Содержание
- 1 Программирование
- 2 Прошивка AVRISP MKII в Arduino ATmega16U2
- 3 Описание платы
- 4 Схема и распиновка Pro Mini
- 5 Прошивка arduino pro mini
- 6 Важные страницы
- 7 Изготовление теплоаккумулятора
- 8 Модели Ардуино
- 9 Перепрошиваем Arduino ATMEGA16U2 в оригинальное ПО
- 10 Распиновка
- 11 Arduino Web Editor и Платформа Создателей
- 12 Работа в Arduino IDE
- 13 Перепрограммируемый загрузчик ATtiny85 с использованием платы Arduino Uno
- 14 Заключение
Программирование
Код. Ничего лишнего
Ардуино программируется на языке программирования C/C++ с соответствующим ему синтаксисом. Встроенный сборщик, препроцессор и компилятор (avr-gcc или Win-AVR) прощают большое количество ошибок и делает многое за пользователя автоматически, мы даже об этом не знаем и не задумываемся. Базовые функции для управления выводами и интерфейсами микроконтроллера, математика и некоторые другие функции/макросы взяты из открытого фреймворка для работы с микроконтроллерами под названием Wiring. Именно из него состоит базовый набор инструментов Ардуино. В связи с этим сами разработчики Ардуино называют язык “упрощённым c++”, и даже дали ему отдельное название – Arduino Wiring.
Тут следует отделить мух от котлет: “из коробки” в Arduino IDE нам доступна огромная куча различных функций и инструментов:
- Все возможности языка C++, которые предоставляет компилятор: типы данных, операторы и вообще весь необъятный синтаксис. Мы программируем на том же C++, на котором можно программировать в любом другом месте.
- “Ядро” Ардуино – библиотека Arduino.h, которая автоматически подключается в код. В ней содержатся функции для управления пинами, интерфейсами, а также имеется набор всяких полезных функций и инструментов. А ещё оно отвечает за инициализацию и настройку периферии микроконтроллера при запуске. В ядре кстати лежат стандартные библиотеки для Serial, Wire, SPI и EEPROM.
- В папке с программой лежит набор стандартных библиотек: для LCD дисплея, шаговика, сервопривода и некоторых других железок.
- С компилятором идёт набор низкоуровневых библиотек для AVR (сон, progmem, watchdog и многие другие).
- Компилятор позволяет работать с микроконтроллером “напрямую” при помощи регистров и чтения даташита до утра.
- Также мы можем писать на ассемблере, взяв под контроль каждый такт работы МК.
Если вы научитесь свободно прогать на Ардуино и вдруг перейдете к разработке программ на том же C++ в более взрослых средах разработки, вы будете неприятно удивлены большим количеством дополнительного кода, который придется писать руками. И наоборот, если умеющий в плюсы (си-плюс-плюсы) человек посмотрит на типичный ардуино-код, он скажет “да как это вообще работает то?”. Компилятор в Arduino IDE настроен на максимальную всеядность и прощение ошибок, потому что это обучающая платформа.
Сейчас вернёмся к такому понятию, как библиотека. Жизнь рядового ардуинщика неразрывно связана с библиотеками, потому что огромное комьюнити за годы своего существования сделало огромное количество этих самых библиотек на все случаи жизни и для всех продающихся датчиков и модулей. Библиотека это набор файлов, в которых содержится дополнительный код, которым мы можем пользоваться просто ознакомившись с документацией или посмотрев примеры. Такой подход называется “черным ящиком”, мы можем даже не догадываться, какой ужас и кошмар (в плане сложности кода) содержится в библиотеке, но с лёгкостью пользоваться возможностями, который этот код даёт. Купили модуль – нашли библиотеку – открыли пример – всё, результат достигнут…
Прошивка AVRISP MKII в Arduino ATmega16U2
Мы готовы перепрошить прошивку в 16U2.
Скачайте hex файл AVRISP MKII отсюда. Отключите Arduino от USB-кабеля и питания. Замкните контакты 5-6 ICSP1. Подключите Arduino к USB. Разомкните выводы ICSP1 5-6.
