Содержание
- 1 Ультразвуковой анемометр
- 2 Что такое анемометр?
- 3 Изготовление анемометра своими руками
- 4 Тепловой анемометр
- 5 Тепловые приборы
- 6 Ультразвуковые анемометры
- 7 Механические анемометры
- 8 Какие бывают анемометры?
- 9 Что означает слово «анемометр»?
- 10 Ультразвуковые
- 11 Бытовые домашние метеостанции – метеостанции для дома:
- 12 Чашечные анемометры
- 13 Для чего предназначен прибор. Сферы применения
- 14 Вращательные анемометры
- 15 Советы по выбору
- 16 Выбор недорогого анемометра
- 17 Как правильно выбирать
- 18 Анемометр крыльчатый
- 19 Основной принцип действия
Ультразвуковой анемометр
Трёхмерный ультразвуковой анемометр GILL WindMaster Принцип действия анемометров ультразвукового типа основан на измерении скорости звука, которая изменяется в зависимости от ориентации вектора движения воздуха (направления ветра) относительно пути распространения звука.
Существуют двухкомпонентные ультразвуковые анемометры — измеряют помимо скорости и направление ветра по частям света — направление горизонтального ветра и трёхкомпонентные ультразвуковые анемометры — измерители всех трёх компонент вектора скорости воздуха.
Скорость звука в таких анемометрах измеряется по времени прохода ультразвуковых импульсов между фиксированным расстоянием от излучателя до ультразвукового микрофона, затем измеренные времена пересчитываются в две или три компоненты скорости движения воздуха.
Так как скорость звука в воздухе зависит ещё от температуры (возрастает пропорционально корню квадратному из абсолютной температуры), в ультразвуковых анемометрах обязательно есть термометр, по показаниям которого вносятся поправки в вычисления скорости ветра.
Многие современные модели электронных анемометров позволяют измерять не только скорость ветра (это основное предназначение прибора), но и снабжены дополнительными удобными сервисными функциями — вычисления объёмного расхода воздуха, измерения температуры воздуха (термоанемометр), влажность воздуха (термоанемометр с функцией измерения влажности).
Российскими предприятиями также выпускаются многофункциональные приборы, которые содержат в себе функции как термоанемометра, так и гигрометра (измерение влажности) и манометра (измерение дифференциального давления в воздуховоде). Например, метеометр МЭС200, дифманометр ДМЦ01М. Такие приборы используются при создании, обследовании, ремонте, поверке вентиляционных шахт в зданиях любого типа.
Как правило, все выпускаемые на территории РФ анемометры подлежат обязательной сертификации и государственной поверке, так как являются средствами измерения.
Некоторые народные умельцы делают самодельные анемометры для собственных бытовых нужд, например, для сада-огорода.
Что такое анемометр?
В современном значении под анемометром понимают устройство, позволяющее произвести измерения скорости ветра или движения газов. Сфера его применения охватывает любые места, где существует необходимость в определении темпа передвижения воздушных потоков. Помимо метеорологических станций, прибор используется на аэродромах, вертолетных площадках, в аэроклубах и организациях, предоставляющих возможность совершить полет на дельтапланах. Нелишним анемометр бывает на спасательных вышках и парусных судах, для которых сильный ветер в 7 баллов уже представляет большую опасность.
Изготовление анемометра своими руками
Приложив немного старания и желания, можно смастерить самодельный анемометр в домашних условиях. Для изготовления устройства понадобится старый видеомагнитофон, вернее, его часть называемая блоком вращения головок. Из него надо удалить все лишнее, оставив каркас из металла вращающейся головки с осью, часть с блоком подшипников и шайбу крепящую двигатель. Устройство будет измерять среднюю и сильную скорость ветра.
