Автомобильный осциллограф: понятие и принципы работы

Как измерить частоту

При помощи осциллографа можно провести измерения временных интервалов, в частности, периода сигнала. Вы понимаете, что частота любого сигнала всегда пропорциональна периоду. Измерение периода можно провести в любой области осциллограммы. Но удобнее и точнее провести замер в тех точках, в которых график пересекается с горизонтальной осью. Следовательно, перед началом измерений обязательно установите развертку четко на горизонтальную линию, расположенную по центру. Так как пользоваться портативным цифровым осциллографом намного проще, нежели аналоговым, последние давно канули в лету и редко используются для измерений.

Далее, используя рукоятку, обозначенную горизонтальной двунаправленной стрелкой, необходимо сместить начало периода с крайней левой линией на экране. После вычисления периода сигнала можно, используя простую формулу, рассчитать частоту. Для этого нужно единицу разделить на вычисленный ранее период. Точность измерений бывает различной. Чтобы увеличить ее, необходимо как можно сильнее растягивать график по горизонтали.

Обратите внимание на одну закономерность: при увеличении периода уменьшается частота (пропорция ведь обратная). И наоборот – при уменьшении периода происходит увеличение частоты. Низкое значение погрешности – это когда она составляет менее 1 процента

Но такую высокую точность не каждый осциллограф способен обеспечить. Только на цифровых, в которых линейная развертка, можно получить такие точные измерения

Низкое значение погрешности – это когда она составляет менее 1 процента. Но такую высокую точность не каждый осциллограф способен обеспечить. Только на цифровых, в которых линейная развертка, можно получить такие точные измерения.

Сфера применения осциллографа

Осциллографы получили широкое распространение не только в промышленности, но и в медицине

Область использования устройств очень широка. Просмотр поведения сигнала электротока позволяет за короткое время диагностировать и произвести своевременный ремонт любого электрического прибора.

Посредством осциллографа возможно:

  • определить параметры времени и напряжения сигнала, выполнить расчет частоты;
  • отслеживать изменения формы сигнала и анализировать его природу;
  • выявлять искажения на нужных участках цепи;
  • определять сдвиг фаз;
  • определять отношение шумов к полезному сигналу, выявлять характер шума.

Для определения всех параметров при помощи мультиметра работа может затянуться на несколько часов, тогда как посредством осциллографа все измерения можно выполнить за несколько минут. Помимо этого, многие неисправности можно определить только при помощи осциллографа. Прибор способен измерять в секунду порядка миллиона измерений, потому даже кратковременные нарушения нормального функционирования оборудования им буду зафиксированы.

Осциллографы применяются практически во всех сферах деятельности человека, в том числе:

  • в радиоэлектронике;
  • автомобилестроении;
  • судостроении;
  • авиации;
  • ремонтных мастерских различного назначения;
  • быту и хозяйственных целях.

Назначение, сферы применения

Посредством осциллографа производятся исследования параметров электросигналов, подводимых на вход прибора. Он преобразует принимаемые данные в графическое изображение, по которому можно производить анализ. С помощью полученной «картинки» анализируется зависимость сигнала, например, напряжения от времени. Прибор может одновременно принимать от 1 до нескольких лучей (сигналов). Каждый из них поступает на отдельный вход и отображается отдельным графиком на экране (дисплее). Таким образом, приборы бывают однолучевыми, двулучевыми, многолучевыми (многоканальными).

Сфера применения прибора:

  • изучение колебаний значений сигналов электросети или их мгновенных показателей;
  • сигналов, изменяющихся во времени;
  • характеристик схем электроники и ее составляющих элементов.

Наиболее распространенными типами приборов являются аналоговые, цифровые и USB осциллографы.

