Чем отличаются и где используются постоянный и переменный ток

Сварочное оборудование переменного и постоянного тока

Работы по сварке производят с применением следующих аппаратов:

  1. Трансформаторов. Наиболее простые, дешевые и надежные устройства. Дают на выходе переменное напряжение.
  2. Выпрямителей. Отличаются от предыдущих наличием диодного или тиристорного моста, преобразующего переменный электроток в постоянный. По сравнению с предыдущим вариантом имеют большие размеры и вес, сложнее устроены и стоят дороже.
  3. Инверторов. Дают на выходе постоянный электроток. Отличаются компактными размерами.

Инвертор преобразует сетевой ток в следующем порядке:

  1. Выпрямляет.
  2. Превращает в переменный с высокой частотой (60-80 кГц). Эту функцию выполняет специальный электронный узел с быстропереключающимися транзисторами, управляемый микросхемой.
  3. С помощью преобразователя понижает напряжение до рабочей величины.
  4. Опять выпрямляет.

Оснащение инвертора электроникой дает дополнительные преимущества в виде следующих функций:

  1. Горячий старт. Облегчает розжиг дуги путем кратковременного увеличения напряжения.
  2. Антизалипание. Сброс напряжения в ситуациях, когда расходник надолго коснулся заготовки (часто наблюдается при розжиге).
  3. Форсаж дуги. Состоит в кратковременном увеличении силы электротока в случае, когда есть риск затухания дуги. Чаще всего это происходит при замыкании электрода и заготовки каплей расплавленного металла.
  4. Стабилизация. Обеспечивает сохранение параметров режима сварки в условиях колебания напряжения на входе.

Различают аппараты для следующих видов электросварки:

  1. Тугоплавким расходником в среде защитного газа. Используют горелку с вольфрамовым или графитовым электродом и соплом для нагнетания аргона. В зону сварки подают присадочный материал в виде проволоки. Возможна работа устройства без подачи газа. Тогда в качестве присадочного материала используют полую проволоку, заполненную флюсом. Тот при выгорании превращается в газ.
  2. Плавящимся электродом. Такие расходники снабжены собственным флюсом в виде покрытия (обмазки). Помимо защитных компонентов, оно содержит легкоионизируемые, улучшающие горение дуги.

По назначению устройства делятся на виды:

  1. Для ручной сварки — аргонной и плавящимся электродом.
  2. Полуавтоматы. Предназначены для сварки тугоплавким расходником, присадочный материал подается механизированным способом.
  3. Автоматы. Работа ведется без участия человека в соответствии с заданными пользователем настройками. Агрегат оснащается тугоплавким электродом.

Самостоятельное изготовление мощного инвертора 12-220 на 500 Ватт

Когда в автомобиле нужно создать сетевое напряжение, то обычно используют специальные преобразователи 12-220. В продаже есть недорогие штатные инверторы со стоимость около 20-30 долларов. Однако максимальная мощность таких устройства составляет в лучшем случае около 300 Ватт. В некоторых случаях такой мощности бывает недостаточно.

Получить питание для мощного усилителя можно путем небольших преобразований. Достаточно всего лишь заменить вторичную обмотку на стандартном инверторе. После этого можно получить любое значение входного напряжения. К примеру, мощность инвертора в 400 Ватт возрастет до 600 Ватт.

Для повышения мощности в домашних условиях специалисты рекомендую воспользоваться простым способом. Потребуется заменить мощные биполярные ключи на IRF 3205.

Для работы взят инвертор, к которому допустимо подключить 4 пары выходных транзисторов. Поэтому устройство, после проведения необходимых работ, сможет выдать мощность около 1300 Ватт. Если покупать готовый инвертор с такими параметрами, то стоимость его возрастет до 100-130 долларов.

Стоит обратить внимание, что традиционная двухтактная схема устройства не содержит в себе защиту от перегрева, КЗ и перегрузок на выходе. Основу генератора составляет микрочип ТЛ 494, у которого есть дополнительный драйвер

Необходимо провести замену маломощных биполярных транзисторов на отечественные аналоги (КТ 3107)

Основу генератора составляет микрочип ТЛ 494, у которого есть дополнительный драйвер. Необходимо провести замену маломощных биполярных транзисторов на отечественные аналоги (КТ 3107).

