Содержание
- 1 Технические характеристики модуля
- 2 Как правильно выбрать монтажную пену
- 3 Схемы регуляторов тока на микросхемах
- 4 Особенности устройств серии Sorensen
- 5 Схема самодельного РН 220 В с тиристорами
- 6 Описание и принцип работы пуско-зарядного устройства
- 7 На транзисторах
- 8 Импульсные устройства
- 9 Особенности реализации схемы
- 10 Коэффициент мощности (только для нагрузок переменного тока)
- 11 Схема модификации
- 12 Способы подключения электронных нагрузок
- 13 Устройства на 200 Вт
- 14 Режим постоянного напряжения (CV)
- 15 Корпус для активной нагрузки
- 16 Схема устройств для блоков на 20 А
- 17 Типы бетонных мозаичных полов
- 18 Устройство на полевом транзисторе
- 19 Назначение уличной печи
- 20 Общая информация об электронных нагрузках
Технические характеристики модуля
- Напряжение питания: DC6 ~12 V / DC 5,0 Micro USB
- Измерение напряжения: 0 ~ 200 В, точность: 0,05 В
- Регулируемый диапазон тока: 0 ~ 20 A, точность: 0.05 A
- Диапазон измерения емкости АКБ: 0 ~ 999.999 Ач, точность: 0.01 Ач
- Диапазон накопительной мощности: 0 ~ 99999.9 Втч, точность: 0.01 Втч
- Диапазон измерения мощности: 0 ~ 2999,99 Вт, точность: 0,01 Вт
- Диапазон измерения сопротивления: 1 ~ 999,9 Ом, Точность: 0,01 Ом
- Диапазон измерения температур: 0 ~ 99 градусов, точность: 1 градус
- Вентилятор охлаждения автоматически стартует с тока > 0.5 A или температуры > 45 С
- Вход/выход: 20 А винтовые клеммы + USB
- Время обновления: > 500 мс
- Скорость измерения: около 2 с
- Перенапряжение и перегрузка по току есть оповещение и защита.
Стоимость менее 2000 рублей — не так уж и много. Параметры зато обнадеживающие, а именно: мощность 180 Вт, ток 20 А, напряжение 200 В. Можно предположить, что 99% источников питания могут быть нагружены этим.
Управление устройством — две кнопки / энкодера. На самом деле оказалось, что эти ручки являются потенциометрами для установки тока 0-20 А, где одна устанавливает его грубо, а другая точно. Этот метод уже много лет используется в популярных китайских источниках питания. Все результаты измерения доступны на одном экране. Есть несколько на разных языках, и после первого запуска выбираем тот, который подходит лучше всего, он остается навсегда. Далее в меню есть опция установки зуммера для превышения напряжения или тока, как вверх, так и вниз, что будет полезно при тестовой разрядке аккумуляторных батарей.
Использование прибора сводится к подключению источника питания 12 В постоянного тока и подключению проверяемого блока питания. Есть несколько типов разъемов: обычные винтовые разъемы, типовая розетка питания и 4 типа USB — тип A / большой плоский / мини-USB, микро-USB и тип C. Кроме того, есть кабели с зажимами типа «крокодил» и дополнительный адаптер для крокодилов.
После подключения тестового БП устройство работает сразу, потенциометр устанавливает интересующий ток. На дисплее отображаются текущие параметры: напряжение, ток, текущая мощность, энергия, время и так далее. И даже температура с датчика. Параметры управляются кнопкой, так что можем измерить емкость аккумулятора.
На испытании удалось вытянуть 18,2 А из блока питания, что видно на фото. Система охлаждения работает отлично, оконечный транзистор имеет при работе максимальную температуру 40 градусов. Устройство работает реально хорошо и определенно стоит своей цены.
Но это было не всегда так красочно. До этого уже ремонтировалась похожая нагрузка. Сначала после подключения напряжения с током всего несколько ампер сгорел силовой транзистор. После снятия радиатора оказалось, что термопаста вообще отсутствует, а сам транзистор был припаян, поэтому он не касался радиатора идеально плоско. Первоначальный какой-то полевой транзистор из серии IRFP был установлен в корпусе TO-247, вроде IRFP450. Поскольку поверхность радиатора намного больше, чем у этого транзистора, возникла идея установить больший, в корпусе TO-264, как раз нашелся GT60M104. Этот транзистор подошел бы почти идеально, если бы не датчик температуры, который припаян на плате рядом с транзистором, и больший корпус перекрывался с этим датчиком примерно на миллиметр. Поэтому подшлифовал транзистор так, чтобы он поместился рядом с датчиком, конечно заполнил всё термопастой хорошего качества и после сборки радиатора уже работает отлично. После ремонта снял с устройства все 180 Вт, радиатор не достигает более 45 градусов, что кажется отличным результатом.