Аналоговые модели осциллографов

В основе прибора лежит электронно-лучевая трубка (ЭЛТ), проходя через которую сигнал преобразуется в графическую форму. Многие специалисты до сих пор предпочитают пользоваться именно этими моделями, считая их более привычными и надежными. Такие приборы имеют ряд достоинств, но и отрицательных моментов в их конструкции содержатся немало. Для удобства восприятия, информация сведена в таблицу:

Преимущества Недостатки
Привычная панель, простота пользования Зависимость от частоты сигнала (мигание, тусклость изображения) и, как следствие невысокая точность
Изображение реальной «картинки» с отображением происходящих во времени изменений Полоса пропускания ограничена
При постоянном использовании управление настройками становится знакомым и понятным Анализ характеристик поступающих данных ограничен средствами
Невысокий ценовой сегмент

Цифровые приборы для ремонта техники

Развитие и совершенствование электронной техники усложняет процесс ее обслуживания, но вместе с тем, параллельный рост цифровых технологий дает возможность широкого использования достигнутых результатов в создании новых контрольно-измерительных приборов. Не являются исключением и цифровые осциллографы, которые становятся более функциональными и удобными в применении.

Преимущества и недостатки сведены в таблицу:

Преимущества Недостатки
Доступность остановки картинки на нужное время Высокие ценовые значения
Высокая измерительная точность Сложность управления
Полоса пропускания гораздо шире, чем у аналоговых моделей Недостаточная частота оцифровки затирает некоторые детали сигнала
Экран яркий, защищен от мерцаний
Доступность обнаружения импульсных сетевых помех
Допустимость коммутации с компьютером
Возможность дополнительной обработки полученных данных

Некоторые модели не имеют собственного дисплея. Они применяются путем подключения к компьютеру и передают данные на его монитор.

USB осциллографы для работы с компьютером

Такие компактные устройства относятся к цифровым моделям, однако работают только в совокупности с персональным компьютером (ноутбуком), на который передают принимаемый сигнал для последующего изучения.

Преимуществами этих приборов являются:

  • небольшие размеры;
  • доступность сохранения и распечатки полученных данных;
  • возможность быстрой обработки с помощью компьютера.

Единственным недостатком, хотя и довольно значительным, является не совсем точное отображение формы сигнала.

Работа с измерителем

Перед тем как воспользоваться осциллографом, выполняется калибровка. Для этого измерительные щупы подключаются к входу усилителя (отклонение луча в вертикальной плоскости) и общему выводу, обозначаемому как земля. В случае если используется ЭЛТ, после включения необходимо подождать некоторое время для прогрева экрана. Затем понадобится пройти следующие этапы:

  1. Регулятор установки времени выставляется на деление, соответствующее 1 мс/дел.
  2. Ручка «Вольт/деление» переключается в положение 0,5 В/дел.
  3. Контроль синхроимпульсов переводится в режим «авто». Если такое положение не предусмотрено, то выбирается внутренняя синхронизация и устанавливается тип сигнала — переменный.
  4. Вращая регуляторы положения луча (вверх/вниз и вправо/влево), устанавливают режим «Авто» или просто добиваются появления луча на экране.
  5. Переключатель вида сигнала переводится в позицию GND (земля).
  6. Общий щуп соединяется со специальным контактом заземления корпуса устройства. Если в осциллографе такого контакта нет, то зажим щупа одевается на любую неизолированную металлическую часть корпуса.
  7. Переключатель «Тип сигнала» переводится в нейтральное положение для подключения вывода к земле. Если же такого переключателя нет, то щупы замыкаются друг с другом.
  8. Ручками вертикальной и горизонтальной настройки добиваются установки луча на середину экрана.
  9. Если устройство имеет переключатель «Тип сигнала», то он устанавливается в положение замера постоянной формы или щуп просто отсоединяется от гнезда заземления.
  10. Переключением масштаба «Вольт/деление» добиваются разворачивания сигнала на весь экран, что повышает точность наблюдений.
  11. С помощью измерительных проводов приступают к нужным исследованиям, подстраивая в случае необходимости масштаб «Вольт/деление».

Таким образом, использование осциллографа, позволяет осуществлять операции по настройке и ремонту сложных приборов, которые с помощью тестера выполнить невозможно. Работа на современном устройстве не намного сложнее измерений, проводимых мультиметром.

