Содержание
- 1 ПРИМЕНЕНИЕ ИМПУЛЬСНЫХ БЛОКОВ
- 2 КАК РАБОТАЕТ ИМПУЛЬСНЫЙ БЛОК ПИТАНИЯ
- 3 Применение микросхем
- 4 ИБП на микросхеме
- 5 Схема
- 6 Схема линейного блока питания
- 7 Что это такое?
- 8 Как работают импульсные блоки питания
- 9 Сильные и слабые стороны импульсных источников
- 10 Чем отличается от трансформаторного блока питания
- 11 Импульсный трансформатор: принцип действия и функциональные особенности
- 12 Детальнее об импульсных паяльниках
- 13 Как подключить?
- 14 Задать вопрос автору статьи, оставить комментарий
ПРИМЕНЕНИЕ ИМПУЛЬСНЫХ БЛОКОВ
Источники вторичного напряжения инверторного типа используются повсеместно, как в быту, так и в промышленной технике. Перечень устройств и бытовых приборов, в которых реализована схема электропитания, работающая по принципу инверторного преобразователя:
- все виды компьютерной техники;
- телевизионная и звуковоспроизводящая аппаратура;
- пылесосы, стиральные машины, кухонная техника;
- источники бесперебойного электроснабжения различного назначения;
- системы видеонаблюдения, комплексы охранной сигнализации.
Исполнение инверторных источников зависит от условий эксплуатации и назначения. Блоки питания, встроенные в электроприбор, выполняются бескорпусными. Они могут располагаться внутри основного изделия на отдельной плате, или быть интегрированы в общую плату электроприбора.
Существуют источники электропитания для автономного применения, к ним могут подключаться различные потребители. Примером могут служить зарядные устройства, источники электропитания систем видеонаблюдения, охранной и пожарной сигнализации. Такие блоки питания размещаются в отдельном корпусе и комплектуются штекерами и проводами для подключения.
* * *
2014-2021 г.г. Все права защищены.Материалы сайта имеют ознакомительный характер и не могут использоваться в качестве руководящих и нормативных документов.
КАК РАБОТАЕТ ИМПУЛЬСНЫЙ БЛОК ПИТАНИЯ
Принцип работы импульсного блока питания заключается в ряде последовательных преобразований питающего напряжения:
- выпрямление входного напряжения;
- инвертирование, то есть, генерация сигнала с частотой от десятков до сотен килогерц;
- трансформация высокочастотных импульсов до требуемого уровня;
- выпрямление и фильтрация полученного напряжения.
Цепочка преобразований в описании принципа работы импульсного блока питания выглядит достаточно громоздкой и даже лишённой смысла. Однако нужно учесть что в данной схеме преобразуется напряжение, частота которого в отдельных моделях составляет 200 кГц (а не 50 Гц, как в трансформаторных источниках питания).
Трансформаторы, которые работают на высоких частотах, называют импульсными. Обычно они используют магнитопровод тороидальной формы (в виде бублика) небольшого размера. Это позволило уменьшить вес и габариты блока той же мощности более чем на порядок.
Тор обычно изготавливается штамповкой из пермаллоя — сплава, состоящего из железа и никеля, магнитопровод же низкочастотного трансформатора набирается из тонких пластин электротехнической стали.
Принцип инверторного преобразования дает возможность создать сверхминиатюрные аппараты электродуговой сварки, работа которых возможна от обычной бытовой розетки, способные сваривать металл до 10 мм толщиной, легко переносимые в небольшой сумке с плечевым ремнём.
Базовые принципы, на которых основано устройство импульсного блока питания не новы, всё находится в рамках давно устоявшихся представлений об электричестве. Что же мешало создать их раньше? Причина в технологии.
Главными электронными компонентами инверторного преобразователя импульсного блока являются элементы схемы, способные работать с высокими частотой и напряжением и большими токовыми нагрузками.
Раньше, компонентов, отвечающих этим требованиям, просто не существовало. Настоящий прорыв в развитии и распространении инверторных технологий произошёл после того, как мировым производителям электроники удалось наладить массовое производство мощных IGBT – транзисторов, а также полевых транзисторов по технологии MOSFET.
