Содержание
- 1 Минусы коллекторных моторов
- 2 Шаг 5: Выбор инвертора
- 3 Общее устройство коллекторных двигателей
- 4 Однофазные и трехфазные д0вигатели асинхронного типа
- 5 Производители электродвигателей
- 6 Двигатель постоянного тока: коллекторный или бесколлекторный?
- 7 Характеристики[править]
- 8 Основные параметры электродвигателя
- 9 Асинхронные электродвигатели
- 10 Как работать ручным плиткорезом?
- 11 Конструкция[править]
- 12 3 способа как удалить Аваст полностью с Виндовс 10, если он не удаляется
- 13 Электродвигатели постоянного тока
Минусы коллекторных моторов
Сами по себе коллекторные моторы неплохо справляются со своей работой, но это лишь до того момента пока не возникает необходимость получить от них на выходе максимально высокие обороты. Все дело в тех самых щетках, о которых упоминалось выше. Так как они всегда находятся в плотном контакте с коллектором, то в результате высоких оборотов в месте их соприкосновения возникает трение, которое в дальнейшем вызовет скорый износ обоих и в последствии приведёт к потере эффективной мощности эл. двигателя. Это самый весомый минус таких моторов, который сводит на нет все его положительные качества.
Шаг 5: Выбор инвертора
Солнечные батареи получают солнечные лучи и конвертируют их в электричество, они являются источниками постоянного тока (DC), также как аккумуляторная батарея, а нам для подключения розеток требуется переменный ток с напряжением 220В. Постоянный ток (DC) преобразуется в переменный ток (AC) через устройство под названием инвертор.
Виды волн переменного тока на выходе инвертора:
- Прямоугольная волна – меандр;
- Модифицированная синусоида;
- Чистая синусоида.
Инвертор прямоугольной волны дешевле всех, но подходит не для всех приборов. Инвертор модифицированной синусоиды тоже не предназначен для обеспечения электричеством приборов с электромагнитными или ёмкостными компонентами, типа: микроволновых печей; холодильников; различных типов электродвигателей. Инверторы с модифицированной синусоидой работают с меньшей эффективностью, чем инверторы с чистой синусоидой.
Мы рекомендуем выбирать инверторы с чистой синусоидой.
Параметры инвертора:
- Мощность инвертора должна быть равной или больше, чем мощность всех приборов нагрузки, включенных одновременно;
- Если есть приборы с пусковыми токами (электродвигатели), нельзя чтобы она превышала максимальную мощность инвертора с учетом других электропотребителей;
- Предположим, что у нас будет: телевизор (50Вт) + вентилятор (50Вт) + настольная лампа (10Вт) = 110Вт;
- Чтобы иметь запас по мощности, выбираем инвертор от 150Вт. Так как наша система 12В, мы должны выбрать инвертор постоянного тока 12В в 220В/50Гц переменного тока с чистой синусоидой.
Примечание: Такая техника как стиральная машина, холодильник, фен, пылесос и т.д. имеют начальную потребляемую мощность во много раз больше, чем их нормальная рабочая мощность. Как правило, это вызвано наличием электрических двигателей или конденсаторов в таких приборах
Это должно быть принято во внимание при выборе мощности преобразователя (инвертора).
Общее устройство коллекторных двигателей
Как и любой электродвигатель, коллекторный преобразует электрическую энергию в механическую. Он состоит из неподвижной части – статора и подвижной – ротора. В статоре располагаются обмотки возбуждения, ротор отвечает за передачу возникающей механической энергии. Одна из составляющих частей ротора – вал. С одной стороны, на валу размещён коллекторный узел, с помощью которого на обмотки ротора передаётся электрическая энергия.
Коллекторный двигатель: устройство
Статор состоит из корпуса, который защищает компоненты мотора от повреждений. Сверху и снизу корпуса крепятся магнитные полюса. Они необходимы для поддержания магнитного потока между статором и ротором.
