Разновидности и применение сплавов меди с другими металлами

Сферы применения

Свойства металла обусловили его применение разными сферами. Главный потребитель – промышленный комплекс.

Промышленность

Металл и сплавы разбирают следующие отрасли:

  • Электротехника, радиоэлектроника. Кабели (силовые, другие), провода. Обмотка в трансформаторах. Теплообменные устройства (радиаторы отопления, кондиционеры, кулеры компьютеров, тепловые трубки ноутбуков).
  • Приборо-, машиностроение. Из сплавов меди с цинком, оловом, алюминием делают детали, узлы машин. Без нее невозможно создание гальванических элементов и батарей.
  • Трубы. Для транспортировки пара, воды, газа. В энергетике, судостроении, для бытовых потребностей.


Система охлаждения из меди на тепловых трубках в ноутбуке

В Японии медные трубопроводы признаны сейсмоустойчивыми, что для этой страны жизненно важно

Строительство

Крыши из медного листа экологичны, их можно не красить, поскольку влага, погодные катаклизмы не страшны. Срок службы – до 100 лет.

Медицина

Медициной востребованы характеристики металла как антисептика и вяжущего средства.

Это компонент глазных капель и смесей для лечения ожогов.

Медные ручки дверей, другие поверхности – атрибут лечебных учреждений.

Ювелирное дело

Ювелиры используют сплавы на основе меди.


Кольцо из меди

Красное или розовое золото – это конгломерат благородного металла с медью.

Ее количество в составе определяет финальный оттенок:

  • 25% – розовый;
  • 50% – красный.

Эти виды золота – самые любимые ювелирами. Медь делает изделия прочнее, попутно удешевляя стоимость.

Второй популярный ювелирный сплав – мельхиор (медь + никель).

Другие отрасли

  • Оксид меди – основа купрата, используемого в сверхпроводниках.
  • Латунь идет на изготовление гильз для винтовок и артиллерии.
  • Из мельхиора чеканят монеты, создают интерьерные украшения, столовые приборы.
  • Медь задействована при синтезе хлорофилла. Ее всегда добавляют в минеральные удобрения для растений.

Список продуктов, содержащих медь

Как уже упоминалось выше, для нормального и слаженного функционирования организма человеку нужно не более 2,5-3 мг меди в сутки. Самыми богатыми продуктами, в которых содержится медь, оказались: лесные орехи, злаки, бобовые, рыба и печень (трески, минтая). В зависимости от состояния здоровья (наличие пищевой аллергии, непереносимости), возраста и вкусовых предпочтений, не каждый может употреблять те или иные продукты. В расширенном ниже списке перечислены продукты и напитки, которые содержат в составе медь и могут быть на каждом столе в силу доступности, да и вкусовых предпочтений каждого:

  • Печень птицы (индейка, гусь, курица, утка).
  • Спаржа.
  • Шампиньоны.
  • Листовые овощи (мангольд, шпинат, латук).
  • Зелень (петрушка, укроп, кинза).
  • Маслины.
  • Какао.
  • Минеральная вода.
  • Авокадо.
  • Черная и красная смородина.
  • Клубника, земляника, ежевика.
  • Кокосовая мякоть.
  • Гранат.
  • Лимон, мандарин, апельсин.
  • Киви.
  • Маракуйя.
  • Слива.
  • Черешня, вишня.
  • Арбуз, дыня.
  • Плоды шиповника и женьшеня.
  • Сухофрукты (финики, курага, изюм, чернослив).
  • Сухое молоко.
  • Простокваша.
  • Коровье молоко.
  • Макаронные изделия из муки твердых сортов пшеницы.

Следует отметить, что медь сохраняет свои свойства в процессе термообработки, а в организме человека усваивается только треть этого микроэлемента.

Использование [ править | править код ]

Бронза используется в современном машиностроении, ракетной технике, авиации, судостроении и других отраслях промышленности. Благодаря устойчивости к механическому истиранию и высокой коррозионной стойкости бронзовая продукция применяется для изготовления деталей машин и приборов, участвующих в подвижных узлах в процессе трения. Детали из бронзы требуют периодической замены, то есть являются расходными. Из безоловянных бронзовых сплавов изготавливают прокат для составляющих химических приборов, регулирующей арматуры отопительных систем и трубопроводов другого назначения.