Они отличаются очень малым значением тока управления, что обеспечивает высокий КПД блока.
Кроме мощных транзисторных ключей, инвертор содержит времязадающие цепочки, генерирующие высокочастотные сигналы управления транзисторами.
Применение в этом качестве цифровых микросхем ШИМ – контроллеров позволяет ещё более миниатюризировать электронную часть. Контроллер широтно импульсного модулирования формирует прямоугольные периодические импульсы. В целом схемотехнически импульсные блоки питания относительно просты.
Стабилизация выходного напряжения осуществляется за счёт обратной связи этого параметра с задающими цепями ШИМ – контроллера
Принцип работы обратной связи — при отклонении уровня контролируемого параметра на выходе от номинального значения происходит изменение скважности импульсов, формируемых контроллером.. Скважностью импульсов называется безразмерная величина, равная отношению периода чередования этих импульсов к их длительности
Таким образом, скважность изменяется от 0 до 1.
Скважностью импульсов называется безразмерная величина, равная отношению периода чередования этих импульсов к их длительности. Таким образом, скважность изменяется от 0 до 1.. Увеличение уровня выходного напряжения вызывает снижение скважности и наоборот, то есть, имеет место отрицательная обратная связь
Скважность, задаваемая контроллером, определяет режим работы ключевых транзисторов. Чем выше значение скважности, тем большую часть периода транзистор открыт, и тем больше среднее значение напряжение за период.
Увеличение уровня выходного напряжения вызывает снижение скважности и наоборот, то есть, имеет место отрицательная обратная связь. Скважность, задаваемая контроллером, определяет режим работы ключевых транзисторов
Чем выше значение скважности, тем большую часть периода транзистор открыт, и тем больше среднее значение напряжение за период.
Описанный принцип стабилизации обеспечивает работу блока питания в очень широком диапазоне изменения питающего напряжения. Резюмируя сказанное, преимущества импульсных блоков питания таковы:
- малые габариты и вес по сравнению с трансформаторными источниками питания;
- схемотехническая простота, обусловленная применением интегральных электронных компонентов;
- возможность работы в широком диапазоне изменения значений входного напряжения.
Применение микросхем
Микросхемы в блоках питания применяются самые разнообразные. В данной ситуации многое зависит от количества активных элементов. Если используется более двух диодов, то плата должна быть рассчитана под входные и выходные фильтры. Трансформаторы также производятся разной мощности, да и по габаритам довольно сильно отличаются.
Заниматься пайкой микросхем самостоятельно можно. В этом случае нужно рассчитать предельное сопротивление резисторов с учетом мощности устройства. Для создания регулируемой модели используют специальные блоки. Такого типа системы делаются с двойными дорожками. Пульсации внутри платы будут происходить намного быстрее.
ИБП на микросхеме
Выпускается множество микросхем с функцией ШИМ-контроллера. Далее рассматривается несколько схем с использованием самых популярных из них.
TL494
Поскольку встроенные ключи данной микросхемы не обладают мощностью, достаточной для непосредственного управления силовыми транзисторами инвертора (T3 и T4), вводится промежуточное звено из трансформатора TR1 (управляющего) и транзисторов T1, T2.
Если в наличии есть старый БП от компьютера, управляющий трансформатор можно взять оттуда. Состав обмоток оставляют без изменений. В качестве силовых рекомендуется использовать биполярные транзисторы MJT13009 — схема окажется более надежной. При использовании транзисторов MJE13007, рассчитанных на меньший ток, схема будет рабочей, но слишком чувствительной к перегрузкам.
Дроссели L5, L6 также извлекаются из поломанного компьютерного БП. Первый перематывают, поскольку в оригинальном исполнении он рассчитан на несколько уровней напряжения. На желтый магнитопровод (другие не подойдут) в виде кольца наматывают около 50 витков медного провода диаметром 1,5 мм. Силовые транзисторы T3, T4 и диод D15 в процессе работы сильно греются, потому устанавливаются на радиаторы.