Однофазные и трехфазные д0вигатели асинхронного типа
Договорились – трехфазные коллекторные двигатели достать сложно, текущий раздел речь ведет касательно асинхронных машин. Разновидности перечислим:
- Трехфазные асинхронные двигатели снабжены числом выводов три-шесть рабочих обмоток за вычетом различных предохранителей, внутренних реле, разнообразных датчиков. Катушки статора внутри объединяются звездой, делая невозможным напрямую включение в однофазную сеть.
- Однофазные двигатели, снабженные пусковой обмоткой, помимо прочего снабжаются парой контактов, ведущих к концевому центробежному выключателю. Миниатюрное устройство обрывает цепь, когда вал раскручен. Пусковая обмотка катализирует начальный этап. Дальнейшим действием будет мешать, снижая КПД двигателя. Принято конструкцию называть бифилярной. Пусковая обмотка наматывается двойным проводом, снижая реактивное сопротивление. Помогает уменьшить емкость конденсатора – критично. Ярким примером однофазных двигателей асинхронного типа с пусковой обмоткой выступают компрессоры бытовых холодильников.
- Конденсаторная обмотка, отличаясь от пусковой, работает непрерывно. Двигатели найдем внутри напольных вентиляторов. Конденсатор дает сдвиг фаз 90 градусов, позволяя выбрать направление вращения, поддержать нужную форму электромагнитного поля внутри ротора. Типично на корпусе двигателя конденсатор крепится.
Трехфазные асинхронные двигатели
Научимся, как отличить однофазные двигатели асинхронного типа от трехфазных. В последнем случае внутри всегда имеется три равноценных обмотки. Поэтому можно найти три пары контактов, которые при исследовании тестером дают одинаковое сопротивление. Например, 9 Ом. Если обмотки объединены звездой внутри, выводов с одинаковым сопротивлением будет три. Из них любая пара дает идентичные показания, отображаемые экраном мультиметра. Сопротивление каждый раз равно двум обмоткам.
Поскольку ток должен выходить, иногда трехфазный двигатель имеет вывод нейтрали. Центр звезды, с каждым из трех других проводов дает идентичное сопротивление, вдвое меньшее, нежели демонстрирует попарная прозвонка. Указанные выше симптомы говорят красноречиво: двигатель трёхфазный, теме сегодняшнего разговора чуждый.
Рассматриваемые рубрикой моторы обмоток содержат две. Одна пусковая, либо конденсаторная (вспомогательная). Выводов обычно три-четыре. Отсутствуй украшающий корпус конденсатор, можно попробовать рассуждать, озадачиваясь предназначением контактов следующим образом:
- Выводов четыре штуки – нужно измерить сопротивление. Обычно звонятся попарно. Сопротивление ниже – нашли основную обмотку, подключаемую к сети 230 вольт без конденсатора. Полярность не играет роли, направление вращения задается способом включения вспомогательной обмотки, коммутацией катушек. Проще говоря, осуществите подключение однофазного электродвигателя характерного типа с одной лишь основной обмоткой – в начальный период времени вал стоит стоймя. Куда раскрутишь, туда пойдет вращение. Остерегайтесь производить старт рукой – поломает.