Для того чтобы не использовать в работе мощные переключатели для подачи питания, инвертор оснащается схемой ремоут контроля.

В задающей части устройства использованы диоды специальные ШОТТКИ типа 4148 (подойдет и отечественный КД 522). Транзистор в схеме ремоут контроля заменяют на КТ 3102.

После этого можно переходить к самой ответственной части проекта – трансформатору. Этот элемент намотан на пару склеенных колец 3000 НМ. При этом размер каждого из них: 45х28х8. Для более плотной фиксации кольца можно обмотать скотчем.

Затем кольца обматывают сверху стекловолокном (стоимость его в магазине не более 1 доллара). Вполне допустимо заменить этот материала тканевой изолентой.

Стекловолокно нарезают на небольшие полоски шириной около 2 см и длинной не более 50 см. Материал для работы имеет высокую термостойкость, а благодаря тонкому основанию изоляция выглядит аккуратно.

Для первичной обмотки нужно 2х5 витков проволоки, то есть 10 витков с отводом от середины. Работы выполняются проводом диаметром 0,7-0,8 мм, и на каждое плечо уходит 12 жил. Более наглядно процесс представлен на следующих фотографиях.

Жгут растягивают, и на оба плеча равномерно наматывают 5 витков, растягивая их по всему кольцу. Обмотки должны быть одинаковые.

Получившиеся элементы имеют четыре вывода. Начало первой обмотки нужно припаять концу второй. Место припоя будет случить отводом для силового напряжения в 12 В.

На следующем этапе работ кольцо необходимо изолировать с помощью стекловолокна и покрыть вторичной обмоткой.

Вторичная обмотка повышает выходное напряжение

Поэтому при проведении работ нужно быть максимально аккуратным и соблюдать все меры предосторожности. Стоит помнить, что высокое напряжение опасно

Монтаж устройства осуществляется только с отключенным питанием.

Обмотку колец проводят с помощью пары параллельных жил провода 0,7-0,8 мм. Количество витков составляет порядка 80 штук. Провод равномерно распределяют по всему кольцу. На финальном этапе проводят дополнительную изоляцию изделия стекловолокном.

Когда сборка инвертора завершена, то можно приступать к его тестированию. Устройство подключают к аккумулятору, для начала подойдет батарея с напряжением 12 В от бесперебойника. При этом «плюс» питания будет идти на схему через галогенную лампу мощностью 100 Ватт

Стоит обратить внимание, что эта лампа не должна светиться перед проведением работ и во время них

После этого можно переходить к проверке полевых ключей на предмет тепловыделения. При правильно собранной схеме оно должно быть практически нулевым. Если входной нагрузки нет, а транзисторы перегреваются, то нужно искать неработающий компонент в устройстве.

В случае, если тестирование прошло успешно, то можно установить транзисторы на один общий теплоотвод. Для этого используют специальные изоляционные прокладки.

Принципиальная электрическая схема в формате *.lay находится в архивном файле и станет доступна после скачивания:

СКАЧАТЬ АРХИВ

Принципы работы

Принцип работы зависит от типа модификации, а для этого стоит рассмотреть устройство амперметра постоянного тока.


Работа прибора

Основные элементы механической модели:

  • рамка;
  • наконечники;
  • центральная катушка;
  • подключенный сердечник;
  • магнит;
  • пружина.

Если рассматривать магнитоэлектрические модели, они включают следующие элементы:

  • проводник;
  • подпятник;
  • винт;
  • грузики.

Вам это будет интересно Проверка микросхемы на исправность

Принцип работы механических модификаций построен на полярности подключения к цепи. На стрелку оказывается воздействие магнитного поля. Направление грузика зависит от амплитуды импульсов. При возрастании электричества стрелка отклоняется в левую сторону.

Принцип получения переменного тока

Преобразование механической энергии в электрическую происходит за счет электромагнитной индукции. Это явление состоит в следующем: если магнитный поток (МП), пересекающий проводник, изменить, в дальнейшем возникнет электродвижущая сила (ЭДС). Добиться изменения МП можно путем перемещения проводника в магнитном поле.

