 14) на монтажом чертеже в посадочных местах. Монтажный чертеж крепится к печатной плате сухим клеем, при этом отверстия должны совпадать. На фото.5 показана цоколёвка транзистора КТ815.
Вход и выход клеммников-разъемов маркируют белым цветом . Через клипсу к клеммнику подключается источник напряжения. Полностью собранный одноканальный регулятор отображен на фото. Источник питания (батарея 9 вольт) подключается на финальном этапе сборки. Теперь можно регулировать скорость вращения вала с помощью мотора, для этого нужно плавно вращать ручку регулировки переменного резистора.
Для тестирования устройства необходимо из архива распечатать чертеж диска. Далее нужно наклеить этот чертеж (№1) на плотную и тонкую картонную бумагу (№2 ). Затем с помощью ножниц вырезается диск (№3).
Полученную заготовку переворачивают (№1 ) и к центру крепят квадрат черной изоленты (№2) для лучшего сцепления поверхности вала мотора с диском. Нужно сделать отверстие (№3) как указано на изображении. Затем диск устанавливают на вал мотора и можно приступать к испытаниям. Одноканальный регулятор мотора готов!
Как выбрать регулятор
Существует несколько характеристик, по которым нужно выбирать регулятор оборотов для автомобиля, станочного электродвигателя, бытовых нужд:
- Тип управления. Для коллекторного электродвигателя бывают регуляторы с векторной или скалярной системой управления. Первые чаще применяются, но вторые считаются более надежными;
- Мощность. Это один из самых важных факторов для выбора электрического преобразователя частот. Нужно подбирать частотник с мощностью, которая соответствует максимально допустимой на предохраняемом приборе. Но для низковольтного двигатель лучше подобрать регулятор мощнее, чем допустимая величина Ватт;
- Напряжение. Естественно, здесь все индивидуально, но по возможности нужно купить регулятор оборотов для электродвигателя, у которого принципиальная схема имеет широкий диапазон допустимых напряжений;
- Диапазон частот. Преобразование частоты – это основная задача данного прибора, поэтому старайтесь выбрать модель, которая будет максимально соответствовать Вашим потребностям. Скажем, для ручного фрезера будет достаточно 1000 Герц;
- По прочим характеристикам. Это срок гарантии, количество входов, размер (для настольных станков и ручных инструментов есть специальная приставка).
Хорошо себя зарекомендовали приборы марки Sinus, E-Sky и Pic.
При этом также нужно понимать, что есть так называемый универсальный регулятор вращения. Это частотный преобразователь для бесколлекторных двигателей.
Фото — схема регулятора для бесколлекторных двигателей
В данной схеме есть две части – одна логическая, где на микросхеме расположен микроконтроллер, а вторая – силовая. В основном такая электрическая схема используется для мощного электрического двигателя.
Видео: регулятор оборотов электродвигателя с ШИро V2
Китайский регулятор мощности на симисторе
Основные характеристики от производителя
Особенности: 1. Специальный дизайн с 1,6 мм, FR-4 высокой термостойкостью печатной платы. 2. Безопасная и надежная работа с большим током. 3. Конструкция двойной емкости: безопасный конденсатор и металлический пленочный конденсатор для более эффективной защиты.4. Применяются материалы из алюминия и нержавеющей стали, более подходят для контроля температуры или контроля скорости и для использования в промышленности.5. Красивая и легкая, безопасная, удобная, Высококачественная продукция. Не ржавеет после длительного использования. 6. В основном подходит для резистивных нагрузок, например, фонари.
Технические характеристики: Диапазон напряжения: 10-220 В Максимальная мощность: 2000 Вт Вес нетто: 41,8 г Рабочее напряжение: AC 220 V Пластина радиатора размер: 48x35x30 мм
Описание работы схемы
В основе схемы лежит фазоимпульсное управление мощностью. При подаче на схему питания через двухзвенный RC-фильтр в начале полупериода сетевого напряжения конденсатор С1 заряжается через резистор R2, и потенциометры R3, R4. С помощью переменных резисторов мы, по сути, меняем время заряда конденсатора С1. Чем больше сопротивление резисторов, тем дольше заряжается конденсатор. Следовательно, динистор будет срабатывать реже и наоборот, т.е. меняется рабочая частота генератора. Этот резистор с конденсатором образуют времязадающую или частотозадающую цепочку.
