Генри

Введение

Если бы кому-нибудь пришла в голову идея провести опрос населения Земли на тему «Что вы знаете об индуктивности?», то подавляющее число опрашиваемых просто пожало бы плечами. А ведь это второй по многочисленности вслед за транзисторами технический элемент, на котором зиждется современная цивилизация! Любители детективов, припомнив, что в своей юности зачитывались захватывающими рассказами сэра Артура Конан Дойла о приключениях знаменитого сыщика Шерлока Холмса, с разной степенью уверенности пробормочут что-то о методе, которым вышеозначенный сыщик пользовался. При этом подразумевая метод дедукции, который, наравне с методом индукции, является основным методом познания в западной философии Нового времени.

При методе индукции происходит исследование отдельных фактов, принципов и формирование общих теоретических концепций на основе полученных результатов (от частного к общему). Метод дедукции, наоборот, предполагает исследование от общих принципов, законов, когда положения теории распределяются на отдельные явления.

Следует отметить, что индукция, в смысле метода, не имеет сколько-нибудь прямого отношения к индуктивности, просто они имеют общий латинский корень inductio — наведение, побуждение — и обозначают совершенно разные понятия.

Лишь малая часть опрашиваемых из числа носителей точных наук — профессиональных физиков, инженеров-электротехников, радиоинженеров и студентов этих направлений — смогут дать внятный ответ на этот вопрос, а некоторые из них готовы прочитать с ходу целую лекцию на эту тему.

Определение индуктивности

В физике индуктивность, или коэффициент самоиндукции, определяется как коэффициент пропорциональности L между магнитным потоком Ф вокруг проводника с током и порождающим его током I или — в более строгой формулировке — это коэффициент пропорциональности между электрическим током, текущим в каком-либо замкнутом контуре, и магнитным потоком, создаваемым этим током:

или

Для понимания физической роли катушки индуктивности в электрических цепях можно использовать аналогию формулы энергии, запасаемой в ней при протекании тока I, с формулой механической кинетической энергии тела.

При заданной силе тока I индуктивность L определяет энергию магнитного поля W, создаваемого этим током I:

Аналогично, механическая кинетическая энергия тела определяется массой тела m и его скоростью V:

То есть индуктивность, подобно массе, не позволяет энергии магнитного поля мгновенно увеличиться, равно как и масса не позволяет проделать такое с кинетической энергией тела.

Проведём исследование поведения тока в индуктивности:

Рис. 1. Электрическая схема эксперимента

Рис. 2. Физическая реализация эксперимента

Рис. 3. Осциллограмма тока через индуктивность. Желтая осциллограмма — выход сигнал-генератора, голубая — сигнал на резисторе.

Из-за инерционности индуктивности происходит затягивание фронтов входного напряжения. Такая цепь в автоматике и радиотехнике называется интегрирующей, и применяется для выполнения математической операции интегрирования.

Проведём исследование напряжения на катушке индуктивности:

Рис. 4. Электрическая схема эксперимента

Рис. 6. Осциллограмма напряжения на индуктивности (голубая)

В моменты подачи и снятия напряжения из-за присущей катушкам индуктивности ЭДС самоиндукции, возникают выбросы напряжения. Такая цепь в автоматике и радиотехнике называется дифференцирующей, и применяется в автоматике для корректировки процессов в управляемом объекте, носящих быстрый характер.

Рис. 5. По большому счёту, во всех генераторах электрического тока любого типа, равно как и в электродвигателях, их обмотки представляют собой катушки индуктивности.

Преимущества и недостатки варисторов

Важными преимуществами нелинейного резистора (варистора) является его стабильная и надежная работа с высокими частотами и большими нагрузками. Он применяется во многих устройствах, работающих с напряжениями от 3 В до 20 кВ, относительно прост и дешёв в производстве и эффективен в эксплуатации. Дополнительными важными преимуществами являются:

  • высокая скорость срабатывания (наносекунды);
  • длительный срок службы;
  • возможность отслеживания перепадов напряжения (безынерционный метод).

Несмотря на то, что данный электронный компонент имеет достаточно много преимуществ, он имеет и недостатки, которые влияют на его применение в различных системах. К ним можно отнести:

  • низкочастотный шум при работе;
  • старение компонента (утрата параметров со временем);
  • большая емкость: зависит от напряжения и типа элемента, находится в диапазоне от 70 до 3200 пФ и влияет на работоспособность устройства;
  • при максимальных значениях напряжения мощность не рассеивается – значительно перегревается и выходит из строя при длительных максимальных значениях напряжения.

Что такое индуктивность

Индуктивностью называется идеализированный элемент электрической цепи, в котором происходит запасание энергии магнитного поля. Запасания энергии электрического поля или преобразования электрической энергии в другие виды энергии в ней не происходит.

Наиболее близким к идеализированному элементу — индуктивности — является реальный элемент электрической цепи — индуктивная катушка.

В отличие от индуктивности в индуктивной катушке имеют место также запасание энергии электрического поля и преобразование электрической энергии в другие виды энергии, в частности в тепловую.