Это устройство продаётся без корпуса, в упаковке получаем то, что вы видите на фото, завернутое в пузырчатую пленку.
В общем это полезное по своим возможностям и дешевое устройство, которое называется активная загрузка или электронная загрузка на английском языке. Правда словосочетание «искусственная нагрузка» более привычно в нашей стране.
Как правильно выбрать монтажную пену
При выборе пены определяют, какие виды работ предстоит выполнить с ее помощью. В зависимости от этого и подбирается тот или иной вид.
Отличается она по возможностям расширения и удобству эксплуатации. Простые варианты подразумевают баллон с механизмом схожим с тем, что используется на освежителях – пользователь наносит пену посредством нажатия на клавишу и выходит она из небольшой трубочки, являющейся направляющей. Подобное исполнение чаще встречается на баллонах, содержащих материал с высокой степенью расширения.
Второй вариант подразумевает использование специального “пистолета”. В него вставляется баллон, и пользователь может с большим удобством нанести средство на поверхность или в отверстие.
Если предстоящий фронт работ небольшой – подойдет первый вариант, если объем работ подразумевает использовать пену в больших количествах, подойдет второй.
Ориентируясь по ним выбирают подходящую вариант для конкретного случая.
Стоит помнить, что если предстоит работа с малым пространством, подойдет монтажная пена, обладающая свойством малого расширения. Если необходимо получить герметичность, заполнив отверстия большого объема – то выбирать имеет смысл ту, которая дает 50-60% расширения от первоначального состояния.
Схемы регуляторов тока на микросхемах
Выше мы рассмотрели несколько схем зарядных устройств с ручной регулировкой. Основной их недостаток – отсутствие стабилизации. В процессе зарядки АКБ ток через нее уменьшается, а это значит, что придется постоянно контролировать и подстраивать этот параметр. Но построить стабилизированный источник питания ненамного сложнее. Для начала несколько схем регулятора тока для зарядного устройства со стабилизацией, которые можно использовать для построения стационарных ЗУ.
Стабилизатор
Эта схема позволяет заряжать шести- и двенадцативольтовые батареи током одной, заранее установленной стабильной величины до 10 ампер.
Стабилизатор тока для зарядного устройства
Сердцем узла является интегральный стабилизатор напряжения, включенный по схеме токовой стабилизации. Величина зарядного тока будет зависеть от номинала резистора R4, который можно рассчитать по формуле:
I = 1.2/R,
где:
- I – необходимый зарядный ток в А;
- R – номинал резистора R4 в Ом.
Поскольку сама по себе микросхема КР142ЕН12А маломощная, для обеспечения большей мощности используются транзисторные ключи T1 и T2, включенные параллельно. Резисторы R1 и R2 – токовыравнивающие. Они компенсируют разброс параметров транзисторов.
Резисторы R1, R2, R4 изготавливаются из отрезков обмоточного провода необходимой длины, которые для большей компактности свернуты в спираль. Транзисторы VT1 и VT2 можно установить на один общий радиатор без изолирующих прокладок. Площадь рассеяния радиатора – 300 см2. Если на место R4 установить мощный реостат сопротивлением 0.8 Ом, то легко получить регулируемый стабилизатор.
Регулятор-стабилизатор
Эта схема является регулируемым стабилизатором и в отличие от предыдущей имеет более высокий КПД, поскольку рассеиваемая мощность на токозадающем резисторе намного меньше из-за его низкого сопротивления.
Узел собран на операционном усилителе LM358 и полевом транзисторе IRFZ44. Регулировка зарядного тока производится при помощи переменного резистора R3. Резистор R5 является токозадающим.
На месте T1 может работать транзистор STP55NF06, стабилитрон 1N4734A заменим на любой маломощный с напряжением стабилизации 5.6 В. Отечественные аналоги микросхемы LM358 — КР1401УД5, КР1053УД2, КР1040УД1. Полевой транзистор устанавливаем на радиатор.
Особенности устройств серии Sorensen
Стандартная нагрузка электронная данной серии включает в себя тиристор и линейный компаратор. Многие модели производятся с полюсными фильтрами, которые способны работать при высокой частоте. Также стоит отметить, что на рынке представлены лабораторные модификации. У них достаточно низкий коэффициент рассеивания. Модели довольно часто применяются коммутируемого типа. Показатель перегрузки в среднем равняется 20 А. Системы защиты используются разных классов. На прилавках магазинов есть импульсные модели. Они хорошо подходят для тестирования компьютерных блоков питания. Расширители в устройствах применяются с обкладками.
Схема самодельного РН 220 В с тиристорами
Тиристорные сборки также эффективные, одновременно они не отличаются особой сложностью. Силовым ключом тут выступает тиристор. Главное отличие от самоделок на симисторах — каждая полуволна имеет свой индивидуальный ключ, снабженный динистором для управления.