Самый простой вариант создания карманного осциллографа

Если замеряемая частота находится в диапазоне слышимых человеческим ухом частот, а уровень сигнала не превышает стандартный микрофонный, то собрать осциллограф из планшета на «Андроид» своими руками можно без каких бы то ни было дополнительных модулей. Для этого достаточно разобрать любую гарнитуру, на которой должен обязательно присутствовать микрофон. Если подходящей гарнитуры нет, то потребуется купить звуковой штекер 3,5 мм обязательно с четырьмя контактами. Перед припаиванием щупов уточните распиновку разъема вашего гаджета, ведь их бывает два вида. Щупы необходимо подключить к пинам, соответствующим подключению микрофона на вашем устройстве.

Далее следует загрузить из «Маркета» программное обеспечение, способное замерять частоту на микрофонном входе и рисовать график на основе полученного сигнала. Таких вариантов довольно много. Поэтому при желании будет из чего выбрать. Как и говорилось ранее, не потребовалась переделка планшета. Осциллограф будет готов сразу же после калибровки приложения.

Измеряем напряжение

Для уменьшения погрешности, так как наблюдение визуальное, рекомендовано, чтобы график занимал 80–90 % монитора. Когда делают замеры напряжения и по частоте (есть временный интервал), надо регуляторы усиления и скорости развертки разместить в крайние правые позиции.

Порядок действий

Напряжение измеряется масштабированием по вертикали. Алгоритм:

  1. Перед началом замыкают сигнал щупа на свой же земляной проводок (иглу на «крокодил») или выставляют тумблер режима входа в позицию «земля».
  2. Высветится «пульс трупа», если нет, то надо подвигать смещение, стабилизацию и уровень — возможно изображение спряталось, не запустилось.
  3. Регулируем селекторами смещение полосы на ноль и регулятором «вверх-вниз» выставляем развертку на горизонталь сетки, так можно будет корректно рассчитать высоту осциллограммы. Если осциллограф старый или аналоговый, то надо ему дать прогреться минут 5.
  4. Выставляем предел измерений по напряжению, рекомендовано брать с запасом, потом можно уменьшить.
  5. На вход дают сигнал (или его переключатель переводится в одно из рабочих позиций). На мониторе появится график.
  6. Проиллюстрируем процесс: батарейка имеет 1.5 V, если прикоснуться земляным отростком щупа к ее минусу, а сигнальным — к плюсу, то появится скачок графика на 1.5 Вольта.

Для нахождения высоты графика осциллограмму подвигают селектором, чтобы отметка, по которой исчисляется амплитуда, была на центральной вертикали с долями. Получим чувствительность отклонения — 1 в/дел, размер осциллогр. — 2.6 дел., а отсюда ампл. = 2.6 В.

Ниже иллюстрация на аналоговом аппарате: 3.4 дел. — макс. напряжения. На соседнем рисунке — масштабирование по вертикали. Регулятор «плавно» (часть с зеленой риской) – в правой предельной позиции, черточка тумблера чувствительности — 0.5 в/дел. Множитель по масшт. — ×10. Расчет напряжения:

Зачем нужен осциллограф

Часто, произнося это слово в присутствии человека, не связанного с радиоэлектроникой, мне начинало казаться, что я произнес какое-то очень завораживающее слово. В глазах собеседника сразу появлялось удивление и заинтересованность, и он начинал смотреть на меня как на какого-то мага или волшебника. Так что же это за прибор, который делает человека, занимающегося электроникой, фактически Гарри Поттером?

Основное предназначение осциллографа — изобразить форму измеряемого электрического сигнала (его напряжения), и он становится относительно простым в использовании прибором уже после первого с ним знакомства (хотя куча всяких ручек и кнопочек на нем может вогнать в ступор кого угодно). Фактически, осциллограф рисует нам двухмерный график зависимости напряжения от времени, где по горизонтальной оси X мы наблюдаем время, по вертикальной Y — напряжение. Или как еще говорят, осциллограф делает временную развертку сигнала. Интенсивность (или яркость) сигнала на дисплее можно представить в виде третьей оси Z.