IR2153
Из всех микросхем эта стоит дешевле всего, потому многие предпочитают собирать БП на ней. Здесь драйвер подключен не к шине +310 В, а через резистор к сети. При таком подключении снижена выделяемая на резисторе мощность.
Схема на микросхеме IR2153
В схеме предусмотрены:
- ограничение пускового тока (мягкий старт или софт-старт). Компонент запитан от сети через гасящий конденсатор С2;
- защита от короткого замыкания и перегрузки. Сопротивление R11 используется как датчик тока. Ток срабатывания защиты регулируется подстроечным сопротивлением R10.
О срабатывании защиты сообщает светодиод HL1. Напряжение на выходе — до 70 В, с двоякой полярностью. Число витков на первичной обмотке импульсного трансформатора — 50, на каждой из 4-х вторичных — 23. Выбор сечения проводов в обмотках и типа сердечника зависит от желаемой мощности.
UC3842
Еще одна недорогая микросхема, при этом весьма надежная и потому очень популярная. При включении ток, заряжающий конденсатор С2, ограничивается терморезистором R1.
Схема на микросхеме UC3842
Сопротивление последнего в этот момент составляет 4,7 Ом, затем по мере разогрева оно снижается на порядок, после чего данный элемент из схемы как бы «выключается». Стабилизация выходного напряжения — за счет обратной связи (петля «вторичная обмотка трансформатора Т1 – диод VD6 – конденсатор С8 – резистор R6 – диод VD5»).
Напряжение петли задается резистивным делителем R2 – R3. Цепочка «R4 – C5» — таймер для внутреннего генератора импульсов UC3842. ШИМ-контроллер и прочие микросхемы устанавливаются на пластинчатые радиаторы с площадью не менее 5 кв. см.
Схема
Импульсный БП состоит из следующих функциональных блоков:
- фильтр. Не пропускает помехи из сети и обратно (генерируются самим БП);
- выпрямитель со сглаживающим конденсатором. Обычный диодный мост, дает на выходе почти ровное (с низким коэффициентом пульсаций) постоянное напряжение, равное действующему значению переменного селевого напряжения — 311 В;
- инвертор. Состоит из быстро переключающихся силовых ключевых транзисторов и управляющей ими микросхемы. На выходе дает прямоугольный переменный ток. Процесс преобразования в инверторе называют широтно-импульсной модуляцией (ШИМ), а микросхему — ШИМ-контроллером. В рабочем режиме реализована обратная связь, потому в зависимости от мощности подключенной к БП загрузки, контроллер регулирует продолжительность открытия транзисторов, то есть ширину импульсов. Также благодаря обратной связи, компенсируются скачки напряжения на входе и броски, обусловленные коммутацией мощных потребителей. Это обеспечивает высокое качество выходного напряжения;
- импульсный высокочастотный трансформатор. Понижает напряжение до требуемых 12 или 24 В;
- выпрямитель со сглаживающим конденсатором. Преобразует высокочастотное переменное напряжение в постоянное.
Дроссель переменного тока
Основной элемент сетевого фильтра — дроссель. Его сопротивление (индуктивное) возрастает с увеличением частоты тока, потому высокочастотные помехи нейтрализуются, а ток частотой 50 Гц проходит свободно. Дроссель работает тем эффективнее, чем больше размеры магнитопровода, толщина проволоки и больше витков. Дополнительно установленные конденсаторы улучшают фильтрацию, закорачивая высокочастотные помехи и отводя их на «землю».
Также емкостные сопротивления не позволяют в/ч помехам, генерируемым БП, поступать в сеть. Высокочастотный трансформатор отличается от обычного материалом магнитопровода: используются ферриты или альсифер. Выпрямитель после трансформатора собирается на диодах Шоттки, отличающихся высоким быстродействием.