Для схемы взяли отечественные детали. При установке тиристора VS1, диодов VD1–VD4 на радиаторы (охладители), то устройство сможет работать с нагрузкой в 10 А: при 220 В можно будет обслуживать 2.3 кВт.
В сборке лишь 2 силовых элемента: диодный мост, тиристор. Детали рассчитаны на 400 В, ток 10 А. мост трансформирует переменное напряжение в однополярное пульсирующее, фазовую настройку полупериодов обеспечивает тиристор.
R1 и 2, стабилитрон VD5 — это параметрический стабилизатор, ограничивающий напряжение, подаваемое в узел управления на отметке 15 В. Последовательное размещение резисторов требуется для повышения пробивного напряжения и рассеиваемой мощности.
C1 без заряда, в месте соединения R6 и 7 тоже нулевое напряжение, но постепенно оно там растет. Чем ниже сопротивление на резисторе R4, тем быстрее через эммитер VT1 перегонится напряжение на его базе, транзистор откроется. VT1 и 2 (транзисторы) — это состав маломощного тиристора. При достижении значения на переходе база/эмиттер VT1 пороговой отметки транзистор открывается и отпирает VT2, а тот в свою очередь — тиристор.
Второй вариант
Описанным ниже регулятором настраивают скорость вращения электродвигателей, нагрев паяльника и подобное. Такой прибор отчасти верно назвать регулятором мощности, но правильно будет также именовать его и РН, так как, по сути происходит регулировка фазы — времени, за которое сетевая полуволна попадает в нагрузку
С одной стороны настраивается напряжение через скважность импульса, с иной — мощность появляющаяся на нагрузке
Наиболее результативный прибор для резистивной нагрузки — лампочек, нагревателей. С индуктивной будет справляться, но не так эффективно, при слишком малой величине точность диапазона настройки снизится. Существуют две почти идентичные схемы по описываемому варианту:
Схема регулятора состоит из доступных деталей, ее можно полностью собрать из таковых даже советского периода. При включении (как на изображении) выпрямительных диодов прибор выдержит до 5 А, что соответствует 800 Вт…1 кВт. Но надо поставить радиаторы для охлаждения.
Основа изделия:
- тирист. КУ202Н;
- Т1–Т2 (КТ315 и КТ361) — это аналог 1-переходного транзистора.
Алгоритм:
- Когда напряжение на конд. С1 (470 nF) сравнивается таковому в точке соединения резист. R3 и 4 (10 кОм и 2.2 кОм), тогда транзисторы открываются.
- От них подается импульс управляющему электроду тиристора.
- При этом C1 тратит свой заряд, тиристор открывается до следующего полупериода.
Мощность можно повысить, если заменить диоды, рассчитанные на больший необходимый ток. Также можно вместо тиристора КУ202 с пределом в 10 А поставить помощнее: Т122, Т132, Т142.
Деталей не много, допустим навесной монтаж, но с платой сборка будет красивее и комфортнее. Стабилитрон Д814В можно поменять на любой с 12–15 В. Из коробочки выведен разъем для вилки.
Модификация, особенности, демонстрация работы
Схема также может поместиться в корпусе наружной розетки, в маленькой пластиковой распаячной коробке. Мощность самоделки ограничена диодным мостом (1000 В, 4 А), тиристором. Напомним, в нашем примере предел чуть больше 800 Вт, максимум — 1000 Вт. Для бытовых условий этого более чем достаточно.
Радиаторы на тиристоры и диоды крайне рекомендованы — в данном случае они не просто желательные, а жизненно необходимые, так как перегрев может быть значительным. Минимальная мощность резистора R1 — 2 Вт
Демонстрация:
Описание и принцип работы пуско-зарядного устройства
Здесь особо сложного ничего нет. Сетевое U = 220 В подаётся через выключатель на первичную обмотку трансформатора, а на вторичной происходит уменьшение переменного напряжения. Потом оно сглаживается двухполупериодным или мостовым выпрямителем, собранным на мощных диодах. Далее пульсирующее напряжение может быть отфильтровано посредством электролитических конденсаторов. При необходимости около выхода осуществляется увеличение напряжения, что делается с помощью усилителей, в которых основными компонентами являются транзисторы, тиристоры.
