Содержание
- 1 6 Особенности разных видов соединений на крепежных элементах высокой прочности
- 2 3 Механические свойства элементов и расшифровка их маркировки
- 3 Маркировка болтов по классу их прочности
- 4 Описание
- 5 Что определяет класс прочности
- 6 Маркировка болтов
- 7 Классификация нержавеющего крепежа по прочностным показателям
- 8 Область применения
- 9 Примеры обозначения прочности крепежа из нержавейки:
- 10 Маркировка болтов
- 11 5 Высокопрочные метизы – по-настоящему стойкие к разрушению
- 12 Точность болтов
- 13 Где и как маркируется прочность на изделии?
- 14 Технология изготовления
- 15 8.8 Испытание ударом по головке полноразмерных болтов и винтов диаметром d £ 10 мм и длиной, слишком малой для проведения испытаний на растяжение на косой шайбе
- 16 9.6 Маркировка упаковок
6 Особенности разных видов соединений на крепежных элементах высокой прочности
Фрикционное соединение при проектировании считают неподатливым. А продольное усилие (точнее – его распределение между отдельными элементами металлоконструкции) рассматривается, как равномерное. На основании этих фактов и рассчитывают фрикционное соединение. Расчет осуществляется по усилиям
Причем обязательно принимаются во внимание усилия между разными участками рассматриваемого элемента
Несущая способность такого соединения обязана составлять более 75 % способности детали, которая прикрепляется к конструкции
Важно! Несущая способность каждого элемента рассчитывается отдельно. При этом проводятся вычисления его прочности, выносливости и устойчивости, которые учитывают вес и другие параметры детали
Несущие высокопрочные болты применяются для сборки конструкций нескольких типов:
- Постоянные и временные сооружения, расчет которых выполняется на подвижные либо динамические нагрузки.
- Постоянные конструкции, рассчитанные исключительно на статические нагрузки.
- Временные сооружения, проектируемые на нагрузки статического плана.
Болтоклеевые соединения производятся тогда, когда следует учитывать изгибающий момент и иные сдвигающие усилия (обычно под таковыми понимают поперечные и продольные силы). В таких конструкциях на контактные изделия наносится специальная клеевая пленка, которую обжимают ВПБ. В качестве клея обычно используют составы ЭД-20 и ЭД-16. Они включают в себя пластификатор, эпоксидную смолу, отвердитель и корунд в качестве специального наполнителя.
3 Механические свойства элементов и расшифровка их маркировки
Временное сопротивление – это отношение нагрузки, которую может выдержать болт без разрушения, к его поперечному первоначальному сечению. Данная величина варьируется в пределах 30–160 кгс/кв. мм (минимальное значение) и 49–208 (теоретически возможный максимум). Под ударной вязкостью подразумевают определенный цикл воздействия на образец болта в форме призмы (его делают с вырезкой на одной стороне), после которого метиз разрушается. Иногда испытания останавливают в случаях, когда крепежный элемент начинает деформироваться. Величина вязкости равняется 3–6 кгс*м/кв. см
Обратите внимание! Для некоторых классов прочности (3.6, 5.8, 6.8) показатель ударной вязкости в ГОСТ не регламентируется
Минимальная нагрузка, которая вызывает деформацию метизов без ощутимого повышения растягивающего напряжения, называется пределом текучести. Для болтов 3.6 он равняется 20 кгс/кв. мм, для изделий 12.9 – 108. Текучесть устанавливается на спец. образцах по стандартной методике (воздействие на изделие до момента его деформирования). Величина относительного удлинения определяется как отношение повышения длины болта после его разрушения к первоначальной протяженности изделия. Важный момент. Минимальное относительное удлинение отмечается у болтов прочностью 12.9 (8 %), максимальное – у метизов 3.6 (25 %). Твердость крепежных элементов по шкале HRB составляет 48–86 единиц, по Бринеллю – 90–330 НВ.
Теперь, зная все о механических характеристиках болтов, можно разбираться с принципом их маркировки. Здесь все достаточно просто. Обозначение класса прочности – это две цифры, разделенные точкой. Достаточно умножить на 10 первое число, чтобы получить значение временного минимального сопротивления болта. Аналогичным образом поступаем со второй цифрой. Умножаем ее на 10 и узнаем соотношение (в процентах) текучести изделия к его сопротивлению. Например, для метизов класса 8.8 это отношение будет равняться 80 % (8*10). Маркировку наносят на торце головки крепежа выпуклыми цифрами.