Бронзу используют для литья скульптур и памятников, так как материал долговечен, не подвергается атмосферным влияниям и устойчив против механических повреждений. Изделия высокохудожественных форм в театрах, дворцах, залах (люстры, торшеры, канделябры) также изготавливаются из бронзы.

Основные факты

Медь является очень важным материалом для человека. Первыми орудиями труда у людей были именно медные изделия. Раньше обработка металла производилась холодным методом, что подтверждают различные археологические находки на территории Северной Америки. Еще до приезда Колумба индейцы сохранили такие традиции. Установлено, что еще 7 000 лет назад человек добывал и использовал медную руду. Именно благодаря его податливости он стал очень популярным.

https://youtube.com/watch?v=Halvys9AsvM

Медь имеет красноватый оттенок за счет небольшого количества кислорода в составе. Если полностью исключить этот элемент, то оттенок будет желтоватым. Если начистить медь, то она будет иметь яркий блеск. Чем больше будет валентность, тем слабее оттенок. К примеру, медные карбонаты обычно имеют зеленый либо синий цвет.

После серебра медь является вторым металлом, который обладает хорошей электропроводностью. Из-за этого он активно применяется в электронике. Медь плохо реагирует на кислород. Она покрывается пленкой из-за окисления на свежем воздухе.

Медный оксид можно получить, если прокалить медь, гидрокарбонат или нитрат на воздухе. Это соединение способно окисляюще воздействовать на соединения органического характера.

Если растворить медь в серной кислоте, то выходит медный купорос. Его применяют в химической промышленности, а также использует в качестве профилактики вредителей урожая.

В зависимости от влияния примесей на характер общего медного сплава можно выделить 3 основные группы.

  • К первой относятся те соединения, которые вместе с медью создают твердые вещества. Это касается мышьяка и сурьмы. Сюда же относятся железо, цинк, никель, олово, алюминий, фосфор и прочие.
  • Вторую группу составляют соединения, которые практически не растворяются в меди. Примером является висмут, свинец и прочие. Из-за них обработка посредством давления затруднена. На способность к электропроводности это практически не влияет.
  • Третья группа — это сера и кислород. Вместе с медью они создают химические соединения, которые отличаются своей хрупкостью.

ПРИМЕНЕНИЕ

Олово используется в основном как безопасное, нетоксичное, коррозионностойкое покрытие в чистом виде или в сплавах с другими металлами. Главные промышленные применения олова — в белой жести (лужёное железо) для изготовления тары пищевых продуктов, в припоях для электроники, в домовых трубопроводах, в подшипниковых сплавах и в покрытиях из олова и его сплавов. Важнейший сплав олова — бронза (с медью). Другой известный сплав — пьютер — используется для изготовления посуды. Для этих целей расходуется около 33 % всего добываемого олова. До 60 % производимого олова используется в виде сплавов с медью, медью и цинком, медью и сурьмой (подшипниковый сплав, или баббит), с цинком (упаковочная фольга) и в виде оловянно-свинцовых и оловянно-цинковых припоев. В последнее время возрождается интерес к использованию металла, поскольку он наиболее «экологичен» среди тяжёлых цветных металлов. Используется для создания сверхпроводящих проводов на основе интерметаллического соединения Nb3Sn.
Дисульфид олова SnS2 применяют в составе красок, имитирующих позолоту («поталь»).

Искусственные радиоактивные ядерные изомеры олова 117mSn и 119mSn — источники гамма-излучения, являются мёссбауэровскими изотопами и применяются в гамма-резонансной спектроскопии.
Интерметаллические соединения олова и циркония обладают высокими температурами плавления (до 2000 °C) и стойкостью к окислению при нагревании на воздухе и имеют ряд областей применения.

Олово является важнейшим легирующим компонентом при получении конструкционных сплавов титана.
Двуокись олова — очень эффективный абразивный материал, применяемый при «доводке» поверхности оптического стекла.
Смесь солей олова — «жёлтая композиция» — ранее использовалась как краситель для шерсти.