Из недостатков описываемого пуско-зарядного устройства можно отметить разве что солидный вес, что обусловлено установкой мощного и, как следствие, габаритного трансформатора. Ниже – схема двухполупериодного пуско-зарядного устройства своими руками:
В этой схеме задействован лабораторный трансформатор ЛАТР. Вместо двух диодов можно использовать и диодный мост типа КЦ405. Схема пуско-зарядного устройства для автомобиля с усилителем:
Как сделать пуско-зарядное устройство своими руками, чтобы оно наверняка заработало? Нужно соблюдать параметры деталей. Мощность указанных на картинке тиристоров – не менее 80 А (если будет использоваться диодный мост, то от 160 А). Диоды на ток – 100–200 А. Транзистор – КТ361 либо КТ 3102 (можно любой другой с такими же параметрами). Мощность используемых резисторов – от 1 Вт.
Собранное своими руками зарядно-пусковое устройство подключается через зажимы-крокодилы к АКБ в соответствии с полярностью. При нормально заряженной батарее с ПЗУ энергия поступать не будет. Если же АКБ не функционирует, тиристорный переход откроется, и зарядный ток пойдёт на батарею и стартер.
Расчёт обмоток трансформатора
Сначала нужно подобрать магнитопровод, сечение которого должно быть не меньше 37 кв. см. Чтобы рассчитать количество витков в первичной обмотке, необходимо воспользоваться формулами: Т = 30/S, где S – площадь магнитопровода и N = 220*Т, то есть W1 = 220*30/37 = 178 витков. Для обмотки необходимо использовать изолированный провод сечением не менее 2 кв. мм. Формула для вторичной обмотки: W2 = 16*Т = 16*30/37 = 13 витков. Здесь понадобится шина из алюминия площадью 36 кв. мм.
Стоит заметить, что формулы не всегда могут выдавать точное число обмоток (особенно вторичной), поэтому можно применить метод подбора. Намотав первичную обмотку, накрутите несколько витков вторичной и измерьте получившееся напряжение, не обрезая шину. Таким образом нужно добиться на выходе значения 14–16 В.
Дело будет обстоять проще, если у вас имеется ЛАТР – лабораторный трансформатор. От него нужно взять сердечник. Количество витков первичной обмотки – 265–295. Используйте изолированный провод сечением 2 мм. Намотку производите в три слоя. Далее обязательно проверьте значение тока холостого хода (включите мультиметр в разрыв между сетью 220 В и одним из концов обмотки). Прибор должен показывать 210–390 мА. Если показания больше, число витков нужно увеличить, в противном случае, наоборот, уменьшить. Вторичная обмотка разделена на две секции, в каждой из которых 15–18 витков. Здесь понадобится провод сечением 10 кв. мм.
Расчёт выпрямителя
Далее рассмотрены параметры электронных компонентов (помимо указанных выше), применяемых в обеих схемах:
- Диоды. Максимальный пропускаемый ток не должен быть менее 100 А. Это могут быть В200, Д141, 2Д141, 2Д151 и иные аналогичные детали. Вместо КД105 не возбраняется применять КД209 или даже Д226. Стабилитрон – Д808, 2С182 и т. п.
- Тиристоры. I = 80 А и более: ТС185, Т15-80, Т15-100, Т161, Т125 и т. п. Если используется вариант выпрямления тока с диодным мостом, тиристоры будут мощнее вдвойне: Т15, Т160, Т250, Т16 и другие, аналогичные.
- Транзисторы. Здесь важен коэффициент усиления h = 21э. Это КТ361 либо КТ3107 проводимостью n-p-n. Вместо КТ816 подойдёт и КТ814.
- Резисторы. Желательно, чтобы их мощность была не менее 1 Вт.
- Выключатель. Должен держать ток от 6 А.
Подбор сечения проводов
Подбирая выходные провода, которые будут присоединяться к аккумулятору, нужно помнить, что их диаметр не может быть меньше такого же параметра вторичной обмотки. Лучше использовать многожильный медный кабель, используемый в сварочных аппаратах, где каждый проводок имеет сечение 2,5 кв. мм. Такую же площадь должен иметь провод, посредством которого самодельный аппарат будет подключаться к сети. Не забудьте приобрести мощные зажимы-крокодилы для подключения к клеммам АКБ. Здесь тоже рекомендуется использовать изделия, применяемы при сварке («масса»).
На транзисторах
Сборки на транзисторах больше подходят для индуктивной нагрузки, ими можно регулировать обороты электродвигателей.
Простая схема
Данная сборка очень практичная — этот регулятор напряжения представляет собой простой блок питания, универсальный адаптер к радиоустройствам на разные напряжения (вольтаж). Собрать сможет даже пользователь с начальными познаниями и небольшим опытом.
Элементы:
- транзистор КТ815Г, можно и 817 Г;
- переменник на 10 кОм;
- резистор стандартный 0.125 Вт на 1 кОм
Спаять элементы можно без площадки, но покажем, как это сделано с ней. Создаем плату:
Пайка компонентов:
Транзистор, важно не перепутать его выводы (эмиттер и базу).
Резистор на 1 кОм.