Проделываем следующее:
- Сверлим сверлом по металлу в боку вращающейся части три дыры Ø 4 мм для крепежа чашек, ориентируясь на 3 дыры головки, крепящей внутренние узлы;
- Вставляем в дыры болты М4 размером 10 мм. Чтобы обеспечить хороший контакт с лопастями из подручного материала (камера велосипеда) вырезаем шайбы, чтобы чашки не вращались; Берем части видеоголовки, просверливаем в них отверстия и подготавливаем резиновые шайбы
- Лопастями послужат кружки из пластмассы со срезанными ручками, на месте которых просверлена дыра Ø 4 мм; В качестве лопастей вполне подойдут самые обычные пластиковые кружки
- Крепим чашки к узлу вращения, с помощью шайбы и гайки. Делаем это аккуратно, чтобы не повредить чашки. Проверяем, чтобы наша конструкция легко вращалась. Итак, узел мы собрали. А в роль датчика будет выполнять велокомпьютер; Собираем узел зафиксировав кружки с помощью болтов
- Клеим магнит на вращающуюся часть узла. В период крепежа проводим балансировку узла вращения. Она нужна для того, чтобы анемометр не вращал при работе шест, на который он будет позже установлен. Магнит берем из комплектации велокомпьютера;
- Сверлим в неподвижной части узла дыру Ø 7 мм, приклеиваем датчик от велокомпьютера, при этом кладем на магнит тонкую картонку и смазываем клеем. С помощью тестера проверяем датчик на срабатывание;
- Узлом крепления послужит небольшой кусок уголка, который мы закрепим к неподвижной части с помощью двух длинных болтов;
- Подключаем кабель. Удлиняем кабель датчика с помощью компьютерного кабеля. На снимке показан настольный вариант велокомпьютера, он медной проволокой прикручен к системе двигателя видеоголовки. Сверлим отверстия для уголка, дорабатываем его и крепим к конструкции
Тепловой анемометр
Датчик лабораторного теплового анемометра Принцип работы таких анемометров, часто называемых термоанемометрами, основан на увеличении теплопотерь нагретого тела при увеличении скорости обдувающего более холодного газа — изменение числа Нуссельта.
Это явление всем знакомо, известно, что при неизменной температуре в ветреную погоду ощущение холода сильнее при большей скорости ветра.
Конструктивно представляет собой открытую тонкую металлическую проволоку (нить накаливания), нагреваемую выше температуры среды электрическим током. Проволока изготавливается из металла с положительным температурным коэффициентом сопротивления — из вольфрама, нихрома, платины, серебра и т. п.)
Сопротивление нити изменяется от изменений температуры, таким образом по сопротивлению можно измерить температуру. Температура определённым образом зависит от скорости ветра, плотности воздуха, его влажности.
Проволока термодатчика включается в электронную схему. В зависимости от метода включения датчика различают приборы с стабилизацией тока проволоки, стабилизацией напряжения и с термостатированием проволоки. В первых двух методах характеристикой скорости является температура проволоки, в последнем — мощность, необходимая для термостабилизации.
Термоанемометры широко используется практически во всех современных автомобилях в качестве датчика массового расхода воздуха (ДМРВ).
Недостатки термоанемометров — низкая механическая прочность, так как применяемая проволока очень тонкая, другой недостаток — нарушение калибровки из-за загрязнения и окисления горячей проволоки, но, так как они практически безынерционны, широко применяются в аэродинамических экспериментах для измерения локальной турбулентности и пульсаций потока.
Тепловые приборы
Принцип работы подобных анемометров заключается в определении электрического сопротивления проволоки. Данное значение изменяется в зависимости от температуры, которая снижается за счет движущегося потока воздуха. Это подобно тому, как в солнечный жаркий день ветерок холодит кожу.
Конструкция анемометра представляет собой металлическую нить накаливания (из платины, нихрома, серебра, вольфрама и других металлов), которая разогревается электрическим током до температуры, превышающей температуру окружающей среды.
У приборов данного типа имеется один существенный недостаток – низкая прочность при механических воздействиях.
Ультразвуковые анемометры
Принцип работы данных приборов основан на определении скорости прохождения звука в движущемся воздушном потоке. Именно поэтому данный анемометр еще называют акустическим. При движении звука в одном направлении с воздухом его скорость увеличивается. При движении навстречу ветру скорость звука уменьшается. Благодаря этому измеряется время получения ультразвукового импульса. Устройство подключается к компьютеру для обработки полученных данных.
Датчик может выполнять несколько функций. В зависимости от их количества, можно выделить несколько видов датчиков:
Двухмерные, которые способны определить скорость и направление ветра.