Количественно способность реального и идеализированного элементов электрической цепи запасать энергию магнитного поля характеризуется параметром, называемым индуктивностью.

Таким образом термин «индуктивность» применяется как название идеализированного элемента электрической цепи, как название параметра, количественно характеризующего свойства этого элемента, и как название основного параметра индуктивной катушки.

Рис. 1. Условное графическое обозначение индуктивности

Связь между напряжением и током в индуктивной катушке определяется законом электромагнитной индукции, из которого следует, что при изменении магнитного потока, пронизывающего индуктивную катушку, в ней наводится электродвижущая сила е, пропорциональная скорости изменения потокосцепления катушки ψ и направленная таким образом, чтобы вызываемый ею ток стремился воспрепятствовать изменению магнитного потока:

Потокосцепление катушки равно алгебраической сумме магнитных потоков пронизывающих ее отдельные витки:

где N — число витков катушки.

В системе единиц СИ магнитный поток и потокосцепление выражают в веберах (Вб).

Магнитный поток Ф, пронизывающий каждый из витков катушки, в общем случае может содержать две составляющие: магнитный поток самоиндукции Фси и магнитный поток внешних полей Фвп: Ф — Фси + Фвп.

Первая составляющая представляет собой магнитный поток, вызванный протекающим по катушке током, вторая — определяется магнитными полями, существование которых не связано с током катушки — магнитным полем Земли, магнитными полями других катушек и постоянных магнитов. Если вторая составляющая магнитного потока вызвана магнитным полем другой катушки, то ее называют магнитным потоком взаимоиндукции.

Потокосцепление катушки ψ , так же как и магнитный поток Ф, может быть представлено в виде суммы двух составляющих: потокосцепления самоиндукции ψси , и потокосцепления внешних полей ψ вп

Наведенная в индуктивной катушке ЭДС е, в свою очередь, может быть представлена в виде суммы ЭДС самоиндукции, которая вызвана изменением магнитного потока самоиндукции, и ЭДС, вызванной изменением магнитного потока внешних по отношению к катушке полей:

здесь еси — ЭДС самоиндукции, евп — ЭДС внешних полей.

Если магнитные потоки внешних по отношению к индуктивной катушке полей равны нулю и катушку пронизывает только поток самоиндукции, то в катушке наводится только ЭДС самоиндукции.

Потокосцепление самоиндукции зависит от протекающего по катушке тока. Эта зависимость, называемая вебер — амперной характеристикой индуктивной катушки, в общем случае имеет нелинейный характер (рис. 2, кривая 1 ).

В частном случае, например для катушки без магнитного сердечника, эта зависимость может быть линейной (рис. 2, кривая 2).

Рис. 2. Вебер-амперные характеристики индуктивной катушки: 1 — нелинейная, 2 — линейная.

В системе единиц СИ индуктивность выражают в генри (Гн).

При анализе цепей обычно рассматривают не значение ЭДС, наведенной в катушке, а напряжением на ее зажимах, положительное направление которого выбирают совпадающим с положительным направлением тока:

Идеализированный элемент электрической цепи — индуктивность, можно рассматривать как упрощенную модель индуктивной катушки, отражающую способность катушки запасать энергию магнитного поля .

Для линейной индуктивности напряжение на ее зажимах пропорционально скорости изменения тока. При протекании через индуктивность постоянного тока напряжение на ее зажимах равно нулю, следовательно, сопротивление индуктивности постоянному току равно нулю.

Генри, как единица измерения:

Генри – единица измерения индуктивности в Международной системе единиц (СИ), названная в честь американского учёного Джозефа Генри.

Генри  как единица измерения имеет русское обозначение – Гн и международное обозначение – H.

Цепь имеет индуктивность в один генри, если изменение электрического тока со скоростью один ампер в секунду создаёт ЭДС индукции, равную одному вольту.

1 генри также равен индуктивности электрического контура, возбуждающего магнитный поток в 1 вебер при силе постоянного тока в нём 1 ампер.

Гн = В · с / А = (кг · м2) / (с2 · А2) = Вб / А.

1 Гн = 1 В · 1 с / 1 А = (1 кг · 1 м2) / (1 с2 · 1 А2) =  1 Вб / 1 А.

В Международную систему единиц генри введён решением XI Генеральной конференцией по мерам и весам в 1960 году, одновременно с принятием системы СИ в целом. В соответствии с правилами СИ, касающимися производных единиц, названных по имени учёных, наименование единицы «генри» пишется со строчной буквы, а её обозначение — с заглавной (Гн). Такое написание обозначения сохраняется и в обозначениях производных единиц, образованных с использованием генри.

Катушка индуктивности

По определению, катушка индуктивности — это винтовая, спиральная или винтоспиральная катушка из свёрнутого изолированного проводника, обладающая значительной индуктивностью при относительно малой ёмкости и малом активном сопротивлении. Как следствие, при протекании через катушку переменного электрического тока, наблюдается его значительная инерционность, которую можно наблюдать в описанном выше эксперименте. В высокочастотной технике катушка индуктивности может состоять из одного витка или его части, в предельном случае на сверхвысоких частотах для создания индуктивности используется отрезок проводника, который обладает так называемой распределённой индуктивностью (полосковые линии).