Впаиваем с проводами переменник на 10 кОм. Можно применить и другой, припаять сразу, без них, если позволяет типоразмер.
Четыре вывода — к питанию, к выходам.
Подсоединяем к питанию, выход оснащаем светодиодом, подключаем нагрузку (лампу), моторчик, тот же светодиод (в нашем примере он). Двигаем регулятор — наблюдаем изменение напряжения.
Особенность: диапазон обслуживаемой мощность и ток нагрузки ограничены предельными характеристиками транзистора — примерно половина 1 Ампера. Для увеличения диапазона такого регулируемого стабилизатора надо брать транзисторы КТ805, 819.
Другие варианты маломощных транзисторных схем
С 2 деталями: транзистором и переменником. Алгоритм элементарный: последний указанный элемент индуцирует (отпирает) первый. Чем ниже номинал настроечного резистора, тем более плавная регулировка. Это вариант для маломощной нагрузки, например, для вентиляторов, слабых электромоторчиков, светодиодов. Транзистор нагревается сильно, поэтому радиатор желательный.
Мощная сборка
Опишем особо мощный регулятор для нагрузки в несколько кВт. Тут ток на нагрузку идет также через симистор, но управляется все через каскад транзисторов. Переменником настраивается ток, поступающий в базу первого транз. (маломощного), а тот посредством коллекторно-эмиторного перехода осуществляет управление базой уже мощного транз., который реализует открывание/закрывание симистора. Так создается возможность очень плавной настройки огромных токов на нагрузке.
Импульсные устройства
Как делается импульсная электронная нагрузка? В первую очередь для сборки эксперты рекомендуют подобрать хороший тиристор. При этом модулятор подходит только на две фазы. Специалисты говорят о том, что расширитель должен работать попеременно. Рабочая частота у него обязана составлять примерно 4000 кГц. Трансивер в нагрузку устанавливается через модулятор. После пайки конденсаторов стоит заняться усилителем.
Для стабильной работы нагрузки потребуется три фильтра канальной направленности. Для проверки прибора применяется тестер. Сопротивление должно составлять примерно 55 Ом. При средней загруженности самодельная электронная нагрузка выдает номинальное напряжение в районе 200 Вт. Для поднятия чувствительности применяются компараторы. При замыканиях системы стоит проверять цепь от конденсатора. Если сопротивление на контактах занижено, значит, трансивер нужно менять на емкостный аналог. Многие специалисты указывают на возможность использования волновых фильтров, у которых хорошая проводимость. Регуляторы для этих целей применяются на триоде.
Особенности реализации схемы
На всех схемах SEPIC конденсатор С5 обычно нарисован неполярным. Смотрел осциллографом — там всегда одна полярность в устройстве, во всем диапазоне рабочих напряжений.
И с емкостью С5 не все так просто. Поставил сначала керамику 10х25 вольт. При некоторых напряжениях конденсатор сильно пел. Именно он, не индуктивности, как можно было ожидать. Допаял еще один параллельно — просто сместился диапазон. Помогла установка танталового 15х35 вольт. Возможно дело в экземпляре конденсаторов.
При приближении к верхнему значению пределов входного напряжения, КПД преобразователя снижается и микросхема начинает ощутимо греться. Полигон под ней я нарисовал не просто так. Советую напаивать на этот полигон небольшой буртик припоя и мазать низ МС34063 термопастой перед установкой на плату.
Далее вид работы устройства. Проверка ПоверБанка из Фикс-прайс. После установки нижней защитной панели устройство можно ставить вертикально.
Какой ток может выдать сам преобразователь? Пока пробовал — гонял его на токе порядка 100 мА. Только с вентилятором. Позже подключил показометр, но снизил напряжение с 12 до 11 вольт. Но ток уже не замерял. То есть сотня мА плюс-минус.
Минимальные токи нагрузки (токи собственного потребления) составляют:
- при 3,01 вольтах — 0,456 А
- при 5,02 вольтах — 0,311 А
- при 22,03 вольтах — 0,100 А
Индуктивности мотал ровно на 100 мкГн. Так что советую если будете повторять прибор, поэкспериментировать с С4.
Электронная нагрузка такого рода очень удобна при экспериментах. Не нужно возиться с кучей мощных резисторов или подбирать галогенки разной мощности. В отличие от моей предыдущей (по схеме Касьяна, но с добавленным повышателем для вентилятора) работает полноценно даже ниже чем от 3 вольт. Предыдущая могла дать максимальный свой ток только вольт с 6-7.
Этой моей нагрузкой можно посмотреть например ток, который может отдать аккумулятор литиевый 18650, и как при этом просаживается напряжение на нем.
Вот проверка литий-ионного АКБ 18650 на ток.