Устройство асинхронного двигателя
Производители электродвигателей
Российские производители электродвигателей
Регион | Производитель | Асинхронный двигатель | Синхронный двигатель | УД | КДПТ | |||||
---|---|---|---|---|---|---|---|---|---|---|
СДОВ | СДПМ, серво | СРД, СГД | Шаговый | |||||||
Краснодарский край | Армавирский электротехнический завод | |||||||||
Свердловская область | Баранчинский электромеханический завод | |||||||||
Владимир | Владимирский электромоторный завод | |||||||||
Санкт-Петербург | ВНИТИ ЭМ | |||||||||
Москва | ЗВИМосковский электромеханический завод имени Владимира Ильича | |||||||||
Пермь | ИОЛЛА | |||||||||
Республика Марий Эл | Красногорский завод «Электродвигатель» | |||||||||
Воронеж | МЭЛ | |||||||||
Новочеркасск | Новочеркасский электровозостроительный завод | |||||||||
Санкт-Петербург | НПО «Электрические машины» | |||||||||
Томская область | НПО Сибэлектромотор | |||||||||
Новосибирск | НПО Элсиб | |||||||||
Удмуртская республика | Сарапульский электрогенераторный завод | |||||||||
Киров | Электромашиностроительный завод Лепсе | |||||||||
Санкт-Петербург | Ленинградский электромашиностроительный завод | |||||||||
Псков | Псковский электромашиностроительный завод | |||||||||
Ярославль | Ярославский электромашиностроительный завод |
Аббревиатура:
- АДКР —
- АДФР —
- СДОВ — синхронный двигатель с обмоткой возбуждения
- СДПМ — синхронный двигатель с постоянными магнитами
- СРД — синхронный реактивный двигатель
- СГД — синхронный гистерезисный двигатель
- УД — универсальный двигатель
- КДПТ — коллекторный двигатель постоянного тока
- КДПТ ОВ —
- КДПТ ПМ —
Производители электродвигателей ближнего зарубежья
Страна | Производитель | Асинхронный двигатель | Синхронный двигатель | УД | КДПТ | |||||
---|---|---|---|---|---|---|---|---|---|---|
СДОВ | СДПМ, серво | СРД, СГД | Шаговый | |||||||
Беларусь | Могилевский завод «Электродвигатель» | |||||||||
Беларусь | Полесьеэлектромаш | |||||||||
Украина | Харьковский электротехнический завод «Укрэлектромаш» | |||||||||
Молдова | Электромаш | |||||||||
Украина | Электромашина | |||||||||
Украина | Электромотор | |||||||||
Украина | Электротяжмаш |
Производители электродвигателей дальнего зарубежья
Страна | Производитель | Асинхронный двигатель | Синхронный двигатель | УД | КДПТ | |||||
---|---|---|---|---|---|---|---|---|---|---|
СДОВ | СДПМ, серво | СРД, СГД | Шаговый | |||||||
Швейцария | ABB Limited | |||||||||
США | Allied Motion Technologies Inc. | |||||||||
США | Ametek Inc. | |||||||||
США | Anaheim automation | |||||||||
США | Arc System Inc. | |||||||||
Германия | Baumueller | |||||||||
Словения | Domel | |||||||||
США | Emerson Electric Corporation | |||||||||
США | General Electric | |||||||||
США | Johnson Electric Holdings Limited | |||||||||
Германия | Liebherr | |||||||||
Швейцария | Maxon motor | |||||||||
Япония | Nidec Corporation | |||||||||
Германия | Nord | |||||||||
США | Regal Beloit Corporation | |||||||||
Германия | Rexroth Bosch Group | |||||||||
Германия | Siemens AG | |||||||||
Бразилия | WEG |
ГОСТ 27471-87 Машины электрические вращающиеся. Термины и определения.
И.В.Савельев. Курс общей физики, том I. Механика, колебания и волны, молекулярная физика.-М.:Наука, 1970.
ГОСТ 29322-92 (МЭК 38-83) Стандартные напряжения.
ГОСТ 16264.0-85 Электродвигатели малой мощности
А.И.Вольдек, В.В.Попов. Электрические машины. Машины переменного тока: Учебник для вузов.- СПб.: Питер, 2007.
Paul Waide, Conrad U. Brunner. Energy-Efficiency Policy Opportunities for Electric Motor-Driven Systems. International Energy Agency Working Paper, Energy Efficiency Series.: Paris, 2011.
Dr. J. Merwerth. The hybrid-synchronous machine of the new BMW i3 & i8 challenges with electric traction drives for vehicles. BMW Group, Workshop University Lund: Lund, 2014.
Двигатель постоянного тока: коллекторный или бесколлекторный?
Идеальных решений в инженерии не существует, однако подобрать оптимальный вариант, который будет наилучшим образом соответствовать поставленным целям и задачам, можно всегда. Перед разработчиками любого оборудования, от простейшего до самого сложного, всегда стоит множество задач, которые требуют решения, и многие из них представляются в формате «или/или». Так, при использовании в механизмах электродвигателей постоянного тока часто возникает вопрос: отдать предпочтение коллекторному (щёточному) или бесколлекторному (бесщёточному) агрегату?