Запустите программное обеспечение FLIP: Пуск -> Все программы -> Flip. Зайдите в: Настройки -> Связь -> USB. Нажмите «Открыть».
Перейдите в: Файл -> Загрузить файл HEX. Далее выберите LUFA-BOTH-AVRISP-MKII.hex и нажмите «Выполнить».
ATMEGA16U2 теперь AVRISP MKII и работает в режиме Atmel Studio. Arduino AVRISP MKII может работать в двух режимах: Atmel Studio или Avrdude. Ниже я буду говорить только о режиме Atmel Studio, так как у меня было много проблем с режимом Avrdude.
Описание платы
Свойства arduino pro mini аналогичны, как и у платы Ардуино Уно и Нано. Их отличие заключается в невозможности прошить Pro Mini по USB-UART. Вместо этого для создания связи с компьютером используется проводник FTDI с преобразователем интерфейса или дополнительная плата Sparkfun. Также есть отличия по скорости, с которой работает чип. У arduino про мини скорость ниже, чем у Ардуино уно, но это практически не сказывается на проектах.
Работать с Ардуино про мини нужно аккуратно. Если пользователь сожжет чип, подав на него чрезмерное напряжение, его будет невозможно вытащить и заменить.
Разъемы не припаяны к платформе. Произвести подключение можно как через разъемы, так и навесным монтажом. Ножки можно припаять.
Существует 2 модели микроконтроллера arduino pro mini – на 3,3 В и 5 В. В первой используется тактовая частота 8 МГц, вторая работает на 16 МГц. Какая именно это модель, должно быть указано на корпусе.
Скетч в микроконтроллер традиционно записывается через среду разработки Arduino IDE. Для загрузки кода потребуются специальные переходники. Изначально продается с уже установленной прошивкой.
Технические характеристики микроконтроллера arduino pro mini:
- Рабочее напряжение 3,3 В и 5 В (в зависимости от модели);
- 14 пинов, 6 из которых используются как выводы ШИМ;
- Постоянный ток для входа и выхода 40 мА;
- Суммарный ток выводов – не более 200 мА;
- 16 Кб флэш памяти, 2 Кб используются для загрузчика;
- 1 Кб оперативной памяти;
- 512 байт eeprom;
- Тактовая частота – 8 МГц или 16 МГц в зависимости от модели;
- I2c интерфейс;
- Размеры платы 18х33 мм.
Питание можно подавать тремя способами:
- Через переходник FTDI;
- При подаче стабилизированного напряжения на контакт Vcc;
- При подаче напряжения на контакт RAW.
Какие проекты можно реализовать на базе Ардуино Про Мини:
Управляемые конструкции для квадрокоптера;
- Таймер;
- Устройство для анализа влажности почвы;
- Автоматический полив растений;
- Устройство для измерения осадков и скорости ветра;
- Автоматизация аквариума.
И многие другие проекты для дома и дачи.
Схема и распиновка Pro Mini
Принципиальная схема платы Ардуино изображена ниже.
Схема и распиновка Pro Mini
Пинов у микроконтроллера 14, каждый из которых может настраиваться как вход или выход. Выводы помечены цифровым номером, аналоговые имеют маркировку А. Рабочее напряжение – 3,3 В или 5 В.
Назначение пинов:
- Последовательная шина – 0 и 1 (RX, TX). Предназначены для приема и передачи данных.
- Внешнее прерывание – 2 и 3. Могут использоваться для вызова прерывания.
- ШИМ выводы – 3, 5, 6, 9, 10, 11.
- SPI – 10 (SS), 11 (MOSI), 12 (MISO), 13 (SCK).
- Светодиодный индикатор – 13.
6 аналоговых контактов имеют разрешение 10 бит. Некоторые выводы имеют дополнительный функционал:
I2C – A4 (SDA), A5 (SCL).
Также плата оснащена дополнительным выводом Reset. При низком уровне перезагружает микроконтроллер.