Электродвижущая сила источника тока

ЭДС при этом равна Е = B * L * V * sin α, где:

  • B — индукция МП, Гн;
  • L — длина проводника, м;
  • V — скорость движения сердечника относительно поля, м/с;
  • α — угол между вектором скорости проводника и силовыми линиями поля.

Направление ЭДС определяют по правилу правой руки: если расположить ее так, чтобы силовые линии поля входили в ладонь, а отогнутый под прямым углом большой палец указывал направление движения проводника, 4 соединенных пальца укажут направление ЭДС.

Преобразователь постоянного напряжения 12В в переменное 220В


Попробую с вами поделиться очередной поделкой. Оригинальностью она как то не блещет, но тем не менее кто то сделает для себя определенные выводы, а кто то укажет мне на мои ошибки. Тема такая, простейший преобразователь постоянного напряжения 12В в переменное 220В, должен зажечь хотя бы светодиодную лампу. В интернете великое множество преобразователей, на любой вкус. Есть и на реле, без транзисторов.


И на транзисторах с трансформатором и дросселем из компьютерного блока питания


И на микросхеме


и. т. д., перечислять думаю не стоит, я пошел своим путем, но по проторенной тропинке. За основу взял симметричный мультивибратор. Мультивибратор является, чуть ли не самым популярным устройством у радиолюбителей, очень простая и полезная штука, которая не требует отладки.


Немного поколдовав с монтажной панелькой я решил раскачивать одно плечо высокой частотой, заменив некоторые детали.


Монтаж делал навесным, деталей мало, тратить время на изготовление платы не стал, (пушистость) монтажа придавил скобами закрепив на панели.


Мосфет прикрутил на толстую металлическую пластину — радиатор.


Импровизированный монтаж решил собрать на скрутки, мало ли что сгорит, легче менять


В итоге получилось то, что вы видите, зачем воткнул вольтметр-амперметр? Наверное был лишний. Достаточно было одного раза посмотреть , сколько он берет ампер. Теперь из песни слов не выкинешь, будет декором-)


Попробовав высокочастотный трансформатор, он меня не впечатлил, заменил его не железный, на вид мощный. Пока нет нагрузки он сильно свистит. Но трудится исправно. Хотел замерить выходное напряжение и был наказан. Высокая частота убила тестер, а при неловком движении возле выхода трансформатора получил не забываемое впечатление высокого напряжения. Нужно всегда быть осторожным.


Задача выполнена, лампа горит как от сети 220В

На этом можно было бы и закончить, но тут вспомнил о критиках.Могут написать: да это только ленивый не делал, да кому это надо, да мощи этого преобразователя хватит осветить только палатку да уличный туалет. Зачем возился и тратил свое, а теперь и наше время. Полностью с вами согласен. Упрощаю ранее поставленную задачу.

У каждого когда нибудь но сгорала светодиодная лампа и практически всегда ее выбрасывали. А ведь можно ей дать второй шанс послужить верой и правдой. Обычно в лампах выгорает электроника, а светодиоды остаются целыми, (конечно и они могут подвести, но и них тоже можно перепаять).

Для этого много не надо: Молоток – это если стеклянная колба не снимается, или предательски треснула. Аккумулятор 12В с ограничительным резистором (желательное напряжение 10 вольт в моем случае), или литий ионный аккумулятор 4.2 вольта с китайским повышающим модулем.


Накинул провода на аккумулятор 12В с ограничительным резистором


И стало светло. Этот вариант подойдет для освещения той самой палатки, о которой писалось выше, сарайчика ну мало ли где не нужна мобильность.


Или облегченный вариант, как бы фонарик с которым свободно можно перемещаться ночью. В лампе находятся очень яркие светодиоды. Опять-таки, емкость ограничивает время.

Способ 1

В Интернете нашел статью о том, как переделать генератор автомобиля на генератор с постоянными магнитами. Можно ли использовать этот принцип и переделать генератор своими руками из асинхронного электродвигателя? Возможно, что будут большие потери энергии, не такое расположение катушек.

Двигатель асинхронного типа у меня на напряжение 110 вольт, обороты – 1450, 2,2 ампера, однофазный. При помощи емкостей я не берусь делать самодельный генератор, так как будут большие потери.

Предлагается пользоваться простыми двигателями по такой схеме.