То есть данный конкретный аккумулятор еще держит 2 А при приемлемой относительно просадке, а вот при 3 А напряжение падает аж до 2,4 вольта.
LM358 начинает работать не от ноля, то есть у потенциометра управления током примерно четверть оборота мертвый ход — ничего не происходит. Вылечить можно подав смещение с питания резистором порядка мегаом, либо добавив резистор снизу между R3 и землей ОУ (до шунта). Я добавил резистор 1к8. Небольшая метрвая зона осталась, но так лучше, чтобы была некая площадка.
Это испытания на максимальную нагрузку. В квартире 24,5 градуса. Можно было завалить и 90 ватт, но не решился. Вряд ли силовой транзистор такое выдержит. По даташиту там 60 ватт максимум, но подозреваю что реально сильно меньше.
Итак, на приборах реальное напряжение на входе в нагрузку (показометр нагрузки лжет) и температура в углу радиатора, где нет потока воздуха. Итого почти 54 вольтампера. В общем самоделкой доволен и рекомендую для сборки. Печатная плата моего варианта прилагается. Автор проекта — Лекс59.
Коэффициент мощности (только для нагрузок переменного тока)
Коэффициент мощности – это отношение средней мощности к полной мощности.
В случае, если напряжение и ток изменяются по синусоидальному закону, то справедливо следующее уравнение:
Pср. = P = V*A*cosφ
Для чисто резистивной нагрузки напряжение и ток не имеют сдвига по фазе относительно друг друга, поэтому Φ = 0°, тогда cosφ = cos(0°) = 1 = коэффициенту амплитуды
Когда характер нагрузки изменяется от чисто индуктивной до резистивной и затем до ёмкостной, сдвиг фаз между током изменяется в пределах -90…0…90 градусов, а коэффициент мощности меняется от 0 до 1.
Нагрузки АКИП могут имитировать индуктивную или ёмкостную нагрузку путём программирования требуемого коэффициента мощности от 0 до 1, и являются одними из немногих активных нагрузок, имеющих такую возможность.
Схема модификации
Стандартная схема нагрузки включается в себя резисторы, выпрямитель и порты модулятора. Если рассматривать устройства небольшой частоты, то у них используются трансиверы. Данные элементы работают на открытых контактах. Для передачи сигнала используются компараторы. В последнее время популярными считаются нагрузки на стабилизаторах. В первую очередь их разрешается применять в сети постоянного тока. У них быстро происходит процесс преобразования. Также стоит отметить, что неотъемлемым элементом любой нагрузки считается усилитель и регулятор. Данные устройства замыкаются на обкладке. У них довольно высокая проводимость. За процесс генерации у моделей отвечает именно модулятор.
Способы подключения электронных нагрузок
Мощность, используемых в настоящее время ИП, колеблется в самых широких пределах от единиц Ватт до сотен кило Ватт. Мощность большинства серийно выпускаемых электронных нагрузок находится в пределах от 300 Вт до единиц кВт. Увеличение мощности электронной нагрузки достигается путём их параллельного подключения, аналогично параллельному соединению нескольких ИП, для увеличения выходного тока. Пример такого соединения приведён на рисунке 21.
При реализации параллельного соединения, все электронные нагрузки должны иметь одно и тоже выходное напряжение. При этом входной ток Iобщ, будет определяться формулой:
Общая мощность такой системы электронных нагрузок будет определяться формулой:
Особенностью применения электронных нагрузок является то, что в отличие от источников пинания их запрещается соединять последовательно для увеличения входного напряжения (см. рис 22).
Для тестирования высоковольтных ИП, следует выбирать только электронную нагрузку, рассчитанную на подключение к высоковольтному источнику питания.
Современные электронные нагрузки, включая электронные нагрузки серии АКИП-13хх, позволяют тестировать как первичные, так и вторичные источники питания постоянного и переменного тока не только в «классическим» статическом режиме, но и в динамически режиме, полностью моделирующем поведение реальной нагрузки. С всё возрастающими требованиями к источникам питания и увеличением числа нормированных параметров, электронные нагрузки заменят классические пассивные реостаты, не способные в полной мере обеспечить тестирование и поверку источников питания. Использование встроенных измерительных приборов в электронные нагрузки позволяет минимизировать число других средств измерения, используемых при тестировании и поверке источников питания.
Литература:
- Руководство по эксплуатации нагрузок электронных серии АКИП-13хх.
- Agilent Technologies Application Note Agilent AN 372-1 «Power Supply Testing»
Устройства на 200 Вт
Нагрузка электронная на 200 Вт включает в себя две пары тиристоров, которые соединяются попарно. У многих моделей используются проводные компараторы низкой частоты. Также стоит отметить, что для сборки модификации потребуется модулятор. Для ускорения процесса генерации сигнала используются усилители. Данные элементы способны работать только от проводных фильтров.