Прошивка arduino pro mini
Прошивка arduino pro mini
Миниатюрные размеры платы не позволяют прошить ее без внешней помощи. Есть несколько способов заливки скетча в микроконтроллер:
- Через адаптер USB в TTL;
- Через Ардуино Уно;
- Через SPI интерфейс с помощью любой платы ардуино с разъемом для подключения к компьютеру.
Самым простым методом является первый.
Прошивка через адаптер USB в TTL
В продаже можно найти специальный адаптер – UART переходник. Видов таких переходников много, стоимость каждого изделия невысокая. Советуется приобретать переходники с контактами RST или DTR, они упрощают процесс прошивки.
Для прошивки нужно подключить адаптер в Ардуино: нужно соединить земли с одного и другого устройства, Vcc – на +5В или +3,3 В (в зависимости от модели), RX – TX, TX – RX. Затем конструкцию нужно подключить к компьютеру, установить драйвер и начать прошивку. Компьютер определит, к какому порту подключена плата. Драйвер можно скачать с официального сайта. Скачанный архив нужно распаковать и установить.
Затем нужно запустить среду разработки Adruino IDE, выбрать нужную плату и номер порта и загрузить микропрограмму. Это делается следующим образом:
- Нажать «Загрузить»;
- Затем начнется компиляция – появится надпись «Компиляция скетча»;
После появление надписи «Загружаем» нужно нажать на плате кнопку Reset (в переходниках с RST или DTR нажимать кнопку не нужно).
Важно! Нажатие на Reset должно быть кратковременным.
Скетч будет загружен в микроконтроллер. Об успешном окончании процедуры можно понять по мигающему светодиоду.
Прошивка через Ардуино Уно
Для прошивки потребуется классическая плата Ардуино Уно в DIP корпусе. На ней должен быть специальный разъем, из которого нужно вытащить аккуратно микроконтроллер
Важно делать все действия внимательно, чтобы не погнуть ножки процессора
Проводами нужно подключить arduino pro mini к разъему. Как подключить контакты – RX-RX, TX-TX, GND-GND, 5V-VCC, RST-RST.
После подключения можно начать стандартную загрузку скетча через Arduino IDE.
Прошивка через SPI интерфейс
Этот способ является самым неудобным и трудоемким. Прошивание платы производится в 2 этапа:
Прошивка микроконтроллера Ардуино Уно как ISP программатора;
Настройка среды разработки и загрузка кода в Arduino Pro Mini.
Алгоритм проведения первого этапа:
- Запуск среды разработки Arduino IDE;
- Открытие «Файл» – «Примеры» – «11. ArduinoISP» – «ArduinoISP»;
- Далее «Инструменты» – «Плата» – «Ардуино уно»;
- «Инструменты» – «Порт», и выбирается нужный номер COM порта;
- Далее нужно произвести компиляцию и загрузить код в Ардуино Уно.
Затем обе платы нужно соединить проводниками по приведенной схеме: 5V – VCC, GND – GND, MOSI (11) – MOSI (11), MISO (12) – MISO (12), SCK (13) – SCK (13).
Теперь нужно настроить Arduino IDE для Arduino Pro Mini. Это делается следующим образом:
«Инструменты» – «Плата» – выбор нужной платы Arduino Pro Mini;
- В том же меню выбирается «Процессор» – выбор соответствующего процессора с нужной тактовой частотой;
- Затем нужно установить порт, к которому подключена плата;
- «Инструменты» – «Программатор» – Arduino as ISP;
- Затем нужно загрузить скетч через программатор.
Важно отметить, что загрузка кода должна происходить через специальное меню «загрузить через программатор». Здесь можно запутаться, потому такой способ и неудобен
Загрузка обычным способом приведет тому, что код зальется в Ардуино Уно.
После проведенной загрузки перепрошить микроконтроллер через переходник больше не получится. Придется заливать новый bootloader через «записать загрузчик».
Если при каком-либо виде загрузки прошивки возникают проблемы, нужно проверить подключение платы.