Олово применяется также в химических источниках тока в качестве анодного материала, например: марганцево-оловянный элемент, окисно-ртутно-оловянный элемент. Перспективно использование олова в свинцово-оловянном аккумуляторе; так, например, при равном напряжении, по сравнению со свинцовым аккумулятором свинцово-оловянный аккумулятор обладает в 2,5 раза большей емкостью и в 5 раз большей энергоплотностью на единицу объёма, внутреннее сопротивление его значительно ниже.
Исследуются изолированные двумерные слои олова (станен), созданные по аналогии с графеном.

Олово (англ. Tin) — Sn

Молекулярный вес 118.71 г/моль
Происхождение названия от ср. древневерхненемецкого elo — «жёлтый», лат. albus — «белый», так что металл назван по цвету
IMA статус действителен, описан впервые до 1959 (до IMA)

Свойства сплава меди и цинка

Существует несколько видов латуни, для которых характерны как общие свойства, так и индивидуальные. Основные характеристики:

  • плотность металла — от 8,2 до 8,7 т/м3;
  • теплоёмкость — 380 Дж/(кг*К);
  • электрическое сопротивление — от 0,025 до 0,108 Ом*кв. мм/м;
  • температура плавления — от 870 до 990 градусов.

Оба основных элемента имеют относительно высокую плотность. Соответственно, их соединение характеризуется высокой массой. Латунь легко обрабатывается дуговой сваркой, но не поддастся газовой. Быстро окисляется, потому при необходимости метал покрывается лаками или подвергается полировке. Цинк обеспечивает прочность и пластичность. Последние могут регулироваться содержанием цинка.

Определённые свойства придаются легирующими присадками, которые изменяют состав латуни и позволяют регулировать её характеристики в широких пределах. Особенностью присадок является отсутствие изменения удельного веса сплава. Добавка магния увеличивает прочность и антикоррозионные качества. Никель уменьшает окисление, а свинец улучшает пластичность. Если добавить кремний без других присадок, то повысится пластичность и прочность. Существует множество комбинаций соотношения цинка, меди и присадок, которые обеспечивают необходимые характеристики.

История открытия Медь Cuprum

Открытие элемента Cuprum — один из первых металлов, хорошо освоенных человеком из-за доступности для получения из руды и малой температуры плавления. Этот металл встречается в природе в самородном виде чаще, чем золото, серебро и железо. Одни из самых древних изделий из меди, а также шлак — свидетельство выплавки её из руд — найдены на территории Турции, при раскопках поселения Чатал-Гююк.

Медный век

значительное распространение получили медные предметы, следует во всемирной истории за каменным веком. Несмотря на мягкость меди, медные орудия труда по сравнению с каменными дают значительный выигрыш в скорости рубки, строгания, сверления и распилки древесины, а на обработку кости затрачивается примерно такое же время, как для каменных орудий.

В древности медь применялась также в виде сплава с оловом — бронзы — для изготовления оружия и т. п., бронзовый век пришёл на смену медному. Сплав меди с оловом (бронзу) получили впервые за 3000 лет до н. э. на Ближнем Востоке. Бронза привлекала людей прочностью и хорошей ковкостью, что делало её пригодной для изготовления орудий труда и охоты, посуды, украшений. Все эти предметы находят в археологических раскопах. На смену бронзовому веку относительно орудий труда пришёл железный век.

Первоначально медь добывали из малахитовой руды, а не из сульфидной, так как она не требует предварительного обжига. Для этого смесь руды и угля помещали в глиняный сосуд, сосуд ставили в небольшую яму, а смесь поджигали. Выделяющийся угарный газ восстанавливал малахит до свободной меди:

На Кипре уже в 3 тысячелетии до нашей эры существовали медные рудники и производилась выплавка меди.

На территории России и сопредельных стран медные рудники появились за два тысячелетия до н. э. Остатки их находят на Урале (наиболее известное месторождение — Каргалы), в Закавказье, в Сибири, на Алтае, на территории Украины.