Маркировка болтов по классу их прочности
Система маркировки болтов, значение которой можно посмотреть в специальных таблицах, чтобы определить, какой именно тип крепежа вам подойдет, разработана Международной организацией по стандартизации (ISO). Все стандарты, разработанные в советское время, а также современные российские нормативные документы, основываются на принципах данной системы.
Обязательной маркировке подлежат болты и винты, диаметр которых составляет более 6 мм. На крепежные изделия меньшего диаметра маркировка наносится по желанию производителя.
Маркировка не наносится на винты, имеющие крестообразный или прямой шлиц, а изделия, имеющие шестигранный шлиц и любую форму головки, маркируются обязательно.
Не подлежат обязательной маркировке также нештампованные болты и винты, которые изготовлены точением или резанием. Маркировка на такие изделия наносится только в том случае, когда этого требует заказчик подобной продукции.
Стандартное расположение маркировки на болтах
Местом, на которое наносится маркировка болта или винта, является торцевая или боковая часть их головки. В том случае, если для этой цели выбрана боковая часть крепежного изделия, маркировка должна наноситься углубленными знаками. Выпуклая маркировка по высоте не должна превышать:
- 0,1 мм – для болтов и винтов, диаметр резьбы которых не превышает 8 мм;
- 0,2 мм – для крепежных изделий, диаметр резьбы которых находится в интервале 8–12 мм;
- 0,3 мм – для болтов и винтов с диаметром резьбы больше 12 мм.
Геометрию различных видов резьбового крепежа регламентируют отдельные ГОСТы. В качестве примера можно рассмотреть изделия, выпускаемые по ГОСТ 7798-70. Такие болты с головкой шестигранного типа, относящиеся к категории изделий нормальной точности, активно используются в различных сферах деятельности.
Описание
На высокопрочные болты есть официальный действующий ГОСТ 52644-2006. В данном акте нормируются:
-
габариты болтов;
-
длина резьбы такого крепежа;
-
вариации конструктивных элементов и исполнений;
-
коэффициенты закручивания;
-
теоретическая масса каждого изделия.
На них распространяется еще и стандарт DIN 6914. По умолчанию это изделие имеет шестигранную головку под ключ. Оно предназначается для высоконапряженных стальных соединений. Диаметр крепежа может составлять от М12 до М36. Их размер колеблется от 3 до 24 см.
Такие болты могут использоваться в машиностроении, в двигателестроении. Они пригодятся еще и для участков, где действует сильная вибрация; их можно, наконец, использовать в строительных конструкциях различного рода. Большую роль, однако, играет правильно выбранное усилие затягивания. Слишком слабый нажим часто приводит к преждевременному разрушению соединения, слишком сильный — способен навредить крепежу или соединяемым конструкциям.
Что определяет класс прочности
Для того чтобы понять, насколько целесообразной является экономия на крепежных элементах для авто, не помешает углубиться в суть вопроса. И прежде всего речь пойдет о таких важных моментах, как классификация и способы обработки стали, из которой отливают всевозможные винтики и шайбы.
Тип стали
Приобретая очередной болтик для авторабот, мало кто задумывается над тем, из стали какой маркировки он был отлит. И совершенно напрасно, ведь от этого нюанса напрямую зависит износоустойчивость крепления, что однозначно должно соответствовать его основному предназначению.
Так, одно дело, когда речь идет о крепежных элементах, предназначенных для фиксации деталей с незначительной нагрузкой на само соединение. Но совсем иначе будут обстоять дела, если вдруг именно на этом болте будет держаться громоздкая конструкция или, что еще хуже, рабочий узел, часто пребывающий в динамике.
И не нужно быть семи пядей во лбу, чтобы понимать, что для сложных механизмов используются крепления из высокопрочной стали, иначе есть риск «развалиться» прямо во время движения, со всеми вытекающими отсюда вероятными последствиями.
Так, согласно действующей на сегодняшний день классификации, существует 11 классов прочности углеродистых сталей, каждый из которых представляет собой комбинацию из двух цифр, разделенных между собой точкой. 3.6; 4.6; 4.8; 5.6; 5.8; 6.6; 6.8; 8.8; 9.8; 10.9; 12.9 – именно так выглядит маркировка, в которой первая величина, измеряемая в мегапаскалях, обозначает одну сотую часть номинального временного сопротивления (в дальнейшем по тексту НВС), эквивалентного пределу прочности по показателю растяжения.
