Содержание
- 1 Влияние примесей на механические свойства
- 2 Основные характеристики и области применения
- 3 Переводная таблица твердости
- 4 Вопросы по сварке алюминия
- 5 Механические характеристики
- 6 Что такое плакирование алюминиевых плит
- 7 Сплав Д16т
- 8 Алюминий Д16АМ — сплав, свойства, характеристики обзорная статья, доклад, реферат
- 9 Прочность, пластичность плакированных листов, прессованых прутков и труб
- 10 Дюралевая труба Д16т: разновидности
Влияние примесей на механические свойства
Кроме основных легирующих элементов, в дюралюминии присутствуют небольшие количества примесей. Некоторые из них (железо и кремний) имеются в исходном первичном алюминии, другие (цинк и никель) попадают в сплавы при переплаве отходов, третьи (бериллий, титан и цирконий) вводят в сплавы специально в качестве технологических добавок.
В сплавах типа дуралюмин железо образует соединения, оказывающие охрупчивающее влияние. Железо соединяется с медью и уменьшает количество растворимой меди, которая упрочнеяет сплав при старении.
Кремний в этих сплавах увеличивает склонность к трещинообразованию при сварке (ВАД-1) и литье, особенно крупных слитков из сплавов Д16, Д19, понижает пластичность заклепок из всех сплавов. Для нейтрализации вредного влияния кремния при литье и сварке содержание железа в сплавах должно в 1,1–1,5 раза превышать содержание кремния.
Для получения высокой пластичности литого и деформированного материала, а также для повышения вязкости разрушения содержание железа и кремния должно быть минимальным.
Никель образует нерастворимые фазы с медью и железом, уменьшает пластичность и прочность термически обрабатываемых сплавов, улучшает твердость и прочность при повышенных температурах и понижает коэффициент линейного расширения.
Совместное присутствие железа и никеля в сплавах системы Al-Cu-Mg обеспечивает повышение механических свойств при комнатной и повышенных температурах по сравнению со сплавами, содержащими либо железо, либо только никель.
Положительное влияние совместного содержания железа и никеля связано с образованием нерастворимой фазы FeNiAl9, в которой отсутствует медь.
В дюралюминах Д1, Д16 и др, содержащих железо и кремний в виде примесей, при введении никеля фаза FeNiAl9 не образуется.
Небольшие количества цинка (0,1—0,5 %) не влияют на механические свойства рассматриваемых сплавов при комнатной температуре и значительно понижают их жаропрочность. Примесь цинка в количестве 0,1—0,3 % увеличивает склонность к трещинообразованию при литье и сварке.
Бериллий в небольших количествах (около 0,005 %) предохраняет сплавы с высоким содержанием магния (1,5 % и более) от окисления при литье и термической обработке, не оказывая влияния на механические свойства как при комнатной, так и при повышенных температурах.
Бериллий входит в состав окисной пленки, состоящей в этих сплавах главным образом из окиси магния, способствует ее упрочнению и, следовательно, уменьшает дальнейшее окисление сплава.
Более высокое содержание в сплавах бериллия (0,1— 0,5 %) требует особых мер предосторожности при плавке и литье из-за его токсичности. Литий увеличивает прочность при комнатной и повышенных температурах, понижает плотность и увеличивает модуль упругости, но снижает пластичность
Литий увеличивает прочность при комнатной и повышенных температурах, понижает плотность и увеличивает модуль упругости, но снижает пластичность.
Хром, как и марганец, повышает температуру рекристаллизации сплавов. Выделения частиц, содержащих хром, имеют игольчатую форму и в большей мере, чем марганцовистые, снижают характеристики разрушения. Хром в присутствии марганца, железа и титана может выпадать в виде грубых составляющих фазы СгAl7. В промышленные сплавы типа дуралюмин хром не добавляют.
Титан, в алюминиевых сплавах применяется в основном для измельчения зерна литого металла. Природу способности титана измельчать литое зерно объясняют образованием в расплаве зародышей, служащих центрами кристаллизации. По данным одних авторов, эти зародыши — алюминид титана, по данным других авторов,— карбид титана. В присутствии бора такими зародышами будут частички борида титана.