Опыты

В заключение хотелось бы рассказать о некоторых любопытных свойствах катушек индуктивности, которые вы могли бы сами понаблюдать, имея под рукой простейшие материалы и доступные приборы. Для проведения опытов нам потребуется отрезки изолированного медного провода, ферритовый стержень и любой современный мультиметр с функцией измерения индуктивности. Вспомним, что любой проводник с током создаёт вокруг себя магнитное поле такого вида, показанное на рисунке 7.

Рис. 8. Магнитное поле катушки с током.

Намотаем на ферритовый стержень четыре десятка витков провода с небольшим шагом (расстоянием между витками). Это будет катушка №1. Затем намотаем такое же количество витков с таким же шагом, но с обратным направлением намотки. Это будет катушка №2. И затем намотаем 20 витков в произвольном направлении вплотную. Это будет катушка №3. Затем аккуратно снимем их с ферритового стержня. Магнитное поле таких катушек индуктивности выглядит примерно так, кака показано на рис. 8.

Рис. 10.

Катушки индуктивности делятся в основном на два класса: с магнитным и немагнитным сердечником. На рисунке 8 показана катушка с немагнитным сердечником, роль немагнитного сердечника исполняет воздух. На рис. 9 показаны примеры катушек индуктивности с магнитным сердечником, который может быть замкнутым или разомкнутым.

Рис. 11.

В основном используют сердечники из феррита и пластин из электротехнической стали. Сердечники повышают индуктивность катушек в разы. В отличие от сердечников в форме цилиндра, сердечники в виде кольца (тороидальные) позволяют получить большую индуктивность, так как магнитный поток в них замкнут.

Рис. 12.

Подключим концы мультиметра, включенного в режим измерения индуктивности, к концам катушки №1. Индуктивность такой катушки чрезвычайно мала, порядка нескольких долей микрогенри, поэтому прибор ничего не показывает (рис. 10). Начнём вводить в катушку ферритовый стержень (рис. 11). Прибор показывает порядка десятка микрогенри, причем при продвижении катушки к центру стержня её индуктивность возрастает примерно в три раза (рис. 12).

Рис. 13.

По мере продвижения катушки к другому краю стержня, значение индуктивности катушки опять падает. Вывод: индуктивность катушек может регулироваться путем перемещения в них сердечника, и максимальное её значение достигается при расположении катушки на ферритовом стержне (или, наоборот, стержня в катушке) в центре. Вот мы и получили настоящий, пусть и несколько неуклюжий, вариометр. Проделав вышеописанный опыт с катушкой №2, мы получим аналогичные результаты, то есть направление намотки на индуктивность не влияет.

Рис. 14.

Уложим витки катушки №1 или №2 на ферритовом стержне поплотнее, без зазоров между витками, и снова измерим индуктивность. Она увеличилась (рис. 13).

Рис. 15.

А при растягивании катушки по стержню её индуктивность уменьшается (рис. 14). Вывод: изменяя расстояние между витками можно подстраивать индуктивность, а для максимальной индуктивности наматывать катушку надо «виток к витку». Приёмом подстройки индуктивности путём растягивания или сжатия витков частенько пользуются радиотехники, настраивая свою приёмопередающую аппаратуру на нужную частоту.

Установим на ферритовый стержень катушку №3 и измерим её индуктивность (рис. 15). Число витков уменьшилось в два раза, а индуктивность уменьшилась в четыре раза. Вывод: чем меньше количество витков — тем меньше индуктивность, и нет линейной зависимости между индуктивностью и числом витков.

Автор статьи: Sergey Akishkin

Историческая справка

Символ L, используемый для обозначения индуктивности, был принят в честь Эмилия Христиановича Ленца (Heinrich Friedrich Emil Lenz), который известен своим вкладом в изучение электромагнетизма, и который вывел правило Ленца о свойствах индукционного тока. Единица измерения индуктивности названа в честь Джозефа Генри (Joseph Henry), который открыл самоиндукцию. Сам термин индуктивность был предложен Оливером Хевисайдом (Oliver Heaviside) в феврале 1886 года.

В числе учёных, принявших участие в исследованиях свойств индуктивности и разработке различных её применений, необходимо упомянуть сэра Генри Кавендиша, который проводил эксперименты с электричеством; Майкла Фарадея, который открыл электромагнитную индукцию; Николу Тесла, который известен своей работой над системами передачи электричества; Андре-Мари Ампера, которого считают первооткрывателем теории об электромагнетизме; Густава Роберта Кирхгофа, который исследовал электрические цепи; Джеймса Кларка Максвелла, который исследовал электромагнитные поля и частные их примеры: электричество, магнетизм и оптику; Генри Рудольфа Герца, который доказал, что электромагнитные волны действительно существуют; Альберта Абрахама Майкельсона и Роберта Эндрюса Милликена. Конечно, все эти ученые исследовали и другие проблемы, о которых здесь не упоминается.

Литература

Оцените статью
Рейтинг автора
5
Материал подготовил
Андрей Измаилов
Наш эксперт
Написано статей
116
Добавить комментарий