Важные страницы
- Каталог ссылок на дешёвые Ардуины, датчики, модули и прочие железки с AliExpress у проверенных продавцов
- Подборка библиотек для Arduino, самых интересных и полезных, официальных и не очень
- Полная документация по языку Ардуино, все встроенные функции и макро, все доступные типы данных
- Сборник полезных алгоритмов для написания скетчей: структура кода, таймеры, фильтры, парсинг данных
- Видео уроки по программированию Arduino с канала “Заметки Ардуинщика” – одни из самых подробных в рунете
- Поддержать автора за работу над уроками
- Обратная связь – сообщить об ошибке в уроке или предложить дополнение по тексту ([email protected])
Изготовление теплоаккумулятора
Модели Ардуино
Платы Arduino
Вот мы и добрались до самих плат Ардуино, которых на данный момент появилось великое множество благодаря открытости платформы: все схемы и исходные коды находятся в открытом доступе, и вы можете сделать свою версию платы и продавать её, чем активно занимаются китайцы. Единственный пункт: слово Arduino – зарегистрированная торговая марка, и свою плату вам придется назвать как-то по-другому, отсюда и появились всякие Искры, Бузины и прочие так называемые Arduino совместимые платы. Разновидностей плат очень много, но используют они одни и те же модели микроконтроллеров. От модели микроконтроллера зависит объем памяти и количество ног, ну и есть некоторые специальные фишки. На большинстве моделей Arduino стоят 8-битные МК от AVR с кварцевым генератором на 16 МГц (либо ниже), то есть по производительности платы на ATmega не отличаются, отличаются только объемом памяти, количеством ног и интерфейсов/таймеров. Модели Ардуино с МК от производителя ARM, например Arduino DUE, в разы мощнее своих собратьев за счёт 32-битного процессора, но это совсем другая история.
Параметр | ATtiny85 | ATmega328 | ATmega32u4 | ATmega2560 |
Кол-во ног | 8 | 32 | 44 | 100 |
Из них доступны | 5 | 23 | 24 | 86 |
Flash память | 8 Kb | 32 Kb | 32 Kb | 256 Kb |
EEPROM память | 512 bytes | 1 Kb | 1 Kb | 4 Kb |
SRAM память | 512 bytes | 2 Kb | 2.5 kB | 8 Kb |
Каналов АЦП | 3 (4 с rst) | 6 (8 в SMD корпусе) | 12 | 16 |
Каналов PWM | 3 | 6 | 7 | 15 |
Таймеры | 2х 8bit | 2х 8bit | 2х 8bit | 2х 8bit |
1х 16bit | 2х 16bit | 4х 16bit | ||
Serial интерфейс | Нет | х1 | х1 | х4 |
I2C интерфейс | Нет | Да | Да | Да |
Прерывания | 1 (6 PCINT) | 2 (23 PCINT) | 5 (44 PCINT) | 8 (32 PCINT) |
Платы на его основе | Digispark, LilyTiny | Uno, Nano, Pro Mini, Lilypad, Strong | Leonardo, Micro, Pro Micro, BS Micro | Mega, Mega Pro |
Таким образом вы должны сразу понять, что, например, Ардуино Уно=Нано=Про Мини=Лилипад по своим возможностям и взаимозаменяемости. Или Леонардо=Про Микро. Ссылки на недорогие китайские Ардуины вы можете найти у меня на сайте. Точно там же вы найдёте ссылки на кучу датчиков, модулей и другого железа, которое можно подключить к Arduino. О возможностях ардуино по работе с другими железками поговорим в одном из следующих уроках.
Перепрошиваем Arduino ATMEGA16U2 в оригинальное ПО
Почти сделано. Нам нужно вернуть оригинальное программное обеспечение в ATMEGA16U2.
Отключите Arduino от питания и USB. Замкните на ICSP1 контакты 5-6. Подключите USB-кабель. Разомкните пины ICSP1 5-6.
Запустите программное обеспечение FLIP. Перейдите в: Пуск -> Все программы -> Flip -> Flip. Далее: Настройки -> Связь -> USB.
Нажмите «Открыть». Перейдите в: Файл -> Загрузить файл HEX.