Цирконий в небольших количествах, так же как и титан, является модификатором. Добавка циркония практически не влияет на прочностные свойства холоднодеформированных полуфабрикатов из сплавов, содержащих марганец, и несколько повышает их у сплавов без марганца. Цирконий аналогично марганцу, но при значительно меньшем содержании повышает температуру рекристаллизации сплава, что способствует получению нерекристаллизованной структуры и высокой прочности горячепрессованных полуфабрикатов.
Основные характеристики и области применения
Переводная таблица твердости
Для сопоставления чисел твердости Роквелла, Бринелля, Виккерса, а также для перевода показателей одного метода в другой существует справочная таблица:
Виккерс, HV | Бринелль, HB | Роквелл, HRB |
100 | 100 | 52.4 |
105 | 105 | 57.5 |
110 | 110 | 60.9 |
115 | 115 | 64.1 |
120 | 120 | 67.0 |
125 | 125 | 69.8 |
130 | 130 | 72.4 |
135 | 135 | 74.7 |
140 | 140 | 76.6 |
145 | 145 | 78.3 |
150 | 150 | 79.9 |
155 | 155 | 81.4 |
160 | 160 | 82.8 |
165 | 165 | 84.2 |
170 | 170 | 85.6 |
175 | 175 | 87.0 |
180 | 180 | 88.3 |
185 | 185 | 89.5 |
190 | 190 | 90.6 |
195 | 195 | 91.7 |
200 | 200 | 92.8 |
205 | 205 | 93.8 |
210 | 210 | 94.8 |
215 | 215 | 95.7 |
220 | 220 | 96.6 |
225 | 225 | 97.5 |
230 | 230 | 98.4 |
235 | 235 | 99.2 |
240 | 240 | 100 |
Виккерс, HV | Бринелль, HB | Роквелл, HRC |
245 | 245 | 21.2 |
250 | 250 | 22.1 |
255 | 255 | 23.0 |
260 | 260 | 23.9 |
265 | 265 | 24.8 |
270 | 270 | 25.6 |
275 | 275 | 26.4 |
280 | 280 | 27.2 |
285 | 285 | 28.0 |
290 | 290 | 28.8 |
295 | 295 | 29.5 |
300 | 300 | 30.2 |
310 | 310 | 31.6 |
320 | 319 | 33.0 |
330 | 328 | 34.2 |
340 | 336 | 35.3 |
350 | 344 | 36.3 |
360 | 352 | 37.2 |
370 | 360 | 38.1 |
380 | 368 | 38.9 |
390 | 376 | 39.7 |
400 | 384 | 40.5 |
410 | 392 | 41.3 |
420 | 400 | 42.1 |
430 | 408 | 42.9 |
440 | 416 | 43.7 |
450 | 425 | 44.5 |
460 | 434 | 45.3 |
470 | 443 | 46.1 |
490 | — | 47.5 |
500 | — | 48.2 |
520 | — | 49.6 |
540 | — | 50.8 |
560 | — | 52.0 |
580 | — | 53.1 |
600 | — | 54.2 |
620 | — | 55.4 |
640 | — | 56.5 |
660 | — | 57.5 |
680 | — | 58.4 |
700 | — | 59.3 |
720 | — | 60.2 |
740 | — | 61.1 |
760 | — | 62.0 |
780 | — | 62.8 |
800 | — | 63.6 |
820 | — | 64.3 |
840 | — | 65.1 |
860 | — | 65.8 |
880 | — | 66.4 |
900 | — | 67.0 |
1114 | — | 69.0 |
1120 | — | 72.0 |
Примечание:
В таблице приведены приближенные соотношения чисел, полученные разными методами. Погрешность перевода значений HV в HB составляет ±20 единиц, а перевода HV в HR (шкала C и B) до ±3 единиц.