Существует два способа генерации высокочастотного переменного тока:
- однотактная схема. Применяется в БП небольшой мощности — до 50 Вт (зарядки телефонов, планшетов и т.п.). Конструкция простая, но у нее велика амплитуда напряжения на первичной обмотке трансформатора (защищается резисторами и конденсаторами);
-
двухтактная схема. Сложнее в устройстве, но выигрывает в экономичности (выше КПД). Двухтактная схема делится на три разновидности:
- двухполупериодная. Самый простой вариант;
- двухполярная. Отличается от предыдущей присутствием 2-х дополнительных диодов и сглаживающего конденсатора. Реализован обратноходовый принцип работы. Такие схемы широко применяются в усилителях мощности. Важная особенность: продлевается срок службы конденсаторов за счет того, что через них протекают меньшие токи;
- прямоходовая. Используется в БП большой мощности (В ПК и т.п. устройствах). Выделяется наличием габаритного дросселя, накапливающего энергию импульсов ШИМ (направляются на него через два диода, обеспечивающих одинаковую полярность).
2-тактные БП отличаются схемой силового каскада, есть три модификации:
- полумостовая: чувствительна к перегрузкам, потому требуется сложная защита;
- мостовая: более экономична, но сложна в наладке;
- пушпульная. Наиболее экономична и потому весьма востребована, особенно в мощных БП. Отличается присутствием среднего вывода у первичной и вторичной обмоток трансформатора. В течение периода работает то одна, то другая полуобмотка, подключаемая соответствующим ключевым транзистором.
Стабилизации выходного напряжения добиваются следующими способами:
- применением дополнительной обмотки на трансформаторе. Это самый простой способ, но и наименее действенный. Снимаемое с нее напряжение корректирует сигнал на первичной обмотке;
- применением оптопары. Это более эффективный способ. Основные элементы оптопары — светодиод и фототранзистор. Схема устроена так, что протекающий через светодиод ток пропорционален выходному напряжению. Свечение диода управляет работой фототранзистора, подающего сигналы ШИМ-контроллеру.
Таким образом, в данной методике контролируется непосредственно напряжение на вторичной обмотке, при этом отсутствует гальваническая связь с генератором ключевого каскада.
При подключении последовательно с оптопарой стабилитрона качество стабилизации становится еще выше.
Схема линейного блока питания
Основные задачи любого промышленного БП заключаются в снижении переменного напряжения 220 В (230 В) до требуемой величины, затем его выпрямление, сглаживание и стабилизация.
Поэтому любая схема линейного бока питания обязательно содержат как минимум следующие элементы: трансформатор, выпрямитель, фильтр, узел стабилизации. Назначение каждого элемента было более полно рассказано здесь.
Теперь, глядя на составляющие функциональной схемы линейного БП, давайте рассуждать, какие элементы приводят к росту его массы и веса. В качестве выпрямителя чаще служит диодный мост. Снизить его размеров не даст особого эффекта. Да и реализовать этот будет затруднительно.
Узел стабилизации может быть реализован по-разному. Поэтому на нем мы тоже сэкономить мало что сможем. Остаются только два элемента: фильтр и трансформатор. Фильтр представляет собой электролитический конденсатор большой емкости. Но изменение его параметров, как мы увидим далее, не позволит получить сколь-нибудь ощутимый выигрыш. Остается исследовать возможности способы минимизации трансформатора.
Основная задача его заключается в передаче мощности со стороны источника высокого на сторону низкого напряжения. При этом необходимо обеспечить гальваническую развязку высоковольтных с низковольтными цепями. Гальваническая развязка необходима для преимущественного большинства устройств по условиям безопасности, как персонала, так и низковольтного оборудования. А трансформатор, как никакой другой элемент выполняет эти и другие условия. При этом он имеет максимальный коэффициент полезного действия, достигающий 99 %. По этой причине ему до сих пор не могут найти альтернативу, за что приходится расплачиваться повышенной массой и размерами в целом БП.
Что это такое?
В самом общем смысле блок питания представляет из себя источник электричества, который снабжает телевизор необходимым током. Этот модуль позволяет преобразовывать сетевое напряжение до значений, необходимых для полноценного функционирования техники. Как правило, БП включен в комплектацию антенн с усилителем для того, чтобы улучшать прием сигнала.