Выберите файл:
С:\Program Files\Arduino\hardware\arduino\firmwares\atmegaxxu2\arduino-usbserial\Arduino-usbserial-atmega16u2-Uno-Rev3.hex
Нажмите «Выполнить».
Отсоедините USB-кабель и подключите его снова. Новое устройство USB должно быть распознано. Если драйвер не установлен автоматически, вы найдете его в: С:\Program Files\Arduino\drivers.
Перейдите в Диспетчер устройств: Win + Pause -> Оборудование -> Диспетчер устройств. Проверьте, правильно ли загружен драйвер. Вы должны увидеть его в: Ports -> Arduino Uno.
Теперь мы можем проверить любой скетч из примеров, типа Blink. Запустите программное обеспечение Arduino (Пуск -> Arduino).
Нажмите: Open (стрелка вверх) -> -> 01.Basics -> Blink.
Выберите COM-порт а: Инструменты -> Последовательный порт -> COM (выберите порт, на котором была распознана плата).
Нажмите значок «Загрузить» (стрелка вправо). Светодиод должен начать мигать.
Всё готово. Мы узнали как прошить Ардуино и успешно перепрограммировали ATMEGA328P без использования какого-либо внешнего программатора.
Распиновка
Пины питания
- VIN: Входной пин для подключения внешнего источника питания с напряжением в диапазоне от 7 до 12 вольт.
- 5V: Выходной пин от регулятора напряжения на плате с выходом 5 вольт и максимальных током 800 мА. Питать устройство через вывод не рекомендуется — вы рискуете спалить плату.
- 3.3V: Выходной пин от стабилизатора микросхемы FT232R с выходом 3,3 вольта и максимальных током 50 мА. Питать устройство через вывод не рекомендуется — вы рискуете спалить плату.
- GND: Выводы земли.
Порты ввода/вывода
-
Цифровые входы/выходы: пины –
Логический уровень единицы — 5 В, нуля — 0 В. Максимальный ток выхода — 40 мА. К контактам подключены подтягивающие резисторы, которые по умолчанию выключены, но могут быть включены программно. -
ШИМ: пины ,,,, и
Позволяет выводить аналоговые значения в виде ШИМ-сигнала. Разрядность ШИМ не меняется и установлена в 8 бит. -
АЦП: пины –
Позволяет представить аналоговое напряжение в цифровом виде. Разрядность АЦП не меняется и установлена в 10 бит. Диапазон входного напряжения от 0 до 5 В. При подаче большего напряжения — вы убьёте микроконтроллер.
Arduino Web Editor и Платформа Создателей
Веб-редактор Arduino позволяет писать код и загружать эскизы на любую официальную плату Arduino с помощью веб-браузера (Chrome, Firefox, Safari и Edge). Мы рекомендуем вам использовать Google Chrome.
Эта IDE (интегрированная среда разработки) является частью Arduino Create, онлайн-платформы, которая позволяет разработчикам писать код, получать доступ к учебным пособиям, настраивать платы и обмениваться проектами. Официальное видео от создателей линейки этих плат:
Созданный для обеспечения непрерывного рабочего процесса, Arduino Create соединяет все этапы разработки — от вдохновения до внедрения. Это означает, что теперь у вас есть возможность управлять всеми аспектами вашего проекта прямо в одной панели.
Arduino Web Editor размещается в Интернете, поэтому приложение всегда в курсе новейших функций и поддерживает новые платы.
Эта среда разработки позволяет вам писать код и сохранять его в облаке, всегда резервируя его и делая доступным с любого устройства. Она автоматически распознает любую плату Arduino (Genuino), подключенную к вашему ПК, и настраивается соответствующим образом.
Аккаунт Arduino — это все, что вам нужно для начала работы.
Работа в Arduino IDE
Прошивка загрузчика
Из Arduino IDE при помощи ISP программатора мы можем записать другой загрузчик (по факту загрузчик + фьюзы) и загрузить скетч, а также настроить/прошить фьюзы и лок-биты, но не очень удобным способом. Когда мы выбираем плату в Инструменты > Плата и загрузчик в Инструменты > Плата (загрузчик, bootloader), Arduino IDE автоматически делает “активным” нужный загрузчик. Нажимая Инструменты > Записать загрузчик мы прошиваем загрузчик, соответствующий выбранной плате и её настройкам. Также одновременно с загрузчиком прошиваются фьюзы и лок-биты, соответствующие выбранной плате в Arduino IDE. Как и где их поменять, смотрите чуть ниже.