Оси осциллографа

Итак, осциллограф — это измерительный прибор, который позволяет:

  • Определить временные параметры и значения напряжения сигнала (его амплитуду)
  • Замерив временные характеристики сигнала, можно вычислить его частоту
  • Наблюдать сдвиг фаз, который происходит при прохождении различных участков цепи
  • Наблюдать искажение сигнала, вносимые каким-то участком цепи
  • Можно выяснить постоянную (DC) и переменную (AC) составляющие сигнала
  • Можно выяснить соотношение сигнал/шум и является ли шум стационарным, или же он изменяется во времени

Еще раз повторюсь, что хотя мы и можем измерять некоторые из параметров исследуемого сигнала, его напряжение (амплитуду), частоту, сдвиг фаз, но именно форма сигнала зачастую позволяет понять процессы, происходящие в электрической цепи.

Рассмотрим пример осциллограммы электрического сигнала — это то, что показывает осциллограф.  Картинка идеализирована, работая с реальными приборами таких идеально ровных линий увидеть не получится (из-за чего это происходит я расскажу несколько позже).

Осциллограмма

В нашем случае мы наблюдаем периодический сигнал, у которого отсутствует постоянная составляющая (равна нулю), и мы имеем переменную составляющую в форме прямоугольных импульсов. Действующее (эффективное) значение напряжения (Vrms, среднеквадратичное значение) в данном частном случае совпало с амплитудой сигнала, хотя в общем случае, это не так (действующее значение будет меньше амплитудного). К слову, вольтметры измеряют именно действующее значение напряжения (простенький цифровой вольтметр показывает вообще некоторое средневыпрямленное значение, такое, что при измерении синусоидального сигнала оно равно действующему значению). Хотя есть вольтметры, измеряющие именно амплитудные (пиковые) значения сигналов, вне зависимости от формы сигнала (в них используются пиковые детекторы). К теме работы вольтметров, я обязательно еще вернусь в своих публикациях.

Глядя на полученную осциллограму, можно заметить, что мы имеем:

  • периодический сигнал прямоугольной формы
  • он принимает значения как положительной, так и отрицательной полярности (вольтметр просто показал бы какое-то число)
  • сигнал изменяется в пределах от -6В до +6В (чувствительность по вертикали 2В/деление)
  • длительность отрицательного полупериода равна длительности положительного полупериода

Не так уж и мало информации мы получили, глядя на экран осциллографа!

При помощи многоканального осциллографа можно одновременно наблюдать сигналы в различных точках схемы и смотреть, как они между собой соотносятся. Например, на входе и выходе усилителя. Мы можем посмотреть сигнал на входе и сигнал на выходе, выяснить какие искажения в форму сигнала вносит наш усилитель, как изменилась его амплитуда, какова временная задержа (сдвиг фаз). Как правило, увеличение количества входов осциллографа значительно сказывается на его стоимости. На практике, при разработке, отладке, настройке или ремонте цифровых и аналоговых устройств оптимальным, я считаю, наличие в своем арсенале двухканального осциллографа.

В ближайшее время я планирую рассказать о том, как выбрать подходящий для ваших задач осциллограф, на какие характеристики следует обращать внимание, как устроены различные типы осциллографов и покажу, как с этим чудо-прибором работать. Следите за новостями!

Режим входа

На передней панели имеется специальный переключатель, который переводит прибор в различные состояния. Обозначается символом — сверху прямая черта, ниже нее -волнистая. При переводе в верхнее положение на вход может поступать как переменное, так и постоянное напряжение. Вход открытый считается для постоянного тока. При переключении в нижнее положение допустима подача на вход только переменного напряжения. Благодаря этому появляется возможность проводить замеры очень маленького переменного напряжения (по отношению к очень большим значениям постоянного). Актуально для проведения измерений в усилительных каскадах.