Блоки питания – универсальные приборы, они могут устанавливаться в других приспособлениях: для улучшения качества сигнала сотовой, спутниковой связи и даже интернета. БП незаменим в ситуации, когда используется Wi-Fi-адаптер, кстати, он также представляет из себя одну из разновидностей антенн. Проще говоря, везде, где используются радиоволны и имеется принимающая антенна, нужен блок питания.
Но мы рассмотрим только те его разновидности, которые требуются для бесперебойной работы телевизионной техники.
Телевизионный блок питания выполняет три основные функции:
- преобразование энергии подачи тока в аппаратуру;
- защита от помех подпитывающего напряжения;
- поддержание необходимого уровня напряжения внутри самого телевизора.
Наибольшее распространение получили современные системы, работающие от стандартных сетей в 220 Вт. Такие элементы бывают встроенными в единую конструкцию антенны либо располагающимися отдельно, когда подключение осуществляется через порт.
Если речь идет о встроенных моделях, то обычно применяется бестрансформаторная схема. В этом случае преобразование энергии осуществляется за счёт широтно-импульсной модуляции. Такие блоки питания включаются в самую обычную розетку, их рассчитанная мощность составляет 10 Вт. Этого параметра вполне достаточно для того, чтобы обеспечить питание антенны. Подобные элементы довольно компактны и не занимают много места, но в случае неисправности незамедлительно приводят к выводу из строя всей системы приема сигнала.
Поэтому бывает более практичным приобрести внешние устройства. Они ориентированы на то, что в случае выхода из строя БП некоторый сигнал всё же будет сохранён, хотя, безусловно, хорошим он не будет. В любом случае еще одно достоинство наружных блоков питания сводится к тому, что их можно быстро и просто заменить при необходимости.
Схема работы базируется на трансформаторе. При этом выходное напряжение БП стабилизируется параболическим образом, типовыми параметрами для выходного напряжения стали значения 24, а также 18, 12 и 5 Вт. Более точные цифры определяются в зависимости от технико-эксплуатационных параметров антенны.
Как работают импульсные блоки питания
Блоки питания — это электротехнические устройства, которые изменяют характеристики промышленной электроэнергии до уровня параметров, необходимых для работы конечных механизмов.
Они подразделяются на трансформаторные и импульсные изделия.
Сетевой фильтр пропускает через себя промышленную синусоиду. Одновременно он отделяет из нее все посторонние помехи.
Очищенная от помех синусоида поступает на выпрямитель со сглаживающим фильтром. Он превращает полученную гармонику в сигнал напряжения строго постоянной формы действующей величины.
Следующим этапом начинается работа инвертора. Он из постоянного стабилизированного сигнала формирует высокочастотные колебания уже не синусоидальной, а практически строго прямоугольной формы.
Преобразованная в подобный вид электрическая энергия поступает на силовой высокочастотный трансформатор, который, как и обычный аналоговый, видоизменяет ее на пониженное напряжение с увеличенным током.
После силового трансформатора наступает очередь работы выходного выпрямителя.
Заключительным звеном работает сглаживающий выходной фильтр. После него на блок управления бытового прибора поступает стабилизированное напряжение постоянной величины.
Качество работы импульсного блока поддерживается за счет создания в рабочем состоянии обратной связи, реализованной в блоке управления инвертора. Она компенсирует все посадки и броски напряжения, вызываемые колебаниями входной величины или коммутациями нагрузок.
Сетевой выпрямитель имеет в своем составе предохранитель на основе плавкой вставки, диодный мост, электромеханический фильтр, набор дросселей, конденсаторы развязки со статикой.
Накопительная емкость сглаживает пульсации.
Генератор инвертора на основе силового ключевого транзистора в комплекте с импульсным трансформатором выдает напряжение на выходной выпрямитель с диодами, конденсаторами и дросселями.
Оптопара в узле обратной связи обеспечивает оптическую развязку электрических сигналов.