Вид обработки
Стоит отметить, что для каждой из одиннадцати существующих типов маркировки креплений актуальны свои способы обработки. Сюда же стоит отнести и дополнительную термическую обработку для закаливания металла, необходимость которой также тесно взаимосвязана с классификацией литья.
К примеру, маркированная 35-я сталь является вполне пригодной для изготовления болтов, степень прочности которых соответствуют классификатору 5.6.
Данная маркировка подходит для токарных и фрезерных установок, на которых производится механизированная обточка элементов. Для объемной штамповки на высадочном прессе актуальными будут считаться уже более высокие маркировки 6.6 и 6.8, тогда как 8.8 идет в ход уже тогда, когда изготовленные любым из перечисленных способов крепления будут подвергаться закаливанию.
Маркировка болтов
Порядок обозначения продукции определен международной организацией по стандартизации – ISO. Все документы (ГОСТ, ТУ), разработанные в СССР и РФ, выполнены с учетом этой системы и полностью отвечают ее требованиям.
Обязательной маркировке подлежат все болты и винты с диаметром стержня выше 6 мм. Исключения составляют детали с некоторыми формами шлицов или головок. Ее наносят на головку продукции. Она может располагаться на торце или сбоку головки. Место расположение клейма и его содержание определено в ГОСТ Р 52644-2006. Оно должно нести в себе следующую информацию:
- Штамп завода производителя.
- Класс прочности данного изделия.
- Климатическое исполнение болта, оно наносится только на изделия, работающие в условиях ХЛ.
- Номер плавки стали, использованной для производства этого изделия.
- S – индекс обозначает, что размер головки увеличен.
На болтах, выполненных из нержавеющей стали должна быть указана марка стали. Индексы, наносимые на болт, могут выпуклыми или выдавленными. Размер шрифта определяет завод-изготовитель, руководствуясь требованиями ГОСТ.
Классификация нержавеющего крепежа по прочностным показателям
Согласно ГОСТу все аустенитные стали разделены на три класса по прочности на растяжение:
- самый низкий класс 50 присвоен закаленной нержавеющей стали;
- к классу 70 относится холоднодеформированная сталь марки А2;
- класс 80 – это также сталь, полученная способом холодной деформации, содержащая, кроме хрома и никеля, молибден.
Стандарт предписывает обозначать марку стали и показатель прочности через дефис:
- А1-50 – это мягкий металл, наделенный границей крепости при разрыве ≤500 Н/мм2 или 500 МПа;
- А2-70 – холоднотянутая нержавеющая сталь, имеющая величину прочности на разрыв ≤ 700 Н/мм2 или 700 МПа;
- А4-80 – высокопрочный сплав с границей крепости при разрыве ≤ 800 Н/мм2 или 800 МПа.
Обозначение должно наноситься на оголовок крепежного изделия рядом либо параллельно с клеймом завода-производителя. Маркировка шпилек выполняется на гладком участке или в торце. Некоторые изготовители практикуют дополнительную цветовую кодировку класса стали. Для А2 принят зеленый тон, для А4 – красный.
Область применения
Болтовые соединения высокой прочности предназначены для монтажа сложных строительных конструкций, которые будут подвергаться:
- высоким температурным перепадам;
- осадкам;
- сильным и частым ветрам;
- контакту с химическими веществами.
Так как размеры крепежа, предусмотренные ГОСТом, различаются, области применения метизов обширны:
- станки, оборудование;
- сельхозтехника, машиностроение;
- строительство мостов, зданий;
- судостроение;
- промышленность, производство.
Фрикционное соединение на высокопрочных болтах прекрасно справляется с задачей крепкого и надежного монтажа конструкций, подвергающихся динамическим нагрузкам и вибрациям.
Широкое применение данный крепеж имеет в быту. Он идеален при ремонте квартир, балконов, надежно закрепит любые конструкции на бетонных стенах. Автолюбители не обходятся без таких болтов, ремонтируя свою машину, особенно крепления колес.
Примеры обозначения прочности крепежа из нержавейки:
А2-50 – мягкая сталь с пределом прочности на разрыв минимум 500 Н/мм² (500МПа).
А2-70 – холоднодеформированная сталь с пределом прочности на разрыв минимум 700 Н/мм² (700МПа).
А4-80 – высокопрочный сплав с пределом прочности на разрыв минимум 800 Н/мм² (800МПа).
Маркировка наносится на головку болтов (винтов) рядом с клеймом изготовителя, а шпильки маркируются на гладкой части или на торце, если шпилька полнорезьбовая. Иногда на торец шпильки наносится цветовая кодировка марки сплава (для А2 – зеленая, для А4 – красная). Если маркировка класса прочности отсутствует, то в расчет принимается среднее значение – 70.