Трехмерные, которые определяют все три компонента вектора скорости ветра.
Четырехмерные, которые в дополнение к показателям предыдущего вида могут измерять температуру воздуха.
Ультразвуковые приборы измеряют скорость ветра до 60 м/с.
Механические анемометры
Чашечный анемометр
Наиболее распространённый тип анемометра — это чашечный анемометр. Изобретён доктором Джоном Томасом Ромни Робинсоном, работавшем в обсерватории Армы, в 1846 году. Состоит из четырёх полусферических чашек, симметрично насаженных на крестообразные спицы ротора, вращающегося на вертикальной оси.
Чашечный анемометр с вертикальной осью расположенный на Скаджит Бэй, штат Вашингтон. Июль-Август, 2009.
Ветер любого направления вращает ротор со скоростью, пропорциональной скорости ветра.
Робинсон предполагал, что для такого анемометра линейная скорость кругового вращения чашек составляет одну треть от скорости ветра, и не зависит от размера чашек и длины спиц. Проделанные в то время эксперименты это подтверждали. Более поздние измерения показали, что это неверно, т. н. «коэффициент анемометра» (величина обратная отношению линейной скорости к скорости ветра) для простейшей конструкции Робинсона зависит от размеров чашек и длины спиц и лежит в пределах от двух до чуть более трёх.
Трёхчашечный ротор, предложенный канадцем Джоном Паттерсоном в 1926 году, и последующие усовершенствования формы чашек Бревортом и Джойнером в 1935-м году сделали чашечный анемометр линейным в диапазоне до 100 км/ч (27 м/с) с погрешностью около 3 %. Паттерсон обнаружил, что каждая чашка даёт максимальный вращающий момент, будучи повёрнутой на 45° к направлению ветра. Трёхчашечный анемометр отличается бóльшим вращающим моментом и быстрее отрабатывает порывы, чем четырёхчашечный.
Оригинальное усовершенствование чашечной конструкции, предложенное австралийцем Дереком Вестоном (в 1991 г.), позволяет с помощью того же ротора определять не только скорость, но и направление ветра. Оно заключается в установке на одну из чашек флажка, из-за которого скорость ротора неравномерна в течение одного оборота (половину оборота флажок движется по ветру, половину оборота — против). Определив круговой сектор относительно метеостанции, в котором скорость увеличивается или уменьшается, определяется направление ветра.
Вращение ротора в простейших анемометрах передаётся на механический счётчик числа оборотов. Скорость подсчитывается по числу оборотов за заданное время, например, минуту, таковы ручные анемометры.
В более совершенных анемометрах ротор связан с тахогенератором, выходной сигнал которого (напряжение) подаётся на вторичный измерительный прибор (вольтметр), или используются тахометры, основанные на иных принципах. Такие анемометры сразу показывают мгновенную скорость ветра, без дополнительных вычислений, и позволяют следить за изменениями скорости ветра в реальном времени.
Самые распространённые модели современности среди чашечных анемометров это МС 13, М 95ЦМ, анемометр АРЭ
Помимо метеорологических измерений, чашечные анемометры применяются и на башенных подъёмных кранах, для сигнализации об опасном превышении скорости ветра.
Крыльчатые анемометры
В таких анемометрах поток воздуха вращает миниатюрное лёгкое ветровое колесо (крыльчатку), ограждённую металлическим кольцом для защиты от механических повреждений. Вращение крыльчатки через систему зубчатых колёс передаётся на стрелки счётного механизма.
Ручные крыльчатые анемометры применяются для измерения скорости направленного воздушного потока в трубопроводах и коробах вентиляционных устройств для вычисления расхода вентиляционного воздуха в вентиляционных отверстиях, воздуховодах жилых и производственных зданий.
Наиболее распространённые анемометры с крыльчаткой-зондом — это Testo 416, анемометр ИСП-МГ4, анемометр АПР-2 и другие.
Какие бывают анемометры?
В зависимости от конструкции и принципа действия анемометры разделяют на механические и электронные. К первым относят чашечные и крыльчатые приборы. Чашечный анемометр имеет наибольшее распространение и представляет собой ротор, на который симметрично насажены полусферические чашки.