Трансивер стоит устанавливать за обкладками. В данном случае напряжение нагрузки равняется примерно 400 В. Специалист говорят о том, что плохо работают устройства на проводниковых трансиверах. У них низкая проводимость, есть проблемы и с перегревом. Если наблюдаются скачки напряжения, стоит поменять компаратор. Еще проблема может заключаться в резисторе.
Режим постоянного напряжения (CV)
В режиме постоянного напряжения через электронную нагрузку будет протекать ток в соответствии с заданным значением тока на источнике питания, который находится в режиме стабилизации тока, и это значение напряжения будет поддерживаться постоянным при изменении значения входного тока источника питания. Схема замещения и график зависимости напряжение-ток приведены на рисунке 7.
Режим CV используется для тестирования источников тока. Он часто используется при определении характеристик ограничения по току источников питания, так же его можно применять для тестирования зарядных устройств, где режим CV эмулирует наилучше для зарядки выходное напряжение.
Если данный режим используется для тестирования лабораторных ИП в режиме стабилизации тока, то методы испытания схожи с теми, что изложены для тестировании ИП в режиме стабилизации напряжения. Разница отстоит в том, что параллельное подключение вольтметра заменяется по последовательное подключение амперметра, при необходимости достижения более высокой точности измерения погрешности установки выходного тока или измерения величины нестабильности тока, связанное с изменением напряжения на нагрузке.
Отличительной особенностью электронных нагрузок серии АКИП-13хх, является то, что они имеет дополнительный выход на передней панели, позволяющий подключать осциллограф для наблюдения формы тока, пульсаций тока и шумов тока, а также для измерения их значений, что значительно расширяет их эксплутационные возможности, по сравнению с другими нагрузками. На рисунке 8 внешний вид электронной нагрузки АКИП-1310, кстати, на ней отчётливо видны и гнёзда, позволяющие реализовать четырёхпроводную схему подключения.
Корпус для активной нагрузки
Что касается коробки, то вот вариант, где корпус сделан на 3D принтере.
Только перемещен дисплей на переднюю панель с кнопками.
Нагрузка 10 A 60 В 150 Вт версии 2.27 в режиме разряда батареи до заданного порогового значения. Меню опций имеет предел отключения 10,8 В. В версии 2.27 меню построено таким образом, что произведение напряжения и тока не может быть установлено выше предела мощности. Например, если установим 10 А, максимальное напряжение будет 15 В. Однако когда установим 50 В, максимальный доступный ток разряда будет поставить невозможно больше, чем 3 А.
В старых версиях не было встроенного перерасчёта и приходилось считать самому, чтоб устройство не сгорело при включении. Нагрузка очень точная и простая в использовании.
Тем не менее, установлен медный радиатор бОльшего размера с вентилятором. Такая сборка от компьютера значительно снизила температуру управляющего транзистора и соответственно меньше шансов повредить его при работе на максимальной нагрузке. В настоящее время такая электронная нагрузка стоит около 25 долларов на Али.
Тут нагрузка подключена к аккумулятору с включенным пределом отсечки.
Через некоторое время напряжение отсечки исчезает, и текущая настройка (0,3 А) скачет, её можно изменить по время.
В левом нижнем положении поочередно отображается мощность потребляемая в Ваттах, количество энергии потребляемой в А/ч, температура в градусах и время.
При покупке стоит обратить внимание, есть ли на кулере наклейка с надписью Cooler Master — она указывает на оригинальный продукт. К сожалению, в последнее время появилось много подделок
Схема устройств для блоков на 20 А
Электронная нагрузка (схема показана ниже) для блоков на 20 А производится на базе двоичных резисторов. У них поддерживается стабильная высокая проводимость. Чувствительность при этом равняется примерно 6 мВ. Некоторые модификации выделяются высоким параметром перегрузки. Реле у моделей используются на волновых транзисторах. Для решения проблем с преобразованием используются компараторы. Расширители часто встречаются фазового типа. И у них может быть несколько переходников. При необходимости устройство можно собрать самостоятельно. Для этого применяется конденсаторный блок.
Номинальное напряжение у самодельных нагрузок стартует от 300 Вт, а частота в среднем составляет 400 кГц. Специалисты не советуют применять переходные компараторы. Регуляторы используются с обкладками. Для установки компаратора потребуется изолятор. Если рассматривать нагрузки на двух тиристорах, то там используются фильтры. В среднем емкость модуля равняется 3 пФ. Показатель рассеивания у самодельных моделей стартует от 50%
При сборке устройства особое внимание стоит уделять переходнику для подключения к блоку питания. Контакторы побираются полюсного типа
Они должны выдерживать большие перегрузки и не перегреваться.