Сильные и слабые стороны импульсных источников
Если сравнивать аналоговые и импульсные устройства одинаковой мощности, то у последних будут следующие преимущества:
- Небольшие размеры и вес, за счет отсутствия низкочастотного понижающего трансформатора и управляющих элементов, требующих отвода тепла при помощи больших радиаторов. Благодаря применению технологии преобразования высокочастотных сигналов можно уменьшить емкость конденсаторов, используемых в фильтрах, что позволяет устанавливать элементы меньших габаритов.
- Более высокий КПД, поскольку основные потери вызывают только переходные процессы, в то время как в аналоговых схемам много энергии постоянно теряется при электромагнитном преобразовании. Результат говорит сам за себя, увеличение КПД до 95-98%.
- Меньшая стоимость за счет применения мене мощных полупроводниковых элементов.
- Более широкий диапазон входного напряжения. Такой тип оборудования не требователен к частоте и амплитуде, следовательно, допускается подключение к различным по стандарту сетям.
- Наличие надежной защиты от КЗ, превышения нагрузки и других нештатных ситуаций.
К недостаткам импульсной технологии следует отнести:
Наличие ВЧ помех, это является следствием работы высокочастотного преобразователя. Такой фактор требует установки фильтра, подавляющего помехи. К сожалению, его работа не всегда эффективна, что накладывает некоторые ограничения на применение устройств данного типа в высокоточной аппаратуре.
Особые требования к нагрузке, она не должна быть пониженной или повышенной. Как только уровень тока превысит верхний или нижний порог, характеристики напряжения на выходе начнут существенно отличаться от штатных. Как правило, производители (в последнее время даже китайские) предусматривают такие ситуации и устанавливают в свои изделия соответствующую защиту.
Чем отличается от трансформаторного блока питания
Блок-схемы трансформаторного и импульсного блоков питания
Как работает трансформаторный блок питания
В линейном блоке питания основное преобразование происходит при помощи трансформатора. Его первичная обмотка рассчитана под сетевое напряжение, вторичная обычно понижающая. В случае классического трансформатора переменного тока, предложенного П. Яблочковым, он преобразует синусоиду входного напряжения в такое же синусоидальное напряжение на выходе вторичной обмотки.
Следующий блок — выпрямитель, на котором синусоида сглаживается, превращается в пульсирующее напряжение. Этот блок выполнен на основе выпрямительных диодов. Диод может стоять один, может быть установлен диодный мост (мостовая схема). Разница между ними — в частоте импульсов, которые получаем на выходе. Дальше стоит стабилизатор и фильтр, придающие выходному напряжению нужный уровень и форму. На выходе имеем постоянное напряжение.
Самый простой линейный блок питания с двухполупериодным выпрямителем без стабилизации
Основной недостаток линейных источников питания — большие габариты. Они зависят от размеров трансформатора — чем выше требуется мощность, тем больше размеры блока питания. Нужен еще стабилизатор, который корректирует выходное напряжение, а это еще увеличивает габариты, снижает КПД. Зато это устройство не грозит помехами работающему рядом оборудованию.
Устройство импульсного блока питания и его принцип работы
В импульсном блоке питания преобразование сложнее. На входе стоит сетевой фильтр, задача которого не допустить в сеть высокочастотные колебания, вырабатываемые этим устройством. Они могут повлиять на работу рядом расположенных приборов. Сетевой фильтр в дешевых моделях стоит не всегда, и в этом зачастую кроется проблема с нестабильной работой каких-то устройств, которые мы часто списываем на «падение напряжения в сети».
Далее стоит сглаживающий фильтр, который выпрямляет синусоиду. Полученное на его выходе пилообразное напряжение подается на инвертор, преобразуется в импульсы, имеющие положительную и отрицательную полярность
Их параметры (частота и скважность) задаются при помощи блока управления. Частота обычно выбирается высокой — от 10 кГц до 50 кГц
Именно наличие этой ступени преобразования — генерации импульсов — и дало название этому типу преобразователей.
Блок-схема ИИП с формами напряжения в ключевых точках
Высокочастотные импульсы поступают на трансформатор, который является гальванической развязкой от сети. Трансформаторы эти небольшие, так как с возрастанием частоты сердечники нужны все меньше. Причем сердечник может быть набран из ферромагнитных пластин (в линейных БП должен быть из более дорогой электромагнитной стали).