Под действием ветра ротор вращается на вертикальной оси, а механический счетчик записывает количество оборотов чашек за определенное время. В крыльчатом анемометре установлено миниатюрное ветровое колесо, вращение которого передается на стрелку механического счетчика. Его используют преимущественно в трубопроводах и вентиляционных системах для расчета расхода воздуха. Тепловой анемометр относится к электронным приборам и работает посредством электронной схемы, в которую включается проволока термодатчика. Суть функционирования прибора заключается в нагреве нити накаливания с последующим измерением ее сопротивления в зависимости от окружающей температуры.
Более совершенным является другое электронное устройство – ультразвуковой анемометр. Он измеряет скорость воздушных потоков на основании замеров скорости звуков, меняющихся согласно направлению ветра. Некоторые его модели совмещают в себе функции манометра и гигрометра.
Что означает слово «анемометр»?
Анемометр имеет другое название «ветрометр» и происходит от двух греческих слов – ἄνεμος (ветер) и μετρέω (измерять). Простым языком, он представляет собой прибор, измеряющий ветер. Создателем анемометра принято считать итальянского математика Леона Баттиста Альберти.
Прибор, придуманный им примерно в 1540 году, с того времени практически не изменился. В последующие столетия многие ученые, в том числе Роберт Гук, пытались разработать свои версии устройства, причем некоторым из них ошибочно приписывалась слава изобретателя. В 1846 году ирландский астроном Джон Робинсон значительно улучшил конструкцию анемометра с помощью четырех полусферических чашек и механических колес. Некоторые новые функции устройство приобрело в конце XX века. Благодаря Дереку Уэстону оно получило возможность определять направление ветра, а доктор Эндрюс Флитц разработал звуковой анемометр.
Ультразвуковые
Принцип действия основан на изменении скорости прохождения звуковых колебаний в движущейся воздушной среде. Если движущийся поток воздуха направлен навстречу источнику ультразвука, скорость последнего уменьшается. И наоборот, движущийся в одном направлении со звуком, поток увеличивает его скорость. Таким образом, контролируя время получения отражённого от воздушной среды ультразвукового импульса, удаётся определить скорость потока. Ультразвуковые устройства подключаются к блоку обработки метеоданных, результаты выводятся на персональный компьютер. Датчики различаются по количеству выполняемых измерений:
- Двухмерные. Измеряют направление потока и его скорость.
- Трёхмерные. Определяют 3 скоростных вектора.
- Термоанемометры (4-мерные). Такой анемометр — это прибор для измерения не только 3 скоростных компонента, но и температуры окружающего воздуха.
Отсутствие движущихся элементов позволяет акустическому устройству измерять скорость ветра до 60 м/с.
Бытовые домашние метеостанции – метеостанции для дома:
Бытовые домашние метеостанции являются бытовыми приборами. В отличие от обычных метеорологических станций они имеют ограниченную функциональность. В них обрабатывается значительно меньше данных. При этом датчики устанавливаются за окном, на улице (вне помещения), в одном или разных помещениях. Домашние метеостанции, как правило, показывают температуру в помещении, температуру вне помещения, измеряют влажность, атмосферное давление и исходя из обработки процессором полученных данных формируют прогноз погоды на сутки. Некоторые домашние метеостанции определяют и показывают скорость и направление ветра, количество осадков, уровень УФ-радиации и пр. климатические данные.
Бытовые домашние метеостанции обычно включают цифровую консоль, которая обеспечивает считывание собираемых данных. Эти консоли могут взаимодействовать с персональным компьютером, где данные отображаются, хранятся и загружаются на веб-сайты или системы приема/распределения данных.
Примечание: Фото https://www.pexels.com, https://pixabay.com
Коэффициент востребованности 1
Чашечные анемометры
В качестве чувствительного органа служат 3 или 4 полусферических чашки, посаженных на ось с помощью соединительных спиц. Поток воздуха действует на чашки с разной силой (выпуклая часть обтекается, а вогнутая оказывает сопротивление), в результате система получает вращательный импульс.