Типы бетонных мозаичных полов
Мозаичный бетон, бетонное мозаичное покрытие, тераццо, мозаичный бетонный пол подразделяются на несколько разновидностей, что зависит от типа связующего.
В качестве заполнителя используются горные породы, поддающиеся полировке, — известняк, мрамор, гранит, доломит, песок (отсев) той же породы
Основная классификация сводится к следующему:
- цементный – связующим выступает портландцемент марок М400, 500 (белый, цветной). Такие тераццо полы реализуются по технологии заливки традиционного бетонного раствора. Покрытия устраиваются толщиной от 50 мм и более. В условиях высоких нагрузок возможно армирование. В цементных системах размер применяемого наполнителя составляет до 20 мм и более. Раствор для бетонных полов данного типа часто производится на растворобетонных узлах, что положительно влияет на производительность работ и сокращает издержки на производство. После укладки поверхность требует шлифования, нанесения финишного покрытия, например, полиуретановой пропитки. Финишный слой работает на проявление рисунка пола, обеспечивает полное обеспыливание, простую уборку и защищает от агрессивных веществ;
- полимерцементный – связующим выступают портландцемент + полимерные добавки. Технология укладки идентична заливке тонкослойных стяжек. Толщина конструкции начинается от 15 мм. В данном случае необходимо учитывать размер наполнителя, так как он ограничен толщиной слоя. Размер частиц не должен превышать 10 мм. Полимерцементный раствор для мозаичного пола замешивается непосредственно на месте ведения работ, привлекая принудительные или инерционные бетоносмесители. Основа требует грунтования составами бетонконтакт, после чего поверхность защищают от оседания строительной пыли. В качестве финишной отделки могут применяться технологии полировки или наносятся полимерные пропитки, как в первом случае;
- полимербетонные, полимерные – связующим выступают полиуретановые или эпоксидные полимеры. Технология укладки идентична выполнению высоконаполненных или наливных полимерных систем. Толщина слоя может быть минимальной — 2 мм и более. Наполнителем выступает цветной кварцевый песок, сборные смеси песков разных цветов, фракции 0.5 мм и более. Тут могут быть задействованы такие декоративные элементы, как блестки, флоки, чипсы. Финишные слои практически всегда представлены прозрачными полимерными компаундами.
Устройство на полевом транзисторе
Электронная нагрузка на полевом транзисторе делается только на базе компаратора, а тиристор используется регулируемого типа. При сборке в первую очередь стоит подобрать конденсаторный блок, который играет роль генератора импульсов. Всего для модификации потребуется три фильтра. Резистор устанавливается за обкладками. Специалисты говорят о том, что электронная нагрузка на полевом транзисторе выдает сопротивление 40 Ом.
Если проводимость сильно повышается, значит, устанавливается емкостный конденсатор. Непосредственно трансивер рекомендуется использовать на два контакта. Реле устанавливается стандартно с регулятором. Номинальное напряжение у нагрузок данного типа составляет не более 400 Вт. Специалисты утверждают, что обкладка должна фиксироваться за резистором. Если рассматривать высокочастотную модель для блоков питания на 300 В, то модулятор потребуется волнового типа. При этом за тиристором устанавливается тетрод.
Назначение уличной печи
Кроме приготовления пищи на свежем воздухе, она станет помощником во многих делах:
- консервировании овощей, ягод;
- сушке грибов, фруктов;
- копчении мяса, рыбы.
В ее приобретении много плюсов. Садовая печь не расходует газ или электроэнергию, так как работает на дровах или углях, ее расположение вблизи беседки сделает удобным прием гостей, ужин в кругу семьи, а интересный дизайн конструкции превратит ее в украшение усадьбы.
Пользователи часто ищут:
- Поленница для дров на даче
- Навес для хранения дров
Если вы решили сделать ее самостоятельно, стоит учесть, что:
Покупка качественного материала – гарантия долговечности прибора.
Лучше выбрать комбинированную печь
Это практичнее.
При выборе места будущей конструкции и проведении строительных работ важно соблюдать технику безопасности.
Точный расчет количества материалов позволит сэкономить деньги и сократить время всех процессов.
Общая информация об электронных нагрузках
Электронная нагрузка — это прибор, предназначенный для имитации различных режимов работы реальной электрической нагрузки. При этом электронная нагрузка может работать в нескольких режимах потребления. К наиболее распространённым относятся: режим постоянного сопротивления, режим постоянного тока потребления, режим постоянной мощности и режим стабилизации напряжения. Также большинство моделей электронных нагрузок поддерживают режим изменения своего состояния по списку заданных пользователем значений, что позволяет реализовать сложные алгоритмы тестов, максимально соответствующие работе проверяемых устройств в реальных условиях.
Основные режимы работы электронных нагрузок.