Для сравнения механических свойств болтов из нержавеющей и углеродистой стали обратимся к таблице:
Углеродистые
Аустенитные А2, А4
Класс прочности
5.6
6.8
8.8
10.9
50
70
80
Предел прочности, Н/мм²
500
600
800
1040
500
700
800
Предел текучести, Н/мм²
300
480
640
940
210
450
600
Из таблицы видно, что при близких значениях временного сопротивления, предел текучести у аустенитных сплавов меньше, поэтому они больше подвержены пластической деформации. Это свойство позволяет болтам или шпилькам не ломаться при превышении допустимого момента затяжки или при боковых изгибающих нагрузках. В худшем случае превышение усилия может привести к срыву резьбы. В то время как углеродистые стали более хрупкие и запредельные нагрузки могут привести к излому резьбового крепежа.
Маркировка болтов
Порядок обозначения продукции определен международной организацией по стандартизации – ISO. Все документы (ГОСТ, ТУ), разработанные в СССР и РФ, выполнены с учетом этой системы и полностью отвечают ее требованиям.
Обязательной маркировке подлежат все болты и винты с диаметром стержня выше 6 мм. Исключения составляют детали с некоторыми формами шлицов или головок. Ее наносят на головку продукции. Она может располагаться на торце или сбоку головки. Место расположение клейма и его содержание определено в ГОСТ Р 52644-2006. Оно должно нести в себе следующую информацию:
- Штамп завода производителя.
- Класс прочности данного изделия.
- Климатическое исполнение болта, оно наносится только на изделия, работающие в условиях ХЛ.
- Номер плавки стали, использованной для производства этого изделия.
- S – индекс обозначает, что размер головки увеличен.
На болтах, выполненных из нержавеющей стали должна быть указана марка стали. Индексы, наносимые на болт, могут выпуклыми или выдавленными. Размер шрифта определяет завод-изготовитель, руководствуясь требованиями ГОСТ.
5 Высокопрочные метизы – по-настоящему стойкие к разрушению
Болты с временным сопротивлением более 80 кгс/мм2 называют высокопрочными. К ним относят изделия классов 8.8–12.9. Такие болты нужны для соединений деталей мостовых конструкций, крепления элементов кранов, железнодорожных вагонов и техники, машин и агрегатов, используемых в сельском хозяйстве. К высокопрочным метизам причисляют самоконтрящиеся соединительные элементы. Изготавливаются болты повышенной прочности из нержавеющих сплавов, Ст.40 и Ст.35Х. Их в обязательном порядке подвергают закалке и отпуску. Без такой термической обработки добиться высоких прочностных показателей невозможно.
Термообработка метизов – дорогая и трудоемкая процедура. При несоблюдении технологии ее выполнения болты могут искривляться, а их геометрические параметры искажаться. Особенно часто подобные проблемы отмечаются при штамповке длинного крепежа. ГОСТ разрешает корректировать размеры и форму искривленных болтов, используя операцию повторной накатки. Для снижения риска деформации болтов их термическая обработка чаще всего осуществляется в среде газов с защитными характеристиками. Это еще больше увеличивает расходы на изготовление крепежной продукции.
Высокопрочные метизы
Предприятия находят разные выходы из такой ситуации. Например, ограничивают длину и диаметр выпускаемых высокопрочных болтов, применяют современное оборудование для штамповки с повышенным коэффициентом эксплуатации. Свойства специальных метизов описываются в отдельных Гос. стандартах либо отраслевых нормативных документах. Например, существует ГОСТ Р 52644. Он оговаривает размеры и механические характеристики болтов высокой прочности с головкой под ключ, которые применяются исключительно в сфере мостостроения. В стандарте приведена прочность крепежных элементов М16–М48. По своей величине она равняется сопротивлению на разрыв. Маркировка таких болтов включает в себя не только класс прочности. В ней присутствует литера S (крепеж под ключ с увеличенным размером).
Специализированные болты, кроме всего прочего, различаются по виду исполнения. Они могут быть вариантов ХЛ и У. Первые высокопрочные метизы предназначены для работы при температурах ниже -40 °С. Маркируются болты литерами ХЛ и цифрами, указывающими на класс прочности. Крепежные элементы У используют при температурах до -40°. Литера в их маркировке необязательна. Болты У и ХЛ изготавливают из сталей 30Х2НМФА, 40Х Селект, 30Х2АФ, 30Х3МФ. Классы прочности таких изделий приведены далее:
- 110 – болты с резьбой М16–М27 (их прочность соответствует показателю сопротивления на разрыв и равняется 110 Мпа);
- 95 – изделия М30;
- 75 – М36;
- 65 – М42;
- 60 – М48.