В XIII—XIV вв. освоили промышленную выплавку меди. В Москве в XV в. был основан Пушечный двор, где отливали из бронзы орудия разных калибров. Много меди шло на изготовление колоколов. Из бронзы были отлиты такие произведения литейного искусства, как Царь-пушка (1586 г.), Царь-колокол (1735 г.), Медный всадник (1782 г.), в Японии была отлита статуя Большого Будды (храм Тодай-дзи) (752 г.).

С открытием электричества в XVIII—XIX вв. большие объёмы меди стали идти на производство проводов и других связанных с ним изделий. И хотя в XX в. провода часто стали делать из алюминия, медь не потеряла значения в электротехнике.

Способность бронзы сопротивляться коррозии

Одним из самых важных свойств сплава является его коррозионная устойчивость. Особенно это касается тех составов, в которых присутствует значительное содержание марганца и кремния (более 2%).

Было установлено, что высокая коррозионная устойчивость проявляется при контакте бронзы с водой (морской и пресной), концентрированными щелочами и кислотами, сульфатами и хлоридами легких металлов, а также при контакте с сухими газами (безоловянные бронзы).

Конечно же, в целом коррозионные свойства сплава зависят от легирующих элементов. Так, высокое содержание свинца уменьшает способность сопротивляться коррозии, а никель повышает это свойство.

Латуни

Латуни — это медные сплавы, в которых основным легирующим элементом является цинк.

В зависимости от содержания цинка латуни промышленного применения бывают:

  1. однофазные a — латуни, содержащие до 39 % цинка (это предельная растворимость цинка в меди);
  2. двухфазные (a+b|)- латуни, содержащие до 46 % цинка;
  3. однофазные b|- латуни ,содержащие до 50 % цинка.

Однофазные a- латуни пластичны, хорошо обрабатываются резанием, давлением при температурах ниже 300С и выше 700 С (в интервале от 300 С до 700 С — зона хрупкости). С увеличением содержания цинка прочность латуней повышается. В латунях b|- фаза представляет собой упорядоченный твердый раствор на базе электронного соединения СuZn с решеткой ОЦК, она хрупкая и прочная. Поэтому, чем больше в латунях b|- фазы, тем они прочнее и менее пластичны. Практическое применение имеют латуни с содержанием цинка до 42…43 %.

Латуни, обрабатываемые давлением, маркируются буквой Л (латунь), после которой ставятся буквенные обозначения легирующих элементов; цифры, следующие за буквами, указывают содержание меди и количество соответствующего легирующего элемента в процентах. Содержание цинка определяется по разности от 100 %. Например, латунь Л62 содержит 62 % Сu и 38 % Zn. Литейные латуни маркируются буквой Л, после которой ставится содержание цинка и других легирующих элементов в процентах. Количество меди определяется по разности от 100 %. Например, латунь ЛЦ36Мц20С2 содержит 36 % Zn, 20 % Mn, 2 % Pb и 42 % Сu.

К однофазным a — латуням относятся Л96 (томпак), Л80 (полутомпак), Л68, имеющая наибольшую пластичность (d = 56 %). Двухфазные (a+b|) — латуни марок Л59 и Л60 имеют меньшую пластичность в холодном состоянии, но большую прочность и износостойкость. Однофазные имеют после отжига sв = 250…350 МПа и d = (50…56) %, двухфазные — sв = 400…450 МПа и d = (35…40 %).

Для повышения механических свойств и коррозионной стойкости латуни могут легироваться оловом, алюминием, марганцем, кремнием, никелем, железом и др.

Введение легирующих элементов (кроме никеля) уменьшает растворимость цинка в меди и способствует образованию b|- фазы, поэтому такие латуни чаще двухфазные (a+b|). Никель увеличивает растворимость цинка в меди, и при достаточном его содержании латунь из двухфазной становится однофазной. Свинец облегчает обрабатываемость резанием и улучшает антифрикционные свойства. Сопротивление коррозии повышают Al, Zn, Si, Mn, Ni, Sn.