Если изменять двигатель или генератор с магнитами округлой формы от динамиков, то надо их устанавливать в крабы? Крабы – это две металлические детали, стоят на якоре снаружи катушек возбуждения.

Если магниты надевать на вал, то вал будет шунтировать магнитные силовые линии. Как тогда будет возбуждение? Катушка тоже расположена на валу из металла.

Если поменять подсоединение обмоток и сделать параллельное соединение, разогнать до оборотов выше нормальных значений, то получается 70 вольт. Где взять механизм для таких оборотов? Если перематывать его на уменьшение оборотов и ниже питание, то слишком упадет мощность.

Двигатель асинхронного типа с замкнутым ротором – это железо, которое залито алюминием. Можно взять самодельный генератор от автомобиля, у которого напряжение 14 вольт, сила тока 80 ампер. Это неплохие данные. Двигатель с коллектором на переменный ток от пылесоса или стиральной машины можно применить для генератора. На статор установить подмагничивание, напряжение постоянного тока снимать со щеток. По наибольшему ЭДС поменять угол щеток. Коэффициент полезного действия стремится к нулю. Но, лучше, чем генератор синхронного типа, не изобрели.

Решил испытать самодельный генератор. Однофазный асинхронный мотор от стиралки малютки крутил дрелью. Подключил к нему емкость 4 мкФ, получилось 5 вольт 30 герц и ток 1,5 миллиампера на короткое замыкание.

Не каждый электромотор можно использовать в качестве генератора таким методом. Есть моторы со стальным ротором, имеющие малую степень намагниченности на остатке.

Необходимо знать разницу между преобразованием электрической энергии и генерацией энергии. Преобразовать 1 фазу в 3 можно несколькими способами. Один из них – это механическая энергия. Если электростанцию отсоединить от розетки, то пропадает все преобразование.

Откуда возьмется движение провода с повышением скорости, ясно. Откуда магнитное поле будет для получения ЭДС в проводе – не понятно.

Объяснить это просто. Из-за механизма магнетизма, который остался, образуется ЭДС в якоре. Возникает ток в статорной обмотке, который замкнут на емкости.

Ток возник, значит, дает усиление на электродвижущую силу на катушках роторного вала. Появившийся ток дает усиление электродвижущей силы. Электроток статорный образует электродвижущую силу намного больше. Это идет до установления равновесия статорных магнитных потоков и ротора, а также дополнительные потери.

Размер конденсаторов рассчитывают так, что на выводах напряжение достигает номинального значения. Если оно маленькое, то снижают емкость, то повышают. Были сомнения по поводу старых моторов, которые якобы не возбуждаются. После разгона ротора мотора или генератора надо ткнуть быстро в любую фазу малым количеством вольт. Все придет в нормальное состояние. Зарядить конденсатор до напряжения равному половину емкости. Включение производить выключателем с тремя полюсами. Это относится с 3-фазному мотору. Такая схема используется для генераторов вагонов пассажирского транспорта, так как у них ротор короткозамкнутый.

Сравнение AC и DC

Направление потока электрической энергии определяет постоянный и переменный ток. Разница в том, что в первом случае заряды перемещаются в одном направлении и непрерывно, а во втором — направление потока меняется через равные интервалы. Последнее сопровождается чередованием уровня напряжения и сменой полюсов на источнике с положительного на отрицательный и наоборот, что делает процессы в нагрузках более сложными, чем в случае с постоянным напряжением.

Ключевым преимуществом DC состоят в том, что его можно легко аккумулировать или создавать в портативных химических источниках. Но использование AC позволяет осуществлять передачу электрической энергии на большие расстояния намного экономичнее. Дело в том, что мощность W=I*V, передаваемая от станции, не в полном объёме доставляется до точки назначения. Часть её расходуется на нагрев линий электропередачи в размере W= I2*R.

Очевидный способ сокращения потерь — уменьшение сопротивления за счёт наращивания толщины проводов. Но для его реализации существует экономический предел: толстые проводники стоят дороже. Кроме того, массивные провода требуют дорогих несущих конструкций.