Ручной механический анемометр оснащён несколькими чашками. Циферблат представляет собой счётчик оборотов с тремя шкалами: единицы, сотни и тысячи. Линейная скорость чашек не совпадает со скоростью воздушного потока. Коэффициент анемометра (величина, обратная отношению скоростей потока и чашек) находится в интервале от двух до трёх единиц. Кроме того, характеристика устройства — нелинейная. В связи с этим для использования прибора требуется градуировочный график и секундомер. Порядок измерения: фиксируют количество оборотов за некоторый временной интервал, по графику находят пройденное воздушным потоком расстояние и делят его на время измерения. Получается искомая скорость ветра, причём она является средней скоростью за этот промежуток времени. Диапазон измерения: 1–20 м/с.
Ручной индукционный анемометр имеет 3 чашки, что увеличивает крутящий элемент устройства и повышает быстроту отклика на изменение скорости ветра. Дополнительных графиков у этого прибора нет, и засекать время тоже не требуется, поскольку измерение производится в реальном масштабе времени. С увеличением скорости потока индукционная катушка закручивает подпружиненную шкалу, которая показывает мгновенную скорость потока. Область измерения находится в диапазоне от 0,2 до 30 м/с.
Для чего предназначен прибор. Сферы применения
Анемометр – устройство, которое измеряет скорость и направление потока ветра, газа и других жидкостей.
Анемометр чашечный – самый первый, распространённый и удобный вид механических анемометров. Различают ручной или индукционный (электронный) типы устройств.
Прибор имеет широкое применение в:
метеорологии – используется специалистами в повседневной практике;
строительстве – устанавливают на подъёмные краны для контроля сильных порывов ветра;
промышленности – контролируют эффективность, производительность установок различного назначения, систем кондиционирования, вентиляции, отопления, туннелей и шахт;
различных видах спорта – чаще всего применяется в парусном спорте, а также в спортивной стрельбе: из лука и арбалета, огнестрельного и пневматического оружия;
сельском хозяйстве – во время обработки растений химическими препаратами;
авиации – устанавливается в аэропортах для измерения воздушных потоков и проверки состояния авиационных двигателей.
Кроме этого, с их помощью производят контроль соответствующих норм на рабочих местах, комфортных условий в офисах, на предприятиях и особенно заводах, где минимальное отклонение от нормы чревато серьёзными последствиями.
Вращательные анемометры
Метеорологический прибор может быть оснащен чашками либо лопастями, которые играют роль чувствительного элемента. Последние подвижно закрепляются на вертикальном стержне и соединяются с измерителем. Перемещение воздушных потоков заставляет такие вертушки вращаться вокруг оси. По мере движения измерительный механизм фиксирует количество оборотов в течение определенного временного отрезка. Визуальную информацию выдает шкала скорости ветра либо цифровой дисплей.
Конструкции данного типа изобретены достаточно давно. Однако, несмотря на появление более совершенных приборов, вращательные анемометры до сих пор продолжают успешно эксплуатироваться метеорологами по всему миру.
Советы по выбору
- максимальный измерительный диапазон;
- величина погрешностей;
- возможность применения в тех или иных температурных условиях;
- уровень безопасности для пользователя при воздействии на устройство агрессивных факторов окружающей среды;
- тип: стационарный либо переносной прибор;
- степень защищенности механизма от воздействий атмосферных осадков;
- характер питания устройства и способ формирования данных;
- габариты прибора;
- возможность вычисления показателей в ночное время суток (наличие подсветки).
В настоящее время для работы в условиях крайне пониженных температур возможно использование метеорологических приборов с подогревателями. Для рудников и шахт применяют специализированные анемометры, что способны исправно функционировать при высокой запыленности окружающего пространства и во взрывоопасной среде. Такие функциональные приборы переносят воздействие повышенной влажности и остаются работоспособными при значительных перепадах температур.
Выбор недорогого анемометра
Людям, увлекающимся экстремальным отдыхом, иногда требуется мобильный метеопомошник. Не каждый захочет производить сложные манипуляции с письменными расчётами, чтобы определить скорость ветра. Современные цифровые устройства сделают это при нажатии всего лишь одной кнопки, таким и является спортивный анемометр SKYWATCH Xplorer 1. Девайс карманного формата с лопастным сенсором весит 50 г. Диапазон измерения: 0,5–42 м/с. Определяет текущую скорость ветра с фиксацией её максимального значения. Имеет подсветку экрана, работает от литиевой батарейки. Выдерживает кратковременное погружение в воду. Бренд производителя — швейцарская фирма JDC Electronic, цена около четырёх тысяч рублей.