В морском судостроении применяются оловянистые ”морские” латуни, например, ЛО70-1 (70 % Сu, 1 % Sn, 29 % Zn). Она используется для изготовления конденсаторных трубок, деталей теплотехнической аппаратуры.

Алюминиевые латуни используют для изготовления конденсаторных трубок, цистерн, втулок, а также для изготовления коррозионно-стойких деталей, работающих в морской воде. Марки латуней: ЛА77-2, ЛАЖ60-1-1, ЛАН59-3-2 (в электрических машинах, в хим. машиностроении). Из латуни ЛАНКМц75-2-2,5-0,5-0,5 изготовляют цельнотянутые круглые трубы для производства манометрических трубок и пружин в приборах повышенного класса точности. С помощью закалки и старения sв достигает 700 МПа.

Марганцевые латуни кроме хороших механических и технологических свойств (обрабатываются давлением в холодном и горячем состоянии) обладают высокой коррозионной стойкостью в морской воде, хлоридах и перегретом паре. Латуни ЛМц 58-2 и ЛМцА 57-3-1 применяются в основном для изготовления крепежных изделий арматуры.

Кремнистые латуни характеризуются высокой прочностью (sв до 640 МПа), пластичностью и вязкостью до минус 183 С. Латунь ЛК80-3 применяют для изготовления арматуры, деталей приборов в судо- и общем машиностроении.

Свинцовистые латуни отлично обрабатываются резанием и обладают высокими антифрикционными свойствами. Латуни ЛС60-1, ЛС59-1 применяют для изготовления крепежных деталей , зубчатых колес, втулок.

Никелевая латунь обладает повышенными механическими (sв до 785 МПа) и коррозионными свойствами, обрабатывается давлением в холодном и горячем состоянии. Латунь ЛН65-5 применяется для изготовления манометрических и конденсаторных трубок, различного вида проката.

Литейные латуни содержат те же элементы, что и латуни, обрабатываемые давлением; от последних литейные отличает, как правило, большее легирование цинком и другими металлами. Вследствие этого они обладают хорошими литейными характеристиками.

Маркировка по ГОСТ

Существуют различные маркировки меди

В зависимости от добавок, примесей и их доли в общем объеме, сплав имеет разные свойства. Это может быть устойчивость к коррозии, прочность, антифрикционный эффект и прочее. Самыми распространенными являются смеси меди с алюминием, цинком, марганцем, магнием. Но в промышленности применяются варианты и с другими химическими веществами.

Разработано специальная таблица с маркировкой меди и ее характеристиками. Она применяется, когда нужно определить состав по классификации ГОСТ.

  • К примеру, в Марке М00 содержание меди должно быть не менее 99,99%.
  • В марке М0 содержится примерно 99,95% меди. В марке М0б присутствует примерно 99,97% основного компонента.
  • Если медь обозначается как М1, это значит, что ее доля во всем составе около 99,9%.
  • Если имеется пометка М1р, то это означает, что в веществе содержится 99,9 меди.
  • Если имеется обозначение М2, то меди будет 99,7%, а вот в марке М2р тоже такая же концентрация основного компонента.
  • Если пишется марка М3 иМ3р, то количество меди составляет 99,5%. Если марка М4, то количество основного вещества равняется 99%.
  • Несмотря на то что количество меди в марках М1 и М1р, М2 и М2р, М3 и М3р одинаковое, при этом в продуктах с буквой «р» содержание кислорода меньше и составляет только не более 0,01%, а вот в других – примерно 0,05-0,08%. Кроме того, в состав включен фосфор, но его доля не более 0,04%.

А вот в продукте с маркой М0б совсем отсутствует кислород, в отличие от продукта с пометкой М0, где содержание кислорода составляет примерно 0,02%.

  1. Сплавы, которые содержат минимальное количество кислорода — не более 0,011%. По ГОСТу они обозначаются как М00, М01 и М3. Обычно применяются они для токопроводников либо создания сплавов, которые отличаются высокой чистотой.
  2. Металл рафинированного типа, которые имеет примеси фосфора в общем объеме. Предназначен для общего применения. По ГОСТу обозначается как М1ф, М2р, М3р. Обычно применяется для создания фольги, труб и листов горячего и холоднокатаного типа.