Коллекторные двигатели постоянного тока
Применение щёточных электродвигателей постоянного тока актуально в устройствах, работающих на умеренных и низких скоростях. Их основными преимуществами являются экономичность, простота использования и отсутствие встроенной электроники, благодаря которому двигатели такого типа легко справляются с кратковременными перегрузками.
Для обеспечения длительного срока службы коллекторному электродвигателю требуются грамотная эксплуатация и квалифицированное обслуживание: так, важно учитывать, что при работе такого двигателя на чрезмерно высоких скоростях щётки могут лететь с коллектора, а прохождение через механизм тока определённой плотности может стать причиной выгорания щёток. При эксплуатации коллекторного двигателя постоянного тока может потребоваться использование дисульфида молибдена или карбоната лития
Наличие щёток и коллектора сказывается на габаритах устройств: они значительно больше и тяжелее бесщёточных механизмов. Необходимость регулярного обслуживания ограничивает возможности свободной установки электродвигателя, делая необходимостью его размещение в доступном месте. Внутреннее расположение ротора усложняет теплообмен, а падение напряжения на щётках неминуемо ведёт к снижению эксплуатационных свойств электродвигателя.
Трение щёток о коллекторные контакты, неминуемо возникающее при работе щёточного электродвигателя, приводит к таким негативным последствиям, как снижение эффективности, высокий уровень шума, возникновение электромагнитных помех и возникновение искр: именно по этой причине коллекторные двигатели постоянного тока никогда не используются для работы во взрывоопасной среде.
Бесколлекторные двигатели постоянного тока
Отсутствие в бесколлекторных электродвигателях (BLDC) коллектора и щёток делает их более лёгкими и компактными, сокращает необходимое обслуживание до минимума и даёт ротору возможность вращения на более высокой скорости. Таким образом, отсутствие «проблемных» деталей лишило бесщёточные электродвигатели недостатков, свойственных щёточным агрегатам. Тем не менее, бесколлекторные двигатели имеют свои недочёты, главные из которых – конструктивная сложность и наличие встроенной электроники, делающее такие механизмы более дорогими, чем коллекторные.
Таким образом, выбирая между коллекторным и бесколлекторным двигателем постоянного тока, опираться нужно на такие факторы, как:
— финансовые возможности;— требования к характеристикам устройства;— наличие возможности обеспечения квалифицированного обслуживания;— сфера применения (учитываются шумность, возможность возникновения искр).
Широкий выбор щёточных и бесщёточных электродвигателей постоянного тока представлен в каталоге торгового дома Степмотор.
Источник
Характеристики[править]
Следующая характеристика, на которую нужно обращать внимание при выборе двигателя, это номинальное напряжение на которое он рассчитан. Например, в классе двигателей «Speed 400» имеются моторы с рабочим напряжением 4,8 вольта, 6 вольт, и 7,2 вольта
Эти цифры указывают, с каким количеством аккумуляторов (банок) в батарее предназначен работать этот двигатель. Напряжение на одном NiCd (никель-кадмиевом) или NiMH (никель-металгидридном) аккумуляторе составляет 1,2 вольта. Не трудно подсчитать, что мотор с рабочим напряжением 4,8 вольт предназначен для работы от 4-х баночной аккумуляторной батареи. Однако, эти цифры не более чем ориентировочные, моторы способны прекрасно работать и при повышенных напряжениях. Обычно, для увеличения мощности, моделисты используют в батарее на 1-2 банки больше, чем рекомендовано. Таким образом, без увеличения размера и веса двигателя, в режиме «перекала», из него удается выжать дополнительную мощность, которая в моделизме «лишней» никогда не бывает.