Когда на выводах конденсатора С1 напряжение достигнет значения примерно 32 вольта (напряжение переключения симметричного динистора DB3), динистор отпирается и конденсатор разряжается по цепи управляющего электрода симистора VS1. Разряд конденсатора происходит мгновенно, вызывая быстрое запирание симметричного динистора. Напряжение на выводах конденсатора С1 скоро вновь становится достаточным для возврата динистора в проводящее состояние и для того, чтобы вызвать появление нового импульса, отпирающего симистор.
При малом сопротивлении цепи R2-R3-R4 порог в 32 вольта достигается быстрее и симистор отпирается раньше, а более высокое сопротивление вызывает большую задержку момента отпирания симистора и, следовательно, уменьшение мощности в нагрузке. Подстроечный резистор R3 позволяет установить границы регулировки мощности.
Для защиты симистора необходима цепочка R1-C2. Она необходима для защиты от внешних перенапряжений, ограничения влияния dV/dt и тока перегрузки. Кроме того, разряд конденсатора С2 через симистор способствует его отпиранию, которое могло бы быть нарушено запаздыванием тока в индуктивной нагрузке.
Источник
Регуляторы оборотов
Теперь возвращаемся к теме регулятора оборотов. Все доступные сегодня схемы можно разделить на две большие категории:
- Стандартная схема регулятора оборотов,
- Модифицированные устройства контроля оборотов.
Разберемся в особенностях схем подробнее.
Стандартные схемы
Стандартная схема регулятора коллекторного электромотора имеет несколько особенностей:
Изготовить динистор не составит труда
Это важное преимущество устройства, Регулятор отличается высокой степенью надежности, что положительно сказывается в течение его периода эксплуатации, Позволяет комфортно для пользователя менять обороты двигателя, Большинство моделей основаны на тиристорном регуляторе
Если вас интересует принцип работы, то такая схема выглядит довольно просто.
Заряд тока от источника 220 Вольт идет к конденсатору. Далее идет напряжение пробоя динистора через переменный резистор. После этого происходит непосредственно сам пробой. Симистор открывается. Этот элемент несет ответственность за нагрузку. Чем выше окажется напряжение, чем чаще будет происходить открытие симистора. За счет подобного принципа работы происходит регулировка оборотов электродвигателя. Наибольшая доля подобных схем регулировки электродвигателя приходится на импортные бытовые пылесосы
Но при использовании стандартной схемы регулятора оборотов важно понимать, что он обратной связью не обладает. И если с нагрузкой произойдут изменения, обороты электродвигателя придется настраивать
Модифицированная схема
Прогресс не стоит на месте. Несмотря на удовлетворительные характеристики стандартной схемы регулятора оборотов двигателя, усовершенствования никому еще не навредили.
Наиболее часто применяемыми схемами являются две:
- Реостатная. Из названия становится очевидно, что здесь основой выступает реостатная схема. Такие регуляторы высокоэффективные при смене количества оборотов электродвигателя. Высокие показатели эффективности объясняются использованием силовых транзисторов, отбирающих часть напряжения. Так меньшее количество тока из источника 220 Вольт поступает на двигатель, ему не приходится работать с большой нагрузкой. При этом схема имеет определенный недостаток большое количество выделяемого тепла. Чтобы регулятор работал длительное время, для электроинструмента потребуется активное постоянное охлаждение,
- Интегральная. Для работы интегрального устройства регулирования используется интегральный таймер, который отвечает за нагрузку на электродвигатель. Здесь могут быть задействованы всевозможные транзисторы. Это обусловлено наличием микросхемы в конструкции с большими параметрами выходного тока. При нагрузке менее 0,1 Ампер, все напряжение идет непосредственно на микросхему, обходя транзисторы. Чтобы регулятор работал эффективно, на затворе требуется наличие напряжения в 12 Вольт. Из этого вытекает, что электрическая цепь и напряжение питания обязаны отвечать данному диапазону.