Задача имеет блестящее решение, если изменить напряжение и силу тока при сохранении мощности. Например, при увеличении V в тысячу раз и соответствующем уменьшении I, значение мощности сохраняется прежним, но потери уменьшаются в миллионы раз, поскольку они находятся в квадратичной зависимости от силы тока. Остаётся проблема преобразования напряжения до безопасных значений при распределении его к потребителям.

Это невозможно в случае с DC, но переменный ток позволяет изменять значения I и V при сохранении мощности с помощью трансформаторов. Энергетические компании используют это свойство для транспортировки электричества. Способность к трансформации и определяет главное, практически применимое отличие переменного тока от постоянного.

Происхождение

Разница между AC и DC заключается в их происхождении. Постоянный ток можно получить из гальванических элементов, например, батареек и аккумуляторов.

Также его можно получить с помощью динамомашины – это устаревшее название генератора постоянного тока. Кстати с их помощью генерировалась энергия для первых электросетей. Мы об этом говорили в статье об открытиях Николы Тесла, в заметках о войне идей между Теслой и Эдисоном. Позже так называли небольшие генераторы для питания велосипедных фар.

Переменный ток добывают также с помощью генераторов, в наше время в основном трёхфазных.

Также и то и другое напряжение можно получить с помощью полупроводниковых преобразователей и выпрямителей. Так вы можете выпрямить переменный ток или получить его же, преобразовав постоянный.

Способы получения электричества

Сегодня невозможно представить свою жизнь без электроэнергии. Ежедневно все население нашей планеты использует миллионы ватт электричества для обеспечения нормальной жизнедеятельности. Но очередной раз, включая электрочайник, человек не задумывается о том, какой путь пришлось проделать электричеству, чтобы он смог заварить себе утреннюю чашку ароматного кофе.

Существует несколько способов получения электричества:

  • из тепловой энергии;
  • из энергии воды;
  • из атомной (ядерной) энергии;
  • из ветровой энергии;
  • из солнечной энергии и др.

Для того чтобы понять природу возникновения электрической энергии, рассмотрим несколько примеров.

Генерирование переменного тока[править]

Простейший генератор переменного тока: если вокруг проволочной катушки, намотанной на магнитопровод из трансформаторной стали вращать маховик с установленными в нём несколькими парами постоянных магнитов, то в катушке (условно показан один виток) будет наводиться синусоидальная ЭДС, а при подключении нагрузки в электрической цепи появится переменный ток.Применяется на транспортных средствах (мопеды, лёгкие мотоциклы, снегоходы, гидроциклы, а также на подвесных лодочных моторах), работает совместно с выпрямителем и регулятором напряжения (см. магдино).

Основная статья: Генератор переменного тока

Принцип действия генератора переменного тока основан на законе электромагнитной индукции — индуцировании электродвижущей силы в прямоугольном контуре (проволочной рамке), находящейся в однородном вращающемся магнитном поле.

Электродвижущая сила генератора переменного тока определяется по формуле:

, где

 — количество витков;

 — магнитная индукция магнитного поля в вольт-секундах на квадратный метр (Тл, Тесла);

 — длина каждой из активных сторон контура в метрах;

 — угловая скорость синусоидальной электродвижущей силы, в данном случае равная угловой скорости вращения магнита в контуре;

 — фаза синусоидальной электродвижущей силы.

Частота переменного тока, вырабатываемого генератором, определяется по формуле:

, где

 — частота в герцах;

 — число оборотов ротора в минуту;

 — число пар полюсов.

По количеству фаз генераторы переменного тока бывают:

  • трёхфазные генераторы — основной тип мощных промышленных генераторов;См. также трёхфазная система электроснабжения, трёхфазный двигатель, автомобильный генератор трёхфазного переменного тока.
  • однофазные генераторы, применяются, как правило, на маломощных бензиновых электростанциях, встроены в двигатели внутреннего сгорания мопедов, лёгких мотоциклов, снегоходов, гидроциклов, подвесные лодочные моторы;См. также конденсаторный двигатель, однофазный двигатель.
  • двухфазные генераторы, встречаются значительно реже по сравнению с однофазными и трёхфазными.См. также двухфазная электрическая сеть, двухфазный двигатель.

Модифицированная синусоида, генерируемая инвертором.

Инверторыправить

Постоянный ток может быть преобразован в переменный с помощью инвертора.