При выборе инструмента желательно предпочесть модели известных производителей. Это дает уверенность в том, что приобретаемый продукт изготовлен с соблюдением технологий, а его твердость отвечает заявленным значениям.
Статьи о продукции 23.09.2019 16:32:41
Дмитрий
Спасибо за статью, как раз то, что искал) Хотел удостовериться, что взял нормальные отвертки, а не фуфлыжные) 02.04.2020 17:33:07
Вопросы по сварке алюминия
Вопросы и ответы по сварке. Вопрос №58.
Расскажите, пожалуйста, о газовой сварке алюминия и его сплавов.
Алюминиевые сплавы делят на две группы: деформируемые (ГОСТ 4784) и литейные (ГОСТ 2685). Наиболее распространенные деформируемые — сплавы алюминия с марганцем (АМц) и магнием (АМг), а также термоупрочняемые сплавы с медью типов Д1 и Д16 (дюралюминий). Из литейных сплавов чаще всего применяют различные виды силумина (сплава алюминия с кремнием) типов Ал2, Ал4 и Ал9. Характеристика свариваемости газовой сваркой широко используемых алюминиевых сплавов приведена в табл. 1.
Таблица 1. Алюминиевые сплавы и их свариваемость газовой сваркой
Механические характеристики
Сечение, мм | sТ|s0,2, МПа | σB, МПа | d5, % | d10 | Твёрдость по Бринеллю, МПа |
Листовой прокат в состоянии поставки из сплава Д16, Д16А (с нормальной плакировкой), Д16Б (Б — с технологической плакировкой) и Д16У (с утолщенной плакировкой) по ГОСТ 21631-76, ОСТ 4.021.047-92 и ленты по ГОСТ 13726-97 (образцы поперечные) | |||||
6-10.5 | ≥275 | ≥425 | — | ≥10 | — |
1.9-7.5 | ≥345 | ≥455 | — | ≥8 | — |
1.5-1.9 | ≥335 | ≥425 | — | ≥10 | — |
5-10.5 | — | 145-235 | — | ≥10 | — |
0.5-1.5 | ≥290 | ≥440 | — | ≥13 | — |
1.5-6 | ≥290 | ≥440 | — | ≥11 | — |
6-10.5 | ≥290 | ≥440 | — | ≥10 | — |
1.5-3 | ≥360 | ≥475 | — | ≥10 | — |
3-7.5 | ≥360 | ≥475 | — | ≥8 | — |
0.5-4 | — | 130-225 | — | ≥10 | — |
0.5-1.9 | ≥230 | ≥365 | — | ≥13 | — |
1.9-4 | ≥270 | ≥405 | — | ≥13 | — |
0.5-10.5 | — | 145-225 | — | ≥10 | — |
0.5-1.9 | ≥270 | ≥405 | — | ≥13 | — |
1.9-6 | ≥275 | ≥425 | — | ≥11 | — |
Панели по ОСТ 1 90177-75. В графе состояние поставки указано также направление вырезки образцов | |||||
— | ≥333 | ≥461 | ≥10 | — | — |
— | ≥313 | ≥431 | ≥8 | — | — |
Панели прессованные с оребрением по ОСТ 1 92041-90 в состоянии поставки из сплавов Д16 и Д16ч | |||||
≥255 | ≥390 | ≥10 | — | — | |
≥295 | ≥410 | ≥10 | — | — | |
Плиты в состоянии поставки по ТУ 1-804-473-2009 | |||||
11-25 | ≥275 | ≥420 | — | ≥7 | — |
25-40 | ≥255 | ≥390 | — | ≥5 | — |
40-70 | ≥245 | ≥370 | — | ≥4 | — |
70-80 | ≥245 | ≥345 | — | ≥3 | — |
Плиты по ГОСТ 17232-99 в состоянии поставки (образцы перпендикулярные к плоскости плиты) | |||||
40-80 | — | ≥345 | ≥3 | — | — |
Плиты по ГОСТ 17232-99 в состоянии поставки (образцы поперечные) | |||||
11-25 | ≥275 | ≥420 | ≥7 | — | — |