Рассмотрим на примере записи загрузчика для atmega328, стоящей на китайской плате Arduino NANO. На данный момент китайцы прошивают в МК старую версию загрузчика, которая называется old bootloader в меню платы. Оригинальные платы идут с более современным загрузчиком, поэтому при работе с китайскими платами нам приходится выбирать old bootloader для загрузки прошивки через бортовой usb порт. Подключим usbasp по схеме выше, выберем его как программатор в Инструменты > Программатор, выберем плату Arduino NANO, загрузчик для atmega328 (первый в списке). Нажмём записать загрузчик. Всё! Теперь плату можно шить через бортовой usb порт, выбирая первый загрузчик. Он кстати легче, быстрее “прошивает” и сама прошивка быстрее “запускается”.
Как убрать загрузчик?
В стандартном “ядре” Arduino не предусмотрен вариант “без загрузчика”. Для того, чтобы вручную убрать поддержку загрузчика, нужно уметь работать с boards.txt и фьюзами: нужно будет изменить фьюз BOOTRST и подправить максимальный размер скетча. Есть более простой вариант – найти и установить ядро, в котором реализован выбор загрузчика с вариантом “без загрузчика”, например для ATmega328 это miniCore и наше GyverCore. Нужно установить поддержку ядра по рассмотренной ранее инструкции, выбрать плату, указать вариант “без загрузчика” и нажать “Записать загрузчик”. В МК будут прошиты соответствующие фьюзы.
Загрузка скетча
В Arduino IDE можно зашить скетч через программатор, для этого надо нажать Скетч > Загрузить через программатор. Это очень удобно в том случае, когда МК используется без загрузчика, или просто голый МК.
Фьюзы
Конфигуратор платы в Arduino IDE устроен следующим образом: каждой плате в Инструменты > Плата соответствует свой набор настроек, включая фьюзы, которые прошиваются вместе с загрузчиком. Некоторые из них:
- Загрузчик (путь к файлу)
- Скорость загрузки (через загрузчик)
- Объем доступной flash и sram памяти
- Весь набор фьюзов и лок-биты
Файл конфигурации называется boards.txt и найти его можно в папке с ядром Arduino: C:\Program Files (x86)\Arduino\hardware\arduino\avr\boards.txt. Документацию на boards.txt можно почитать здесь. При желании можно вывести нужные фьюзы через калькулятор (читайте выше), изменить их в boards.txt (главное не запутаться, для какой выбранной конфигурации платы делается изменение) и прошить в МК, нажав Инструменты > Записать загрузчик.
- Фьюзы подписаны как low/high/extended fuses, можно вставлять полученное в калькуляторе значение.
- Локбиты работают следующим образом: unlock_bits это локбиты, которые прошьются до записи загрузчика (при нажатии на кнопку Записать загрузчик). А вот после прошивки загрузчика будут автоматически прошиты lock_bits, которые и определят доступ к памяти контроллера во время его работы. Чтобы защитить прошивку от чтения – ставим lock_bits 0x3C.
Такая работа с фьюзами максимально неудобна, но есть и другие варианты:
- Ядро GyverCore для atmega328, в нем мы сделали кучу готовых настроек фьюзов прямо в настройках платы, читайте в уроке про GyverCore. Несколько загрузчиков, включая вариант без загрузчика, выбор источника тактирования и другие настройки в один клик мышкой.