Следует отметить, что недорогие модели инверторов имеют на выходе переменный ток несинусоидальной формы, обычно прямоугольные импульсы или модифицированная синусоида. Для получения синусоидального тока инвертор должен иметь задающий генератор (как правило, специализированная микросхема, формирующая электрический сигнал синусоидальной формы, который затем управляет работой тиристорных или транзисторных электронных ключей.

Фазорасщепительправить

Трёхфазный ток может быть получен из однофазного при помощи фазорасщепителя. Эти электрические машины применяются, в частности, на электровозах, таких как ВЛ60, ВЛ80.

Дополнительная защита

Современный инвертор должен обладать защитой от короткого замыкания. В нем устанавливается предохранитель от случайного воздействия на предмет посторонних вмешательств, особенно если это касается детей.

Защита от перегрузки должна срабатывать своевременно, чтобы не произошло перегревания проводки и последующего возгорания. Блок защиты осуществляет предохранение преобразователя от короткого замыкания и большого значения входного напряжения. Для этого существуют индикаторы, которые показывают состояние электрической сети.

Дополнительные датчики и установленные вольтметры помогут выявить соответствующую неисправность. Расположенные на радиаторе охлаждения указатели температуры системы позволят осуществить управление вентилятором, когда показания превысят допустимое значение.

Способ 3

Можно сконструировать самодельный генератор, электростанцию на бензине.

Вместо генератора использовать 3-фазный асинхронный мотор на 1,5 кВт на 900 оборотов. Электродвигатель итальянский, подключаться может треугольником и звездой. Сначала я поставил мотор на основание с мотором постоянного тока, присоединил к муфте. Стал крутить двигатель на 1100 оборотов. Появилось напряжение 250 вольт на фазах. Подключил лампочку на 1000 ватт, напряжение сразу упало до 150 вольт. Наверное, это от фазного перекоса. На каждую фазу надо включать отдельную нагрузку. Три лампочки по 300 ватт не смогут снизить напряжение до 200 вольт, теоретически. Можно конденсатор поставить больше.

Обороты двигателя надо делать больше, при нагрузке не снижать, тогда питание сети будет постоянным.

Необходима значительная мощность, автогенератор такую мощность не даст. Если перемотать большой камазовский, то с него не выйдет 220 В, так как магнитопровод будет перенасыщен. Он был сконструирован на 24 вольта.

Сегодня собирался пробовать подсоединить нагрузку через 3-фазный блок питания (выпрямитель). В гаражах свет отключили, не получилось. В городе энергетиков систематически отключают свет, поэтому надо делать источник постоянного питания электричеством. Для электросварки есть навеска, подцепляется к трактору. Для подключения электрического инструмента нужен постоянный источник напряжения на 220 В. Была мысль сконструировать самодельный генератор своими руками, и инвертор к нему, но, на аккумуляторных батареях не долго можно проработать.

Недавно включили электричество. Подключал двигатель асинхронный из Италии. Поставил его с мотором бензопилы на раму, скрутил вместе валы, поставил муфту резиновую. Катушки соединил по схеме звезды, конденсаторы треугольником, по 15 мкФ. Когда запустил моторы, то на выходе питания не получилось. Присоединял конденсатор, заряженный к фазам, напряжение появилось. Свою мощность в 1,5 кВт двигатель выдал. При этом питающее напряжение снизилось до 240 вольт, на холостых оборотах было 255 вольт. Шлифмашинка от него нормально работала на 950 ватт.

Пробовал повысить обороты двигателя, но не получается возбуждение. После контакта конденсатора с фазой напряжение возникает сразу. Буду пробовать ставить другой двигатель.

Какие конструкции систем за границей производятся для электростанций? На 1-фазных понятно, что ротор владеет обмоткой, перекоса фаз нет, потому что одна фаза. В 3-фазных имеется система, которая дает регулировку мощности при подсоединении к ней моторов с наибольшей нагрузкой. Еще можно подсоединить инвертор для сварки.