Для создания чистых и высокоточных металлов применяется только медь той марки, где отсутствует кислород

Это очень важно для криогенной промышленности. В остальных же случаях используются другие виды меди

Например, применение бывает следующим в зависимости от марки:

  1. М0 и М00 используется в производстве электропроводниковых деталей и деталей с высокой частотой. Обычно такие элементы получаются дороже, и делают их на заказ.
  2. М001б и М001бф применяется для медной проволоки с небольшим диаметром сечения. Также подходит для другой проводки и электрических шин.
  3. М1 (в том числе М1р, М1ре и М1ф) применяются как проводники для электрического тока. Они задействованы для создания бронзы высокого качества, где минимальное количество олова. Обычно делают электроды и прутья для сварки чугуна и прочих металлов, которые трудно сваривать.
  4. М2 (в том числе М2к, М2р) используется обычно для деталей, которые применяются в криогенной промышленности. Еще подходит для литого проката, который будет подвергаться обработки под давлением.
  5. М3 (в том числе М3р и М3к) подходит для производства полуфабрикатов прессованного типа либо проката плоского характера. Еще используется для проволоки, которая задействуется для сварки электромеханического характера чугунных и медных деталей.

Орехи и семена

Самая высокая концентрация меди — в кешью (2,2 мг), за ним следуют фундук и бразильский орех (1,8 мг). В грецком орехе 1,6 мг, в кедровых орешках и фисташках — 1,3 мг.

Орехи и семена обязательно следует включать в рацион взрослым и детям, это источник энергии, содержащий жирные кислоты, витамины, кальций, цинк и железо. Наиболее полезны свежие и сушеные орехи, в жареном виде они становятся слишком калорийными и содержат меньше полезных веществ.

Богаты медью семена кунжута: одна столовая ложка восполнит половину суточной нормы. Необязательно есть их всухомятку: можно добавить кунжут в салат, овощное блюдо или в качестве посыпки для выпечки.

Основные факты

Медь является очень важным материалом для человека. Первыми орудиями труда у людей были именно медные изделия. Раньше обработка металла производилась холодным методом, что подтверждают различные археологические находки на территории Северной Америки. Еще до приезда Колумба индейцы сохранили такие традиции. Установлено, что еще 7 000 лет назад человек добывал и использовал медную руду. Именно благодаря его податливости он стал очень популярным.

https://youtube.com/watch?v=Halvys9AsvM

Медь имеет красноватый оттенок за счет небольшого количества кислорода в составе. Если полностью исключить этот элемент, то оттенок будет желтоватым. Если начистить медь, то она будет иметь яркий блеск. Чем больше будет валентность, тем слабее оттенок. К примеру, медные карбонаты обычно имеют зеленый либо синий цвет.

После серебра медь является вторым металлом, который обладает хорошей электропроводностью. Из-за этого он активно применяется в электронике. Медь плохо реагирует на кислород. Она покрывается пленкой из-за окисления на свежем воздухе.

Медный оксид можно получить, если прокалить медь, гидрокарбонат или нитрат на воздухе. Это соединение способно окисляюще воздействовать на соединения органического характера.

Если растворить медь в серной кислоте, то выходит медный купорос. Его применяют в химической промышленности, а также использует в качестве профилактики вредителей урожая.

В зависимости от влияния примесей на характер общего медного сплава можно выделить 3 основные группы.

  • К первой относятся те соединения, которые вместе с медью создают твердые вещества. Это касается мышьяка и сурьмы. Сюда же относятся железо, цинк, никель, олово, алюминий, фосфор и прочие.
  • Вторую группу составляют соединения, которые практически не растворяются в меди. Примером является висмут, свинец и прочие. Из-за них обработка посредством давления затруднена. На способность к электропроводности это практически не влияет.
  • Третья группа — это сера и кислород. Вместе с медью они создают химические соединения, которые отличаются своей хрупкостью.