25-40 | ≥255 | ≥390 | ≥5 | — | — |
40-70 | ≥245 | ≥370 | ≥4 | — | — |
70-80 | ≥245 | ≥345 | ≥3 | — | — |
Профили прессованные нормальной прочности по ГОСТ 8617-81 в состоянии поставки (образцы продольные) | |||||
— | ≤245 | ≥12 | — | — | |
≤5 | ≥265 | ≥373 | ≥10 | — | — |
5-10 | ≥265 | ≥392 | ≥10 | — | — |
10 | ≥284 | ≥402 | ≥10 | — | — |
≤5 | ≥275 | ≥373 | ≥10 | — | — |
5-10 | ≥275 | ≥392 | ≥10 | — | — |
10 | ≥284 | ≥412 | ≥10 | — | — |
Профили прессованные нормальной прочности с площадью сечения до 200 см2 и диаметром описанной окружности до 350 мм (образец продольный, в сечении указана толщина полки) | |||||
≤2 | ≥305 | ≥400 | ≥10 | — | — |
≥80150 | ≥335 | ≥450 | ≥10 | — | — |
10-20 | ≥335 | ≥430 | ≥10 | — | — |
2-5 | ≥315 | ≥410 | ≥10 | — | — |
20-40 | ≥335 | ≥450 | ≥10 | — | — |
40-80 | ≥355 | ≥460 | ≥10 | — | — |
5-10 | ≥325 | ≥420 | ≥10 | — | — |
≤5 | ≥380 | ≥440 | ≥4 | — | — |
5-80 | ≥390 | ≥450 | ≥5 | — | — |
Профили прессованные нормальной прочности с площадью сечения до 200 см2 и диаметром описанной окружности до 350 мм. (образец поперечный, в сечении указано направление образца). Закалка + естественное старение | |||||
≥285 | ≥245 | ≥4 | — | — | |
≥285 | ≥390 | ≥6 | — | — | |
Профили прессованные по ОСТ 1 90369-86. В графе состояние поставки указаны состояние материала (Т — закалка + естественное старение, Т1 — закалка + искусственное старение, М — отжиг) и место вырезки образцов; в графе сечение — толщина полки профиля, мм | |||||
≤5 | ≥365 | ≥430 | — | ≥4 | — |
5-40 | ≥375 | ≥440 | — | ≥5 | — |
≤1.6 | ≥345 | ≥400 | — | ≥6 | — |
1.6-2.5 | ≥345 | ≥410 | — | ≥6 | — |
2.5-5 | ≥365 | ≥420 | — | ≥6 | — |
5-40 | ≥375 | ≥440 | — | ≥5 | — |
≤40 | ≥375 | ≥435 | — | ≥4 | — |
≤5 | ≥380 | ≥440 | — | ≥4 | — |
5-40 | ≥390 | ≥450 | — | ≥5 | — |
≤5 | ≥380 | ≥440 | — | ≥4 | — |
5-40 | ≥390 | ≥450 | — | ≥5 | — |
Профили прессованные повышенной прочности с площадью сечения до 200 см2 и диаметром описанной окружности до 350 мм (образец продольный, в сечении указана толщина полки) | |||||
10-20 | ≥365 | ≥480 | ≥8 | — | — |
2-5 | ≥345 | ≥470 | ≥8 | — | — |
20-40 | ≥365 | ≥490 | ≥8 | — | — |
5-10 | ≥355 | ≥470 | ≥8 | — | — |
Профильный прокат сплошного сечения | |||||
≥300 | ≥470 | ≥19 | — | ≥42 | |
Прутки круглые нормальной прочности в состоянии поставки по ОСТ 4.021.017-92. Режим Т (образцы продольные) | |||||
23-100 | ≥296 | ≥420 | ≥10 | — | — |
8-22 | ≥275 | ≥390 | ≥10 | — | — |
Прутки прессованные нормальной прочности в состоянии поставки по ГОСТ 21488-97 (образцы продольные) | |||||
8-300 | ≥120 | ≥245 | ≥12 | — | — |
130-300 | ≥275 | ≥410 | ≥8 | — | — |
22-130 | ≥295 | ≥420 | ≥10 | — | — |
300-400 | ≥245 | ≥390 | ≥6 | — | — |
8-22 | ≥275 | ≥390 | ≥10 | — | — |
Прутки прессованные повышенной прочности в состоянии поставки по ГОСТ 21488-97 (образцы продольные) | |||||