В выходные хотел сделать самодельный генератор своими руками с подключением асинхронного двигателя. Удачной попыткой сделать самодельный генератор оказалось подключение старого двигателя с корпусом из чугуна на 1 кВт и на 950 оборотов. Мотор возбуждается нормально, с одной емкостью на 40 мкФ. А я установил три емкости и подключил их звездой. Этого хватило для запуска электродрели, болгарки. Хотел, чтобы получилась выдача напряжения на одной фазе. Для этого подключал три диода, полумост. Сгорели лампы люминесцентные для освещения, и подгорели пакетники в гараже. Буду наматывать трансформатор на три фазы.

Источник

Как из постоянного сделать переменный?

Устройство, преобразующее постоянный ток в переменный, называют инвертором. Существует несколько видов этих аппаратов.

Инвертор с электродвигателем

Вал двигателя постоянного тока подсоединяется к скользящему контактному узлу, состоящему из двух частей:

  • вращающейся: состоит из нескольких кольцевых и сегментных пластин, упакованных в форме цилиндра;
  • неподвижной: графитовые щетки в щеткодержателях.

Одна пара щеток подключена к источнику постоянного тока, другая — к цепи переменного тока. Первая пара контактирует с кольцевыми пластинами, другая — с сегментными.

Часть последних электрически соединена с положительным кольцом, другая — с отрицательным. При вращении двигателя щетки цепи переменного тока по очереди контактируют с сегментными пластинами, в результате чего направление тока постоянно меняется. Более качественный переменный ток дает связка «двигатель постоянного тока – механический генератор», но у этого инвертора ниже КПД.

Релейный инвертор

Тут же пружина отбрасывает сердечник в исходное положение, так что к упомянутому контакту подключается катод. Такие колебания повторяются многократно, пока на катушку соленоида подается постоянный ток.

Электронный инвертор

С появлением и постепенным удешевлением полупроводников электромеханические инверторы перекочевали в разряд устаревших.

В их электронном аналоге ток перенаправляется ключевыми транзисторами, управляемыми микросхемой. Именно такие инверторы применяются в инверторных сварочных аппаратах, импульсных блоках питания, ИБП и др.

При использовании особых быстро переключающихся транзисторов такой инвертор способен создать из постоянного тока переменный с частотой в десятки кГц. Это позволяет уменьшить габариты трансформатора и потери в нем (сварочные аппараты, импульсные блоки питания). Существует несколько видов электронных инверторов. Они описываются в последнем разделе.

Примеры расчетов

Напряжение и ток пассивного двухполюсника равны

U=3-5i 

I=7+3i

Найти мгновенные значения напряжения и тока .

Модули действующих значений Напряжения и тока

Начальные фазы

Мгновенные значения напряжения и тока

Разницу между  фазами тока и напряжения

Активная и реактивная составляющая тока и напряжения

Введем данные и получим

Мгновенное значение напряжения
Действующее значение напряжение

4.12310562561766

Комплексное значение напряжения
Мгновенное значение тока
Действующее значение тока

5.3851648071344975

Комплексное значение тока
Комплексное значение сопротивления
Комплексное значение проводимости
Угол сдвига фаз между напряжением и тока
Активная составляющая напряжения
Реактивная составляющая напряжения
Активная составляющая тока
Реактивная составляющая тока

Вторая задача.

Комплексное  сопротивление двух полюсника равно 1+4i, на вход  подают гармонический ток вида 

Определить параметры напряжения

Вводим следующие данные

Сопротивление как в том виде как и дано 1+4i

а ток вводим как 60 50 (через пробел)

Бот выдаст вот такой ответ

Мгновенное значение напряжения
Действующее значение напряжение

174.92855684535925

Комплексное значение напряжения
Мгновенное значение тока
Действующее значение тока

42.426406871192846

Комплексное значение тока
Комплексное значение сопротивления
Комплексное значение проводимости
Угол сдвига фаз между напряжением и тока
Активная составляющая напряжения
Реактивная составляющая напряжения
Активная составляющая тока
Реактивная составляющая тока

Как видите, по закону Ома, бот рассчитал напряжение двух полюсника и выдал все возможные данные по результирующему сигналу.

Удачных расчетов!

Косинусоидальный импульс при произвольном угле отсечки >>

Итоговый рейтинг лайков

Оцените статью
Рейтинг автора
5
Материал подготовил
Андрей Измаилов
Наш эксперт
Написано статей
116
Добавить комментарий