Чаще всего, недорогие электродвигатели не имеют подшипников, вместо них стоят бронзовые втулки. Если главным фактором в выборе мотора является цена — то это вполне приемлемое решение. В том случае, если на первый план выходит КПД, имеет смысл выбрать двигатель с шарикоподшипниками. Такие моторы маркируются буквами BB — (Ball Bearing).
Еще один резерв мощности — в усилении магнитного потока от собственных постоянных магнитов двигателя. Для усиления этого потока, вокруг корпуса двигателя делается дополнительный магнитовод в виде широкого металлического кольца. Такие двигатели маркируются как «Turbo» или «Race». Особо стоит отметить двигатели 480-го класса. Это двигатели имеют размеры сопоставимые с размерами моторов 400-го класса, но при этом имеют значительно повышенную мощность. Это своего рода форсированные 400-е моторы. Их ставят там, где мощность является критическим фактором при ограниченных размерах. Щёточный узел у этих моторов сделан открытым, что улучшает охлаждение, и делает возможной замену щеток.
В процессе работы коллекторных двигателей происходит постепенный износ графитовых щеток и металла коллектора, по которым щетки скользят. Периодически щетки нужно менять, а двигатель прочищать от графитовой и металлической пыли. При продолжительной интенсивной работе следует также протачивать коллектор, для компенсации его неравномерного износа. После замены щеток и ухода за коллектором, двигатель желательно обкатать при пониженной нагрузке для того чтобы щетки правильно «притерлись» к коллектору. Это же касается и новых моторов. Одним из методов обкатки является непродолжительная работа двигателя в ёмкости с дистилированной водой.
Коллекторные двигатели производства других фирм являются либо аналогами серии «Speed», либо «тюнинговые» варианты двигателей специально предназначенные для тех или иных видов моделей (для автомоделей или для вертолетов).
Как правило, улучшение характеристик моторов достигается за счет применения мощных редкоземельных магнитов, обязательным использованием подшипников, прецизионным изготовлением коллекторного узла. Но даже с применением всех перечисленных технологических уловок, коллекторные двигатели уступают по всем параметрам бесколлекторным моторам.
Основные параметры электродвигателя
Момент электродвигателя
Вращающий момент (синонимы: вращательный момент, крутящий момент, момент силы) — векторная физическая величина, равная произведению радиус вектора, проведенного от оси вращения к точке приложения силы, на вектор этой силы.
,
- где M – вращающий момент, Нм,
- F – сила, Н,
- r – радиус-вектор, м
Справка: Номинальный вращающий момент Мном, Нм, определяют по формуле
,
- где Pном – номинальная мощность двигателя, Вт,
- nном — номинальная частота вращения, мин-1
Начальный пусковой момент — момент электродвигателя при пуске.
Справка: В английской системе мер сила измеряется в унция-сила (oz, ozf, ounce-force) или фунт-сила (lb, lbf, pound-force)
1 oz = 1/16 lb = 0,2780139 N (Н)1 lb = 4,448222 N (Н)
момент измеряется в унция-сила на дюйм (oz∙in) или фунт-сила на дюйм (lb∙in)
1 oz∙in = 0,007062 Nm (Нм)1 lb∙in = 0,112985 Nm (Нм)
Мощность электродвигателя
Мощность электродвигателя — это полезная механическая мощность на валу электродвигателя.
Мощность электродвигателя постоянного тока
Механическая мощность
Мощность — физическая величина, показывающая какую работу механизм совершает в единицу времени.
,
- где P – мощность, Вт,
- A – работа, Дж,
- t — время, с
Работа — скалярная физическая величина, равная произведению проекции силы на направление F и пути s, проходимого точкой приложения силы .
,
где s – расстояние, м
Для вращательного движения
,
где – угол, рад,
,
где – углавая скорость, рад/с,
Таким образом можно вычислить значение механической мощности на валу вращающегося электродвигателя
Справка: Номинальное значение — значение параметра электротехнического изделия (устройства), указанное изготовителем, при котором оно должно работать, являющееся исходным для отсчета отклонений.