- Программа AVRdudeprog, про нее поговорим ниже
Перепрограммируемый загрузчик ATtiny85 с использованием платы Arduino Uno
Для программирования ATtiny85 без использования платы Arduino мы сначала должны загрузить в него загрузчик используя плату Arduino Uno. Этот процесс выполняется один раз и в дальнейшем у нас не будет необходимости в использовании платы Arduino для программирования микроконтроллера ATtiny85. Загрузчик (bootloader) – это специальная программа, которая выполняется в микроконтроллере, который необходимо запрограммировать. Использование загрузчика – это один из самых удобных способов загрузки программы в микроконтроллер. Загрузчик находится в микроконтроллере и выполняет поступающие команды, а затем записывает новую программу в память микроконтроллера.
Перепрограммируемый загрузчик в микроконтроллере устраняет необходимость в использовании специальных внешних аппаратных средств (плат программирования, программаторов) для программирования микроконтроллера и позволяет загружать программу в микроконтроллер непосредственно с помощью USB соединения. Платы Digispark ATtiny85 (а выбор подобных плат сейчас достаточно большой) работают на загрузчике “micronucleus tiny85”, первоначально написанным Bluebie. Загрузчик – это программный код, который заранее загружен в плату Digispark и позволяет работать ей как USB устройство, которое можно программировать с помощью Arduino IDE. Мы будем использовать аналогичный подход и загружать загрузчик digispark attiny85 в наш микроконтроллер ATtiny85.
Для реализации этой задачи необходимо выполнить следующую последовательность шагов.
Шаг 1. Конфигурирование платы Arduino Uno в качестве ISP программатора.
Поскольку ATtiny85 является всего лишь микроконтроллером, для его программирования требуется ISP (In-System Programming — внутрисистемное программирование). Поэтому для программирования ATtiny85 нам необходимо сначала сконфигурировать плату Arduino Uno в качестве ISP программатора. Для этого подключите плату Arduino Uno к компьютеру и запустите Arduino IDE. После этого откройте пункт меню File > Example > ArduinoISP и загрузите в Arduino ISP код.
Шаг 2. Схема перепрограммируемого загрузчика ATtiny85.
Схема перепрограммируемого загрузчика ATtiny85 представлена на следующем рисунке.
Конденсатор 10 мкФ подключен между контактами Reset и GND платы Arduino. Все соединения схемы представлены в следующей таблице:
ATtiny85 Pin | Arduino Uno Pin |
Vcc | 5V |
GND | GND |
Pin 2 | 13 |
Pin 1 | 12 |
Pin 0 | 11 |
Reset | 10 |
После сборки схемы подключите плату Arduino Uno и запустите Arduino IDE. Определите к какому COM порту подключена плата Arduino Uno (в диспетчере устройств Windows). В нашем случае это COM5.
После этого скопируйте отредактированный файл «Burn_AT85_bootloader.bat» и файл ATtiny85.hex» в корневой каталог Arduino IDE (C:\Program Files (x86)\Arduino).
После этого сделайте клик правой кнопкой мыши на файле «Burn_AT85_bootloader.bat» и выберите «Run as Admin» (запуск от администратора). Необходимо примерно 5-6 секунд чтобы загрузчик загрузился. Если все прошло успешно, то вы должны увидеть сообщение «AVRdude done. Thank you. Press any key to continue…».
После выполнения этой операции загрузчик будет успешно установлен в микроконтроллер ATtiny85. После этого микроконтроллер ATtiny85 можно будет программировать через USB с помощью нашего самодельного программатора, который описан далее в статье.
Заключение
В этой статье мы рассмотрели различные аспекты загрузки скетчей в Arduino Uno и Nano. Прошивка плат на базе микроконтроллеров ATmega328 и ATmega256, как правило, не сложна и может выполняться одним нажатием кнопки в Arduino IDE. За эту простоту мы должны благодарить встроенную программу-загрузчик, выполняющую за нас все основные действия на низком уровне.
Еще одним вариантом перепрошивки контроллера является использование другой платы адуино или специальных программаторов, использующих микросхемы CP2102 CH340, FTDI и другие. Этот метод требует дополнительных усилий и затрат, но позволяет гибко изменять параметры прошивки. Какой из двух вариантов выбрать – решать вам. Для новичков, безусловно, первым шагом станет использование Arduino IDE, благо, ее создатели сделали все, чтобы упростить этот процесс.