8-300 | ≥325 | ≥450 | ≥8 | — | — |
Трубы бесшовные холоднодеформированные квадратные (10х10 — 90х90 мм), прямоугольные (10х14 — 60х120 мм) по ОСТ 1 92096-83, круглые по ОСТ 4.021.120-92 | |||||
— | ≤245 | ≥10 | — | — | |
Трубы бесшовные холоднодеформированные квадратные и прямоугольные по ОСТ 1 92096-83, круглые по ОСТ 4.021.120-92. Закалка + естественное старение (в сечении указана толщина стенки) | |||||
≤1 | ≥265 | ≥420 | ≥13 | — | — |
1-5 | ≥265 | ≥420 | ≥14 | — | — |
≥285 | ≥420 | ≥12 | — | — | |
≥285 | ≥420 | ≥10 | — | — | |
Трубы горячепрессованные бурильные переменного сечения в состоянии поставки по ГОСТ 23786-79 (образцы, в сечении указан наружный диаметр труб) | |||||
54-120 | ≥255 | ≥392 | ≥12 | — | — |
120 | ≥274 | ≥421 | ≥10 | — | — |
54-120 | ≥294 | ≥392 | ≥12 | — | — |
120 | — | ≥421 | ≥10 | — | — |
Трубы прессованные в состоянии поставки по ГОСТ 18482-79 (образцы, в сечении указана толщина стенки) | |||||
20-40 | ≥275 | ≥420 | ≥10 | — | — |
5-20 | ≥255 | ≥390 | ≥12 | — | — |
Трубы прессованные крупногабаритные по ОСТ 1 92048-76 в состоянии поставки | |||||
≥275 | ≥412 | ≥10 | — | — | |
Трубы сварные прямошовные в состоянии поставки по ГОСТ 23697-79 (образцы, в сечении указан диаметр труб) | |||||
— | ≥156.8 | ≥6 | — | — | |
16 | ≥176.4 | ≥196 | — | — | — |
≤16 | ≥215.6 | ≥362.6 | ≥10 | — | — |
16 | ≥235.2 | ≥396 | ≥10 | — | — |
Трубы тянутые и катаные с Dн=6-70 мм и толщиной стенки 1-5 мм по ОСТ 1 90038-88 в состоянии поставки (в сечении указан наружный диаметр). Сплавы Д16 и Д16ч | |||||
— | ≤245 | ≥10 | — | — | |
≤22 | ≥265 | ≥420 | ≥13 | — | — |
22-50 | ≥285 | ≥420 | ≥12 | — | — |
50 | ≥285 | ≥420 | ≥10 | — | — |
Что такое плакирование алюминиевых плит
В зависимости от требований заказчика, дюралевую плиту купить можно с разным способом изготовления. В соответствии с требованиями ГОСТ 17232-99, плиты могут быть плакированными и неплакированными. Плакирование (плакировка) – приварка в процессе горячей пластической деформации покрытия на поверхность плиты. В качестве плакирующего слоя применяют технически чистый алюминий марки АД1пл с содержанием примесей не более 0,7%. Для плит применяют нормальное и технологическое плакирование. Нормальное (толщиной 2-4% от толщины листа) служит для повышения коррозионной стойкости дуралюминов типа Д16. Чистый алюминий образует тонкую защитную пленку оксида, надежно предохраняющую лист от коррозии.
Цель технологического плакирования (1,5% толщины) – повышение технологичности при горячей прокатке с большими обжатиями. Технологическое плакирование коррозионную стойкость практически не повышает.
При плакировании к маркировке добавляются индексы «А» – нормальное и «Б» – технологическое плакирование.