Коэффициент полезного действия электродвигателя
Коэффициент полезного действия (КПД) электродвигателя — характеристика эффективности машины в отношении преобразования электрической энергии в механическую.
,
- где – коэффициент полезного действия электродвигателя,
- P1 — подведенная мощность (электрическая), Вт,
- P2 — полезная мощность (), Вт
- При этом
потери в электродвигатели обусловлены:
электрическими потерями — в виде тепла в результате нагрева проводников с током;
магнитными потерями — потери на перемагничивание сердечника: потери на вихревые токи, на гистерезис и на магнитное последействие;
механическими потерями — потери на трение в подшипниках, на вентиляцию, на щетках (при их наличии);
дополнительными потерями — потери вызванные высшими гармониками магнитных полей, возникающих из-за зубчатого строения статора, ротора и наличия высших гармоник магнитодвижущей силы обмоток.
КПД электродвигателя может варьироваться от 10 до 99% в зависимости от типа и конструкции.
Международная электротехническая комиссия (International Electrotechnical Commission) определяет требования к эффективности электродвигателей. Согласно стандарту IEC 60034-31:2010 определено четыре класса эффективности для синхронных и асинхронных электродвигателей: IE1, IE2, IE3 и IE4.
где n — частота вращения электродвигателя, об/мин
Момент инерции ротора
Момент инерции — скалярная физическая величина, являющаяся мерой инертности тела во вращательном движении вокруг оси, равна сумме произведений масс материальных точек на квадраты их расстояний от оси
,
- где J – момент инерции, кг∙м2,
- m — масса, кг
Справка: В английской системе мер момент инерции измеряется в унция-сила-дюйм (oz∙in∙s2)
1 oz∙in∙s2 = 0,007062 kg∙m2 (кг∙м2)
Момент инерции связан с моментом силы следующим соотношением
,
где – угловое ускорение, с-2
,
Справка: Определение момента инерции вращающейся части электродвигателя описано в ГОСТ 11828-86
Номинальное напряжение
Номинальное напряжение (англ. rated voltage) — напряжение на которое спроектирована сеть или оборудование и к которому относят их рабочие характеристики .
Электрическая постоянная времени
Электрическая постоянная времени — это время, отсчитываемое с момента подачи постоянного напряжения на электродвигатель, за которое ток достигает уровня в 63,21% (1-1/e) от своего конечного значения.
,
где – постоянная времени, с
Механическая характеристика двигателя представляет собой графически выраженную зависимость частоты вращения вала от электромагнитного момента при неизменном напряжении питания.
Асинхронные электродвигатели
Благодаря дешевизне и простоте конструкции электрические машины такого типа получили самое широкое распространение. Их принципиальное отличие – наличие так называемого скольжения. Это разность между частотой вращения магнитного поля неподвижной части электрической машины и скоростью вращение ротора. Напряжение на вращающейся части индуцируется за счет переменного магнитного поля обмоток статора двигателя. Вращение вызывает взаимодействие поля электромагнитов неподвижной части и магнитного поля ротора, возникающего под влиянием наведенных в нем вихревых токов. По особенностям обмоток статора выделяют:
- Однофазные двигатели переменного тока. Двигатели такого типа требуют для пуска наличия внешнего фазосдвигающего элемента. Это может быть пусковой конденсатор или индуктивное устройство. Область применения однофазных двигателей – маломощные приводы.
- Двухфазные электрические машины. Такие двигатели имеют 2 обмотки со смещенными относительно друг друга фазами. Их также используют для бытовых устройств и оборудования, имеющего небольшую мощность.
- Трех- и многофазные электродвигатели. Наиболее распространенный тип асинхронных машин. Электрические двигатели такого типа имеют от 3-х и более обмоток статора, сдвинутых по фазе на определенный угол.
По конструкции ротора асинхронные электрические машины делят на двигатели с короткозамкнутым и фазным ротором.