Как правильно выбирать
Анемометры выбираются в соответствии с целями использования. Наиболее важным параметром является предел замеров скорости. Для обустройства систем кондиционирования подойдет агрегат с расчетным интервалом 0-10 м/сек., а вот в процессе проектирования вентиляционных систем на производстве и на крупных торговых площадях не обойтись без анемометра с диапазоном 0-20 м/сек.
Рассматривая каталог цифровых анемометров, особое место среди них занимают модели с возможностью замера температуры. В теплых регионах и зонах со щадящим климатом можно применять оборудование, фиксирующее положительные температуры. А в районах с суровым климатом потребуются аппараты, замеряющие параметры от -20 градусов.
Размер также имеет немалое значение. Например, для замеров в вентиляционной решетке предпочтение отдается устройствам крыльчатого типа с крупным, до 10 см, диаметром на лопастях. А для пользования в воздуховоде потребуются более компактные модели с диаметром не более 2,5 см. Они полезны при замерах небольших по скорости потоков.
Анемометр крыльчатый
Данный прибор способен определить скорость движения воздуха, которая находится в интервале от 0,5 до 45 м/с. Кроме того, данное устройство позволяет измерять температуру, которая находится в пределах от минус 50 до плюс 100 градусов.
Конструкция анемометра такова, что ветер воспринимается лопастной крыльчаткой. Это небольшое легкое колесико, которое от механических воздействий защищается металлическим кольцом. Принцип его работы напоминает вентилятор или мельницу. Под действием ветра крыльчатка начинает вращаться. По системе зубчатых колес ее вращение передается на стрелки счетного механизма.
Анемометр ручной устроен так, что счетный механизм расположен рядом с крыльчаткой. За счет этого создается преграда для ветра, тем самым рабочий диапазон ограничивается. Подобные приборы могут измерять скорость ветра, которая не превышает 5 м/с. Данные устройства подходят для измерения потока воздуха в вентиляционных шахтах, трубопроводах, воздуховодах и так далее.
Анемометр крыльчатый цифровой устроен таким образом, что датчик встроен внутрь прибора или является выносным. Благодаря такой конструкции никакой преграды для ветра нет. Поэтому прибор измеряет поток, скорость которого может достигать 45 м/с.
Основной принцип действия
Принцип работы чашечного анемометра:
Ветер воздействует на ось с 3 или 4 чашками (полусферами), происходит вращение и запускается механизм подсчета числа оборотов.
Результат отображается на счетчике, шкале циферблата или дисплее (в зависимости от вида и модификации устройства).
Полученное число делят на коэффициент прибора (2 или 3).
При использовании ручного чашечного анемометра следует придерживаться инструкции: засекают длительность времени измерения, а также подсчитывают количество оборотов оси, после чего – на графике отмечают расстояние, пройденное потоками воздуха. Конечный результат – это указанное расстояние делённое на время его измерения.
Что касается индукционного (электронного) – дополнительные подсчеты и графики не нужны, так как инструмент оснащён электронным тахометром и на счетчике, или дисплее, автоматически отображается искомая скорость ветра.
Прибор измеряет мгновенную скорость, а также среднее значение потока воздуха, по перпендикулярной направленности последнего относительно оси вращения. Главное преимущество чашечного устройства – датчик фиксирует скорость без надобности подстраиваться под воздушный поток, так как работает в любом направлении. Большинство индукционных моделей измеряют ещё и температуру воздуха.
Функциональные ограничения:
ручной инструмент не рассчитан на порывы ветра ниже 1 м/с;
измеряет скорость в диапазоне от 1 до 20 м/с – в ручном чашечном анемометре и до 50 м/с – в электронных моделях;
рабочие температуры — от -20°C до 50°C;
в большинстве случаев не определяет направление воздушного потока, а исключительно его скорость. Для возможности определения этого фактора в комплект поставки должен входить флюгерный директор.