Сплав Д16т
Д16т характеристики и расшифровка марки, сплав алюминия Д16т плотность, ГОСТ и другая информация.
Д16т – один из самых востребованных дюралюминиевых сплавов в судостроительной, авиационной и космической промышленности. Главное его преимущество заключается в том, что получаемый из него металлопрокат обладает:
- стабильной структурой;
- высокими прочностными характеристиками;
- в 3 раза более легким весом, чем стальные изделия;
- повышенным сопротивлением микроскопической деформации в процессе эксплуатации;
- хорошей механической обрабатываемостью на токарных и фрезеровочных станках, уступая лишь некоторым другим алюминиевым сплавам.
В связи с этим, изделия не требует дополнительной термообработки и позволяет избежать такой распространенной проблемы, как уменьшение размеров заготовок после естественной или искусственной закалки, которая характерна для изделий, выполненных из сплава Д16.
Сплав д16т: расшифровка марки
Химический состав дюралюминия Д16Т строго регламентируется ГОСТом 4784-97 и расшифровывается следующим образом:
- Д – дюралюминий;
- 16 – номер сплава в серии;
- Т – закаленный и естественно состаренный.
Дюралюминий Д16Т относится к алюминиевым сплавам системы Al-Сu-Mg, легируемым марганцем. Большую его часть составляет алюминий – до 94,7%, остальное приходится на медь, магний и другие примеси. Марганец увеличивает коррозийную стойкость сплава и улучшения его механические свойства, хотя и не образует с алюминием общих упрочняющих фаз, а лишь дисперсные частицы состава Al12Mn2Cu.
Негативно на характеристики д16т влияют включения железа, которое не растворяется в алюминии. Феррум кристаллизуется в дюралюминиевом сплаве в виде грубых пластин, существенно снижая его прочностные и пластичные параметры.
Кроме того, примеси железа связывают медь, в результате чего уменьшается прочность сплава, достигающих максимальных значений после естественного старения.
На западе существует аналог сплава Д16Т, плотность которого также равна 2,78 г/ кв. см., но маркируемого по-другому – 2024 т3511.
Термообработка сплава д16т
Дюралюминий Д16Т подвергается дополнительной обработке для улучшения его эксплуатационных качеств:
- В первую очередь проводится температурная закалка при 495-505 градусах. При более высоких температурах происходит пережог алюминия, приводящий к резкому снижению качественных характеристик сплава.
- Во-вторых, дюралюминий закаливается в холодной воде, причем большое влияние имеет температура охлаждающей воды. Самый оптимальный диапазон, при котором сплав достигает максимального сопротивления к межкристаллитной коррозии и питингу – 250-350 градусов.
- И в последнюю очередь дюралюминиевый сплав Д16Т подвергается естественному старению, которое проводится при комнатной температуре в течение 4-5 дней.
В результате после закалки и старения материал приобретает твердость, равную 125-130 НВ, которая является максимальной среди всех известных дюралюминов.
Сферы применения проката Д16Т
Ввиду высокой прочности, твердости и легкости, сплав Д16Т используется для изготовления различного металлопроката. Он востребован в различных промышленных областях:
- в конструкциях самолетов и судов и космических аппаратов;
- для изготовления деталей для машин и станков;
- для производства обшивки и лонжеронов автомобилей, самолетов, вертолетов;
- для изготовления дорожных знаков и уличных табличек.
Незаменимы трубы Д16Т при производстве нефтяного сортамента. Эксплуатационные колонны, собранные них способны обеспечить бесперебойную эксплуатацию скважины в течение 8 лет.
В отличие от стального трубного проката, дюралюминиевые трубы пластичны, легки в транспортировке, прочны и имеют гладкую поверхность.
Единственный минус труб Д16Т – склонность к коррозии при длительных нагревах, в агрессивной кислой или газовой среде.
Однако, данная проблема успешно решается с помощью неорганических ингибиторов, которые создают на поверхности труб толстую оксидную пленку и снижают их чувствительность к межкристаллитному разрушению.