Обмотка ротора электрических машин первого типа представляет собой несколько неизолированных стержней, выполненных из сплавов меди или алюминия, замкнутых с двух сторон кольцами (конструкция “беличья клетка”). Асинхронные двигатели такого типа обладают следующими преимуществами:
- Достаточно простая схема пуска. Такие электрические машины можно подключать непосредственно к электрической сети через аппараты коммутации.
- Допустимость кратковременных перегрузок.
- Возможность изготавливать электрические машины высокой мощности. Двигатель такого типа не содержит скользящих контактов, препятствующих наращиванию мощности.
- Относительно простое ТО и ремонт. Асинхронные электромашины имеют несложную конструкцию.
- Невысокая цена. Двигатели асинхронного типа стоят дешевле синхронных машин и ДПТ.
Электрические машины с короткозамкнутым ротором имеют свои недостатки:
- Предельная скорость вращения составляет не более 3000 об/мин при входе в синхронный режим.
- Технически сложная реализация регулирования частоты вращения.
- Высокие пусковые токи при прямом запуске.
Электродвигатели с фазным ротором частично лишены недостатков, присущих машинам с ротором конструкции “беличья клетка”. Вращающаяся часть электрической машины такого типа имеет обмотки, соединенные в схему “звезда”. Напряжение подводится к обмотке через 3 контактных кольца, закрепленных на роторе и изолированных от него.
Такие электродвигатели обладают следующими достоинствами:
- Возможность ограничивать пусковые токи при помощи резистора, включенного в цепь электромагнитов ротора.
- Больший, чем у электромашин с короткозамкнутым ротором, пусковой момент.
- Возможность регулировки скорости.
Недостатками таких двигателей являются относительно большие габариты и масса, высокая цена, более сложный ремонт и сервисное обслуживание.
Как работать ручным плиткорезом?
Для того чтобы получить ровную линию разреза, не испортив при этом керамическую плитку, следует придерживаться несложных правил:
Инструменты для резки плитки.
- Перед началом работы тщательно проверьте состояние всех элементов плиткореза: алмазный ролик должен вращаться без особого усилия, движения каретки должны быть плавными, без рывков. Обязательно проверьте целостность ролика – в случае обнаружения на его поверхности сколов или щербатостей ролик следует заменить, купив новый в любом магазине со строительными материалами. Чтобы движение ролика по поверхности плитки было более плавным, на него наносят несколько капель масла.
- Поверхность станины следует держать в чистоте. Не допускается наличие грязи, песчинок или мелких осколков плитки.
- На плитку наносится разметка. Для этого используют строительный карандаш или маркер с легко смываемыми чернилами. Кафель помещают на станину таким образом, чтобы совместить линию разреза с траекторией движения каретки.
- Ручку опускают до того момента, пока алмазный ролик не коснется поверхности плитки. После этого с легким нажатием каретку тянут на себя. Старайтесь произвести операцию за один проход, так как в противном случае разлом может получиться неровным.
- После надреза эмали каретку помещают в положение, когда она будет в ближней к вам 1/3 плитки. Ручку тянут вниз, во время чего специальные «крылья» давят на обе части кафеля, легко разламывая его.
Схема резки плитки стеклорезом.
Ручной плиткорез позволяет отделить куски кафеля шириной от 5-6 мм (в зависимости от толщины материала). Если вам нужно отрезать более узкую полосу, то можно произвести надрез алмазным роликом устройства, после чего, работая плоскогубцами, понемногу отламывать лишнюю часть плитки.
Во время работы металлические «крылья» могут оставить небольшие следы и сколы на поверхности эмали. Для того чтобы избежать этого, некоторые мастера приклеивают на их нижнюю поверхность кусочки изоленты.
Профессиональные модели ручных плиткорезов имеют регулируемые направляющие с разметкой в дюймах и сантиметрах, которые можно фиксировать в заданном положении. Это позволяет не наносить разметку на плитку, что очень облегчает работу при больших объемах. Направляющие также двигаются под разными углами, делая возможной фигурную резку.