Цены монетных сплавов

Здесь приводятся цены на сплавы, из которых изготавливают монеты. Монетных сплавов много, но самыми распространенными являются мельхиор, нейзильбер (нойзильбер), медно-цинковый сплав (латунь), алюминиевая бронза. Для вычисления цены монетного сплава берется цена составляющих сплав металлов по состоянию на 03 February 2021 года по данным London Metal Exchange (LME) (Лондонской Биржи Металлов).
Данные по сплавам (мельхиору, нейзильберу, латуни, бронзе) приводятся в следующих единицах измерения: цена продажи 1 грамма сплава в рублях РФ.

Мельхиор

Мельхиор — сплав меди, в основном, с никелем, иногда с добавками железа и марганца. Обычно в состав мельхиора входит 5—30% никеля, ≤0,8% железа и ≤1% марганца.

Ед. измр. Цена продажи, руб. РФ
1 грамм мельхиора (5% никеля) 62 коп.
Ед. измр. Цена продажи, руб. РФ
1 грамм мельхиора (30% никеля) 81 коп.

Смотрите дополнительно отчеты:

  • Динамика изменения цены продажи 1 грамма мельхиора (5% никеля) в рублях РФ;
  • Динамика изменения цены продажи 1 грамма мельхиора (30% никеля) в рублях РФ.

Нейзильбер

Нейзильбер — сплав меди с 5—35% никеля и 13—45% цинка. Благодаря содержанию цинка сплав несколько дешевле аналогичного по внешнему виду и механическим свойствам мельхиора.

Ед. измр. Цена продажи, руб. РФ
1 грамм нейзильбера (5% никеля, 13% цинка) 57 коп.
Ед. измр. Цена продажи, руб. РФ
1 грамм нейзильбера (35% никеля, 45% цинка) 67 коп.

Смотрите дополнительно отчеты:

  • Динамика изменения цены продажи 1 грамма нейзильбера (5% никеля, 13% цинка) в рублях РФ;
  • Динамика изменения цены продажи 1 грамма нейзильбера (35% никеля, 45% цинка) в рублях РФ.

Латунь

Латунь — двойной или многокомпонентный сплав на основе меди, где основным легирующим компонентом является цинк, иногда с добавлением олова, никеля, свинца, марганца, железа и других элементов.

Ед. измр. Цена продажи, руб. РФ
1 грамм латуни (30% цинка) 47 коп.

Смотрите дополнительно отчеты:

Динамика изменения цены продажи 1 грамма латуни (30% цинка) в рублях РФ.

Алюминиевая бронза

Алюминиевая бронза — вид бронзы, у которой алюминий является основным легирующим металлом, добавляемым к меди.
Промышленное применение нашли алюминиевые бронзы разного состава, но при этом большинство сплавов содержит алюминий в количестве от 5% до 11% по массе, а остальное составляет медь и другие легирующие элементы, такие как железо, никель, марганец и кремний.

Ед. измр. Цена продажи, руб. РФ
1 грамм бронзы (5% алюминия) 56 коп.

Смотрите дополнительно отчеты:

Динамика изменения цены продажи 1 грамма алюминиевой бронзы (5% алюминия) в рублях РФ.

Ед. измр. Цена продажи, руб. РФ
1 грамм бронзы (11% алюминия) 54 коп.

Оловянная бронза

Оловянная бронза — сплав меди с оловом (медь преобладает), один из первых освоенных человеком сплавов металлов. Она обладает значительно большей, по сравнению с чистой медью (освоенной ранее бронзы), твёрдостью, достаточной прочностью и более легкоплавка.
По своему составу эта монетная бронза различается: греческая — 84% меди и 16% олова; римская — 79% меди, 5% олова и 16% свинца или 63% меди, 8% олова и 29% свинца.
В середине XIX века состав оловянной бронзы стал таким: 95% меди, 4% олова и 1% свинца или 96% меди и 4% олова.

Ед. измр. Цена продажи, руб. РФ
1 грамм бронзы (4% олова) 64 коп.
Ед. измр. Цена продажи, руб. РФ
1 грамм бронзы (16% олова) 78 коп.

Смотрите дополнительно отчеты:

  • Динамика изменения цены продажи 1 грамма оловянной бронзы (4% олова) в рублях РФ;
  • Динамика изменения цены продажи 1 грамма оловянной бронзы (16% олова) в рублях РФ.