На выходном выпрямителе биполярные импульсы превращаются в положительные, а выходной фильтр на их основе формирует постоянное напряжение. Основное достоинство ИБП в том, что существует обратная связь, которая позволяет регулировать работу устройства таким образом, чтобы напряжение на выходе было близко к идеалу. Это дает возможность получать стабильные параметры на выходе, независимо от того, что имеем на входе.
Достоинства и недостатки импульсных блоков питания
Для новичков не сразу становится понятным, почему лучше использовать импульсные выпрямители, а не линейные. Дело не только в габаритах и материалоемкости. Дело в более стабильных параметрах, которые выдают импульсные устройства. Качество напряжения на выходе не зависит от качества сетевого напряжения. Для наших сетей это актуально. Но не только это. Такое свойство позволяет использовать импульсный блок питания в сети разных стран. Ведь параметры сетевого напряжения в России, Англии и в некоторых странах Европы отличаются. Не кардинально, но отличается напряжение, частота. А зарядки работают в любой из них — практично и удобно.
Размер тоже имеет значение
Кроме того импульсники имеют высокий КПД — до 98%, что не может не радовать. Потери минимальны, в то время как в трансформаторных много энергии уходит на непродуктивный нагрев. Также ИБП меньше стоят, но при этом надежны. При небольших размерах позволяют получить широкий диапазон мощностей.
Но импульсный блок питания имеет серьезные недостатки. Первый — они создают высокочастотные помехи. Это заставляет ставить на входе сетевые фильтры. И даже они не всегда справляются с задачей. Именно поэтому некоторые устройства, особо требовательные к качеству электропитания, работают только от линейных БП. Второй недостаток — импульсный блок питания имеет ограничение по минимальной нагрузке. Если подключенное устройство обладает мощностью ниже этого предела, схема просто не будет работать.
Импульсный трансформатор: принцип действия и функциональные особенности
Трансформатор представляет собой достаточно сложное техническое устройство, основной функцией которого служит преобразование определенных свойств и качеств электрической энергии, таких, как напряжение или крутящий момент. Также современный трансформатор способен превращать переменный ток в постоянный и наоборот.
Среди огромного разнообразия используемых в настоящее времяприборов особо следует выделить их импульсные разновидности.
Импульсный трансформатор широко используется в системах связи, ВТ, устройствах автоматики, для внесения изменений амплитуды импульсов, а также их полярности. Главное условие для успешной работы данного вида прибора состоит в том, что искажение сигнала, который передается с его помощью, должно быть минимальным.
Импульсный трансформатор основывается в своей деятельности на следующем принципе: в то время как на его вход поступают прямоугольные импульсы определенного напряжения, в первичной обмотке постепенно появляется электрический ток, сила которого постепенно начинает увеличиваться. Это, в свою очередь, повлечет за собой изменение магнитного поля и появление электродвижущей силы во вторичной обмотке. В этом случае искажения сигнала практически не происходит, а возможные потери тока настолько малы, что ими можно пренебречь.
Что касается отрицательной части импульса, появление которой неизбежно в то время, как импульсный трансформатор выходит на проектную мощность, то его влияние можно свести к минимуму, установив простой диод во вторичную обмотку. Тем самым и здесь импульс станет максимально близким к прямоугольному.
Импульсный трансформатор отличается от других разновидностей данной технической системы тем, что работает исключительно в ненасыщенном режиме. Его магнитопровод изготавливается из специального сплава, который в обязательном порядке обладает значительной пропускной способностью магнитного поля.
Помимо импульсных, в современной энергетической и электронной промышленности используют следующие основные виды трансформаторов:
- Деятельность ни одного современного радиоприбора невозможна без силовых трансформаторов. Их деятельность многогранна: с одной стороны, они необходимы для того, чтобы приемники можно было запитывать от обычной сети с переменным током, а с другой, для того, чтобы повышать или понижать напряжение той или иной частоты в усилителях. С этой функцией связана и важная конструктивная особенность силовых трансформаторов – вместо стальных сердечников здесь используют вставки из магнетита или карбонильного железа.