Стоимость профессиональных плиткорезов довольно высока и зависит не только от функциональности, но и от производителя. Некоторые устройства оборудованы еще и так называемой балеринкой. Это простой механизм, позволяющий вырезать в плитке круглые отверстия под розетки и выключатели. На первый взгляд, наличие данной функции значительно облегчает работу, но в большинстве плиткорезов «балеринка» работает очень некорректно. Поэтому легче сделать отверстие обычной круглой коронкой по кафелю.
Ручной плиткорез имеет некоторые ограничения для работы: он легко справляется с плиткой, толщина которой не превышает 12 мм. Также им довольно трудно (а иногда и просто невозможно) резать твердое покрытие: керамогранит, гранит и плитку из других натуральных материалов. Для таких случаев рациональным решением будет использование устройств с электрическим приводом.
http:
Конструкция[править]
Микроэлектродвигатели имеют магнитопровод якоря, выполненный в виде трехзубцового пакета из штампованных листов электротехнической стали.
На рисунке обозначено: 1 — щит; 2 — якорь; 3 — корпус; 4 — коллектор; 5 — постоянные магниты; 6 — скоба; 7 — прокладка.
Петлевая обмотка якоря, имеющая три укороченные секции, намотана непосредственно на зубцы пакета и соединяется в звезду или треугольник. Начало в крышке машины, и трехламельный цилиндрический коллектор, напрессованный каждой секции присоединено к коллекторной пластине. Питание двигателя осуществляется через щеточный узел, смонтированный на валу якоря.
3 способа как удалить Аваст полностью с Виндовс 10, если он не удаляется
Электродвигатели постоянного тока
Двигатели постоянного тока широко применяются в качестве привода электротранспорта, промышленного оборудования, а также микропривода исполнительных механизмов. Такие электрические машины обладают следующими преимуществами:
- Возможность регулировки частоты вращения путем изменения напряжения в обмотке возбуждения. При этом крутящий момент на валу ДПТ (двигатели постоянного тока) остается неизменным.
- Высокий к.п.д. (коэффициент полезного действия) у машин постоянного тока несколько выше, чем у самых распространенных асинхронных двигателей переменного тока. При неполной нагрузке на валу к.п.д. ДПТ выше на 10-15%.
- Возможность изготовления ДПТ небольших габаритов. Практически все используемые микроприводы рассчитаны на постоянный ток.
- Простота схем управления. Для пуска, реверса и регулирования скорости и момента не требуется сложного электронного оборудования и большого количества аппаратов для коммутации.
- Возможность работы в режиме генератора. Электродвигатели такого типа можно использовать в качестве источников постоянного тока.
- Высокий пусковой момент. ДПТ используют в составе электроприводов кранов, тяговых и грузоподъемных механизмов, где требуется запуск под значительной нагрузкой.
ДПТ различают по способу возбуждения, они бывают:
- С постоянными магнитами. Такие двигатели отличаются малыми габаритами. Основная область их применения – микроприводы.
- С электромагнитным возбуждением.
Электрические машины с электромагнитами такого типа получили самое широкое распространение. Их классифицируют по способу подключения обмотки статора:
- Двигатели с параллельным возбуждением. Обмотки якоря и статора в электрической машине такого типа соединены параллельно. Такие электрические машины не требуют дополнительного источника питания для обмотки возбуждения, скорость вращения ротора практически не зависит от нагрузки. Их используют для привода металлорежущих станков и другого оборудования.
- Электродвигатели с последовательно включенной обмоткой статора. ДПТ этого типа имеют значительный пусковой момент. Их применяют в качестве привода электротранспорта и промышленных установок с необходимостью пуска под нагрузкой.
- Двигатели с независимым возбуждением. Для питания обмотки статора таких электромашин используется независимый источник постоянного тока. ДПТ такого типа отличаются широким диапазоном регулирования скоростей.
- Электрические машины со смешанным возбуждением. Электромагнит возбуждения в таких двигателях поделен на 2 части. Одна из них включена параллельно, вторая последовательно обмотке якоря. Электрические машины такого типа используются в механизмах и оборудовании, где необходим высокий пусковой момент, а также переменная и постоянная скорость при переменном моменте.