Обработка бронзы

Как уже было сказано ранее, сплав олова и меди – это достаточно прочный материал. Он плохо поддается заточке, резанию и обработке давлением. В целом это литейный материал, обладающий малой усадкой — около одного процента. И даже несмотря на невысокую текучесть и склонность к ликвации, бронзу применяют для изготовления сложных по конфигурации отливок. Не исключение и художественное литьё.

Легирующие элементы, которые добавляются в сплав олова и меди, улучшают его свойства и уменьшают цену. Так, например, легирование свинцом и фосфором позволяет улучшить обработку бронзы, а цинк увеличивает её коррозионную стойкость. Для определенных целей изготавливают деформированные сплавы. Они легко изменяют свой вид при использовании холодной ковки.

Физиологическое действие

О роли олова в живых организмах практически ничего не известно. Ежедневное поступление олова с пищей составляет 0,2—3,5 мг, при регулярном потреблении консервированной пищи — до 38 мг. В теле человека содержится примерно (1—2)·10−4 % олова, наибольшая концентрация наблюдается в кишечнике.

Металлическое олово не токсично, что позволяет применять его в пищевой промышленности. Олово представляет опасность для человека в виде паров, различных аэрозольных частиц и пыли. При воздействии паров или пыли олова может развиться станноз — поражение лёгких. Станнан (оловянистый водород) — сильнейший яд. Также очень токсичны некоторые оловоорганические соединения. Временно допустимая концентрация соединений олова в атмосферном воздухе 0,05 мг/м3, ПДК олова в пищевых продуктах 200 мг/кг, в молочных продуктах и соках — 100 мг/кг. Токсическая доза олова для человека — 2 г, интоксикация организма начинается при содержании в организме 250 мг/кг.

Вредные примеси, содержащиеся в олове в обычных условиях хранения и применения, в том числе в расплаве при температуре до 600 °C, не выделяются в воздух в объёмах, превышающих предельно допустимую концентрацию (в частности, определенную по ГОСТ 12.1.005—76. Длительное (в течение 15—20 лет) воздействие пыли олова оказывает фиброгенное воздействие на лёгкие и может вызвать заболевание работающих пневмокониозом.

Производство латуни

Современные способы производства латуни основаны на плавлении халькопирита (медный колчедан) в электрических печах при температуре +1400 °C. Образующийся в процессе плавления силикат всплывает на поверхность и удаляется. Основной металл (штейн) сливается в конвертер и продувается кислородом. В результате окислительных реакций образуется металлическая «черновая» медь с содержанием металла около 91%. Далее происходит электролитическая очистка в подкисленном растворе медного купороса. Образующаяся на катоде электролитическая медь имеет чистоту 99.99% и используется в производстве проводов, электрического оборудования и сплавов. В расплавленную медь порционно вводят цинк, который придает ей новые свойства — прочность, коррозионную стойкость и пластичность. В зависимости от области применения металла могут добавляться и другие добавки: никель, железо, олово, марганец, алюминий. Изготовленный таким способом сплав из меди имеет низкий коэффициент трения и применяется в изготовлении червячных пар и в качестве втулок скольжения в малых бытовых электродвигателях.

Одним из видов латуни является томпак (медь – 88–97%, цинк — до 10%), который повторно был открыт лондонским часовщиком Кристофером Пинчбеккером в XVIII веке. Ранее этот сплав был известен перуанской цивилизации Моче. Название его происходит от французского tombak, что в переводе означает медь.

Широкое применение томпак получил в плакировании стали и получении биметаллического соединения сталь-латунь.

Латунь получают путем плавления меди и стали.

Например, внутренняя поверхность ядерного реактора плакирована высоколегированной аустенитной сталью, так как основной металл корпуса подвержен коррозии при воздействии высоких температур.

Томпак применяется для плакирования стали при изготовлении монет достоинством 10 и 50 копеек.

Оцените статью
Рейтинг автора
5
Материал подготовил
Андрей Измаилов
Наш эксперт
Написано статей
116
Добавить комментарий