- Еще одной разновидностью прибора, применяемого преимущественно в современных системах слежения и бортовых компьютерах самолетов, является вращающийся трансформатор. Его принцип действия заключается в том, что угол поворота рамки преобразуется в напряжение электрического тока. Внешне вращающийся трансформатор представляет собой небольшую электрическую машину, работающую исключительно от переменного тока. Кроме того, в зависимости от того, где эти трансформаторы применяются, они могут быть как двухполюсными, так и многополюсными.
- В зависимости от того, какой ток поступает на первичную обмотку, выделяют трансформаторы переменного и постоянного тока. Основной вид первого типа – автотрансформатор, который состоит исключительно из одной катушки, которая непосредственно включается в электрическую цепь. Данный вид приборов предназначен исключительно для понижения напряжения и только для очень маленьких токов. Трансформатор постоянного тока – это более сложный прибор, состоящий из динамомашины и двигателя. В этом случае первичный ток вырабатывается двигатель, а вторичный – динамомашиной, которая приводится в движение тем же электродвигателем. Нередко встречается ситуация, когда трансформатор постоянного тока представляет собой двигатель и динамомомашину, соединенные между собой одним металлическим каркасом. Делается это для экономии материала, а также для повышение качества работы прибора.
Детальнее об импульсных паяльниках
Дальше идут импульсные паяльники. Компактны, продуктивны, при желании можно разобраться в том, как сделать импульсный паяльник самому. Причиной этому служит весьма незамысловатая конструкция, которую мы немного рассмотрели выше.
Работают они только при нажатии кнопки, которую необходимо удерживать пальцем. Благодаря этому они и стали настолько выгодными в плане расхода электроэнергии. Медное жало быстро нагревается, и вот, спустя 5-7 секунд, вы можете использовать прибор.
Их отличительной чертой является конструкция, которая предусматривает подключение медного жала к общему электрическому контуру прибора, в которой уже имеются трансформатор и преобразователь. За счет последнего увеличивается рабочая частота, а первый занимается выравниванием напряжения внутри прибора в моменты простоя.
Если вы делаете импульсный паяльник своими руками, то стоит знать, что его устройство будет немножко отличаться от описанного выше, в виду того, что можно некоторые составляющие заменить идентичными по функционалу деталями.
Как подключить?
Рассмотрим подробнее, как подсоединить БП. В большинстве случаев в активную антенну усилитель уже вмонтирован. А вот в пассивной – его нет. Чтобы его подключить, в первую очередь необходимо собрать антенный кабель со штекером, который будет предназначен для данных целей. Рассмотрим, как это сделать.
Сначала следует подготовить сам кабель, то есть зачистить его. Для этого острым канцелярским ножом либо скальпелем выполняют тонкий разрез по окружности на удалении 1,5 см от края кабеля
При выполнении этой работы очень важно быть аккуратным и постараться не повредить волоски экранированной оплётки, расположенной сразу под изоляционным слоем
После того как эти действия будут выполнены, упомянутые волоски нужно осторожно отогнуть, а расположенный около них кусок фольги убрать
Отступив от загнутого края оплетки примерно 5 мм, необходимо сделать ещё один срез по окружности. Он необходим для того, чтобы удалить внутренний изоляционный слой. После этого кабель, подготовленный к монтажу, следует просунуть под соответствующие крепежи в коробке БП и затянуть винтами.
Обращаем особое внимание на то, что когда подключается провод, его металлизированная оплетка непременно должна иметь контакт с залуженной площадкой, которая является обязательным элементом конструкции любого корпуса БП. Если этого не сделать, то питание на антенну попросту не будет поступать
Нужно учесть и тот факт, что кабельная оплетка ни в коем случае не должна соприкасаться с центральной жилой самого провода. Если это случится, то произойдет короткое замыкание, и индикатор работы модуля не будет функционировать.
Для сведения: при корректном подсоединении блока питания с самим антенным кабелем после выполнения всех необходимых настроек телевизор обычно показывает намного больше каналов, чем прежде.