У нас вы можете купить:
- Алюминиевые листы Д16АТ
- Алюминиевые плиты Д16Т
- Алюминиевые прутки Д16Т
Алюминий Д16АМ — сплав, свойства, характеристики обзорная статья, доклад, реферат
Д16АМ – это дюралюминий марки Д16 с нормальной плакировкой, в отожжённом (мягком состоянии). Д16 – это термоупрочняемый дюралюминиевый сплав нормальной прочности. Маркировка АМ, после указания марки сплава, говорит о виде плакировки и состоянии материала проката. Маркировка А наносится на листы с нормальной плакировкой, а литера М указывает на мягкое состояние материала (после отжига).
Технологические, физические и химические свойства сплава Д16
Химический сплава Д16 описывается в ГОСТ4784-97. По прочности среди алюминиевых сплавов он уступает только В95. Однако, по конструкционной прочности он превосходит В95. Тепло и электропроводность указанного материала значительно ниже, чем у чистого алюминия, но превышает проводимость сталей.
Коррозионная стойкость
Сплав Д16 обладает склонностью к образованию межкристаллитной коррозии, в виду высокого содержание примесей. Особенно эта склонность начинает проявляться при эксплуатации деталей из указанного материала при температуре свыше 80 ˚C. В пределах этой эксплуатационной величины применяется сплав в естественно состаренном состоянии. А с повышением температуры, рекомендуется применять Д16 в состоянии после закалки искусственного старения.
Листы из Д16 плакируются нормальной плакировкой для защиты от коррозии и в нормальном состоянии. Д16АМ плакируется техническим алюминием марки АД1, слоем от 2 до 4 % от толщины проката. Дополнительной защитой от коррозии может служить анодирование или покрытие из лакокрасочного слоя.
Виды проката и механические свойства Д16АМ
Д16АМ – это маркировка для листового проката из дюралюминии Д16, выпускаемого в мягком состоянии и с нормальной плакировкой. В таком состоянии выпускаются листы Д16АМ
Относительное удлинение у данных видов металлопроката составляет около 12 %а твёрдость НВ 10-1 = 42 Мпа.
Применение проката Д16АМ
Д16М – это конструкционный сплав, профили из которого применяются для устройства нагруженных конструкций, в том числе в авиатехнике. Материал в отожжённом состоянии обладает большей пластичностью, хотя и меньшей прочностью. Однако, он поддаётся закалке и старению уже после производства необходимых форм.
Отожжённые ленты Д16АМ толщиной 0,5-0,7 мм — выпускаются шириной 1000-1600 мм, а ленты Д16АМ 0,7-10,5 мм — шириной 1000-2000 мм. Ленты и листы из этого сплава также служат в качестве конструкционного материала в авиационной промышленности и в других областях и где легко поддаются деформации, с возможностью последующей закалки и старения.
В ряду прочих сплавов Д16 в мягком состоянии, хотя и обладает меньшей прочностью, чем В95, но лучше деформируется и поддаётся последующей закалке и старению. После старения, сплав Д16 практически не уступает по механической прочности В95. При высоких температурах, после искусственного старения он теряет в прочности, но сохраняет лучшую стойкость к коррозии. Конструкционная прочность Д16 в твёрдом состоянии – выше, чем у В95. По этой причине Д16 является самым распространённым конструкционным сплавом алюминия.
Прочность, пластичность плакированных листов, прессованых прутков и труб
Эффект полной термической обработки состоит из эффекта закалки (разность характеристик закаленного и отожженного сплава) и эффекта старения (разноть характеристик состаренного и закаленного сплава). У разных систем алюминиевых сплавов эффекты закалки и старения различны.
Старение — это термическая обработка, при которой в сплаве, подвергнутом закалке без полиморфного превращения, происходит распад пересыщенного твердого раствора. Явление старения алюминиевых сплавов открыл Вильм. Он установил, что сплав алюминия с медью и магнием, закаленным с 500°С в воде, после выдержки в течение 4 сут при комнатной температуре приобретает повышенные прочность и твердость, а пластичность его не изменяется. При повышении температуры процесс старения ускоряется.