Точность болтов
Другое важное свойство – это точность. Производители выпускают продукцию двух классов точности
Класс А – подразумевает то, что стержень встает в отверстие с минимальным зазором. Диаметр посадочного отверстия не может быть больше толщи болта на 0,3 мм. Такой точности довольно просто добиться в условиях производственного цеха, но практически невозможно на строительной площадке. Крепеж класса В и С могут быть установлены в посадочные отверстия больше стержня изделия на 2 – 3 мм.
Точность исполнения болтового соединения оказывает заметное влияние на его прочность и сопротивлению нагрузок. В частности, чем точнее выполнено посадочное отверстие, тем будет меньше воздействие нагрузок, возникающих перпендикулярно оси стержня.
Где и как маркируется прочность на изделии?
Маркировка высокопрочных болтов Требования к обозначению прочности болтов, винтов, шпилек прописаны в ГОСТ 1759.0-87 (для диаметров до 48 мм) и ГОСТ 18126-94 (для диаметров от 48 мм). Знаки маркировки хорошо читаются на метизах, поэтому потребитель может легко определить класс прочности крепежа, с которым имеет дело.
Болты с шестигранными головками, винты с цилиндрическими головками под внутренний шестигранник и резьбовые шпильки маркируются по прочности цифровым кодом 8.8, 10.9, 12.9, 14.9 (с разделительной точкой или без нее), а шестигранные гайки – 9, 10, 12, 14. Это нестираемые выпуклые или углубленные клейма, нанесенные на головку болтов сбоку или сверху.
Маркировка классов прочности на крепеже малых диаметров может выполняться по системе циферблата.
Таблица 4. Циферблатная маркировка прочности болтов
Классы прочности шпилек отображаются, как правило, на их торцевой поверхности. Если шпилька имеет неполную резьбу, то цифровой код может быть нанесен на ее гладкую часть. Для шпилек также может применяться маркировка цветом (желтый для класса 8.8, белый для 10.9) или условными обозначением, нанесенным на торец:
Маркировка высокопрочных шпилек
Технология изготовления
В современном мире используется несколько технологий с помощью которых изготавливаются гайки. Некоторые из них используются для выпуска большого количества крепежа с минимальным количеством брака и оптимальным расходом материалов. Процесс происходит практически без участия человека, в автоматическом режиме. Основными методами производства гаек в больших объёмах является технология штамповки холодным способом и горячая ковка.
Холодная штамповка
Она является довольно прогрессивной технологией, позволяющей выпускать крепежи массово с небольшими потерями не более 7% от общего количества изделий. Специальные автоматизированные станки позволяют получать до 400 изделий в течение минуты.
Этапы изготовления крепежа по холодной технологии.
- Готовятся прутки из нужного вида стали. Перед обработкой они очищаются от ржавчины или постороннего налета. Затем на них наносятся фосфаты и особый смазочный материал.
- Нарезка. Металлические заготовки кладутся в специальный механизм и режется на отрезки.
- Подвижным отрезным механизмом отрезаются заготовки гаек.
- Штамповка. После всех предыдущих манипуляций заготовки отправляются на штамповочный гидравлический пресс, где им придается форма и пробивается отверстие.
- Завершающий этап. Прорезание резьбы внутри деталей. Это операция проводится на специальном гайконарезном станке.
После выполнения работ некоторые гайки из партии обязательно проверяют на соответствие заданным заранее параметрам. Это размеры, резьба и максимальная нагрузка, которую сможет выдержать изделие. Для производства метизов по этой технологии применяют определенную сталь, предназначенную для холодной штамповки.
Горячая ковка
Очень распространена также и горячая технология производства гаек. Сырьем для производства метизов этим способом также служат металлические прутки, порезанные на отрезки нужной длины.
Основные стадии производства такие.
- Нагрев. Очищенные и подготовленные прутки разогревают до температуры 1200 градусов Цельсия, чтобы они стали пластичными.
- Штамповка. Специальный гидравлический пресс формирует шестиугольные заготовки и пробивает внутри них отверстие.