Наибольшими эффектами закалки из дюралюминов обладает сплав Д16.
Для старения, протекающего в естественных условиях без подогрева, принят термин «естественное старение», а для старения, происходящего в условиях специального подогрева после закалки — «искусственное старение». Однако эти термины недостаточно точно характеризуют происходящие в процессе старения структурные превращения и нуждаются в уточнении.
Распад твердого раствора протекает, как правило, в несколько стадий — образование когерентных с матрицей зон ГП (Гинье-Престона) , затем частично когерентных метастабильных фаз и, наконец, некогерентных частиц стабильной фазы.
У некоторых сплавов естественного старения при комнатной температуре не происходит, и, чтобы оно началось, требуется специальный подогрев до сравнительно высоких температур. У других сплавов переход от естественного старения к искусственному (т. е. от зон к фазам) наступает и при комнатной температуре, правда, иногда при весьма длительных выдержках.
Сравнивая свойства дюралюминов после естественного и исскуственного старения, видно, что естествено состаренные сплавы имеют меньшую прочность, но не теряют пластичность по сравнению с отожжеными. Это связано с тем, что при температурах 20-100°C упрочнение происходит благодаря образованию зон ГП, а при более высоких температурах происходит выделение метастабильной фазы S’, (стабильная S -Al2CuMg). Дальнейшее повышение температуры и времени старения приводик к коагуляции метастабильных фаз и уменьшению прочностных свойств.
Дюралевая труба Д16т: разновидности
Дюралевые трубы изготавливаются для самых разных нужд, а потому и выпускаются самого разного вида и размера: 55*1,5, 42*8 и так далее. Классифицируют их по самым разным признакам.
По форме сечения различают:
- круглые – как толстостенные, так и тонкостенные. Такой вид проката наиболее востребован, поскольку круглое сечение позволяет с наименьшими потерями передавать жидкость и газ;
- квадратного и прямоугольного сечения – применяются для конструкционных задач. Хотя прочность дюралевых изделий ниже, чему стали, ее более чем достаточно даже для нефтяного трубопровода;
- треугольные – используются в системах отопления, точнее говоря, в радиаторах, так как обеспечивают и хорошую теплоотдачу, и оригинальный вид изделия.
Получают алюминиевый трубопровод несколькими способами.
Так как свойства металлических изделий очень зависят от метода обработки и изготовления, эта классификация очень важно:
- Холоднодеформированные – дюралевый водовод такого рода изготавливают из алюминиевых кругов путем вытягивания при нормальной температуре и калибровке. Изделие отличается максимально возможной для сплава прочностью и стойкостью. Размеры их в точности соответствуют ГОСТ. Однако и стоимость такого варианта выше. На фото – алюминиевый прокат.
- Прессованные – заготовки проталкивают через специальную матрицу под давлением и получают изделие с необходимой толщиной стенки и диаметром. При этом материал нагревается. Продукция из дюраля отличается стойкостью к механическим повреждениям и царапинам и легко поддается различной декоративной обработке.
- Сварные – самый простой случай, когда трубопровод получают путем сваривания дюралевого листа по шву. Прочность у них самая низкая. Однако в большинстве областей применения изделия – производство мебели, сооружение декоративных конструкций, этого вполне достаточно. Стоимость же такого проката самая доступная.
Холоднодеформированные дюралевые трубы
Классифицируют изделия и по толщине стенок. Этот показатель определяет стойкость к внутреннему давлению.
Различают:
- толстостенная труба Д16т – имеет больший вес при том же диаметре, но отличается высокой прочностью. К ним относят круглые и прямоугольные изделия с толщиной стенок более 5 мм. Например, трубопровод 42*8 несмотря на малый диаметр относится к толстостенным изделиям;
- тонкостенная труба Д16т – имеет толщину стенок до 5 мм, например, 55*1,5 мм. Они чаще используются в судостроении, так как их конструкционная прочность сочетается с малой массой.