- Нарезка резьбы. Изделия охлаждаются, внутри отверстий наносится резьба. Для этого используются вращающиеся стержни, напоминающие метчики. Для облегчения процесса и предотвращения быстрого износа во время нарезки на детали подается машинное масло.
- Закалка. Если изделиям требуется повышенная прочность, производится их закаливание. Для этого они снова нагреваются до температуры в 870 градусов по Цельсию, охлаждаются с высокой скоростью и примерно на пять минут погружаются в масло. Эти действия закаляют сталь, но она становится хрупкой. Чтобы избавиться от хрупкости, сохраняя при этом прочность, метизы примерно час держат в печи при высокой температуре (800-870 градусов).
После завершения всех процессов производится проверка гаек на особом стенде на соответствие требованиям на прочность. После проверки, если метизы ее прошли, они упаковываются и отправляются на склад. На производствах еще сохранилось устаревшее оборудование, нуждающееся в ремонтных и профилактические работах. Для выпуска крепежных изделий к такому оборудованию используют токарные и фрезерные станки. Однако такие работы характеризуются очень низкой производительностью, огромным расходом материалов. Но они нужны в любом случае, и поэтому для небольших партий крепежных изделий эта технология до сих пор остается актуальной.
Процесс изготовления гаек и других метизов смотрите в следующем видео.
8.8 Испытание ударом по головке полноразмерных болтов и винтов диаметром d £ 10 мм и длиной, слишком малой для проведения испытаний на растяжение на косой шайбе
Испытаниеударомпоголовкеследуетпроводить, какпоказанонарисунке 4.
Принанесениинесколькихударовмолоткомголовкаболтаиливинтадолжнаизогнутьсянаугол, равный 90°-β (см. таблицу 12) безпризнаковрастрескиваниявзакругленномучасткепереходаголовкикстержню, чтоустанавливаетсяприосмотресувеличениемнеменеевосьмикратного, нонеболее
десятикратного.
Дляболтовивинтовсрезьбойдоголовкидопускаетсяпоявлениетрещинывпервомвиткерезьбы приусловии, чтоголовканеоторвалась.
Примечания
1
Значенияdhиr2 (r1= r2) см. втаблице 10.
2 Толщинаиспытательнойпластиныдолжнабытьбольше 2
d.
Рисунок 4
—Испытаниеголовкинапрочность
Таблица 12 — Значенияуглаβ
Класспрочности |
3.6 |
4.6 |
5.6 |
4.8 |
5.8 |
6.8 |
8.8 |
9.8 |
10.9 |
12.9 |
β |
60° |
80° |
9.6 Маркировка упаковок
Маркировкаупаковокснанесениемтоварногознакаизготовителяиклассапрочностиявляется обязательнойдлявсехупаковоквсехразмеров.
Приложение А
(справочное)
Предел текучести или условный предел текучести при повышенных температурах
Механическиесвойстваболтов, винтовишпилекизменяютсяприповышеннойтемпературе. ВтаблицеА.1 длясправкипредставленыприближенныеданныепоуменьшениюзначенийпределатекучестиилиусловного
пределатекучестиприповышенныхтемпературах. Этиданныенедолжнырассматриватьсякактребованиякиспытаниям.
ТаблицаА.1 -Пределтекучестиилиусловныйпределтекучестиприповышенныхтемпературах
Класспрочности |
Температура, °С |
||||
20 |
100 |
200 |
250 |
300 |
|
ПределтекучестиReLилиусловныйпределтекучестиRр0,2, Нмм2 |
|||||
5.6 |
300 |
270 |
230 |
215 |
195 |
8.8 |
640 |
590 |
540 |
510 |
480 |
10.9 |
940 |
875 |
790 |
745 |
705 |
10.9 |
940 |
— |
— |
— |
— |
12.9 |
1100 |
1020 |
925 |
875 |
825 |
Длительнаяработаприповышеннойтемпературеможетпривестикзначительнойрелаксациинапряжений. Обычно 100 чработыпритемпературе 300°Сприводяткснижениюусилиязатяжкиболтавследствиеуменьшения значенияпределатекучестиболеечемна 25 % отначальной.
Приложение Б
(справочное)
Сведения о соответствии ссылочных международных стандартов национальным стандартам,
использованным в настоящем стандарте в качестве нормативных ссылок
Библиография
МеждународныйстандартИСО 898-7:1992 Механическиесвойствакрепежныхизделийизуглеродистойи
легированнойстали. Часть 7. Испытаниенакручениеиминимальныекрутящиемоментыдляболтовивинтовноминальныхдиаметровот 1 до 10 мм