Реализовать это довольно просто – необходимо ко входу усилителя подключить конденсатор. В данном случае вход закрыт

Обратите внимание на то, что в этом режиме измерения НЧ-сигналы с частотой менее 5 Гц ослабевают. Следовательно, измерять их можно лишь в режиме открытого входа

Когда переключатель установлен в среднее положение, то от разъема входа отключается усилитель, и происходит замыкание на корпус. Благодаря этому имеется возможность установить развертку. Так как пользоваться осциллографом С1-49 и аналогами без знания основных органов управления невозможно, стоит о них более подробно поговорить.

Классификация

Как пользоваться осциллографом

По виду используемой схемотехники (электронных компонентов) различают цифровые и аналоговые измерительные приборы. Простые модели показывают только динамическую картинку. Современные – оснащены функцией запоминания для обеспечения лучших условий при изучении сложных процессов. Некоторые электронные осциллографы способны выводить на экран до 14 и более сигналов одновременно. Для исследования оптических сигналов производители выпускают стробоскопические высокоскоростные модификации.

Отдельно следует отметить специализированные приставки, которые подключаются через стандартный порт или коммуникационную плату к ноутбуку (стационарному компьютеру). Такое комбинированное оборудование можно перенастроить с применением специализированного программного обеспечения.


Плагин vst обеспечивает удобство обработки волновых процессов в звуковом диапазоне

Проблемы при создании осциллографа

Проблемы могут возникнуть как у новичка, так и у того, кто знает, как из обычного домашнего компьютера сделать осциллограф на практике. Чтобы минимизировать шансы, лучше изучить всю теорию перед работой или настройкой, а также купить материалы с запасом, если есть необходимость изготовить приставку.

Возможные трудности:

  1. Проблемы со схемой. Схема для простейшего осциллографа лёгкая сама по себе, но если возникают сложности, можно воспользоваться видеогайдами.
  2. Программы не устанавливаются. Если программное обеспечение отказывается работать на компьютере, проверьте совместимость (соответствие требованиям операционной системы, наличие всех необходимых деталей в ПК).
  3. Результат не выводится на экран. Это проблема внутренней настройки – укажите корректный путь, чтобы сохранение и воспроизведение результатов анализа шли корректно.

Большинство возникающих проблем легко решить последующими попытками, минимальными теоретическими знаниями и опытом – стоит только набраться немного терпения.

Особенности внутреннего устройства

Несмотря на сложное внутреннее оснащение на базе ЭЛТ, прибор с дисплеем может состоять из нескольких составляющих. К ним относятся:

  • Входной стандартный усилитель для наблюдаемых сигналов, чей выход подключается напрямую к пластинам вертикального отклонения.
  • Электронно-лучевая осциллографическая трубка. Широко используется в ряде близких по назначению измерительных приборов.
  • Далее идёт блок горизонтальной развёртки. Однократный тип или периодический сигнал преобразуется в пилообразную форму. Он направляется к пластинам с горизонтальным типом отклонения ЭЛТ. Помимо этого, в период спадающей фазы создаётся импульс гашения электронных лучей, подаваемый на модуляторы ЭЛТ.
  • К вспомогательным или дополнительным частям устройства осциллографа относят калибратор длительности, возможной амплитуды и блок управления яркости.

Экран «А» позволяет чётко отобразить графики каждого поступающего входного сигнала. Цифровые аналоги выводят на цветной или специфический монохромный дисплей желаемое изображение как полностью готовую картинку. Остальные модели используют электронно-лучевую трубку, оснащённую показателями электростатического отклонения. Для таких экранов характерна нанесённая в виде координатной сетки разметка, миссия которой — показывать точное местоположение данных.

Выделяют два базовых типа развёртки: ждущий и автоколебательный, или автоматический. Реже можно встретить модели с дополнительным однократным режимом. Каждый вид имеет свои специфические черты:

Однократный запуск. Характерный механизм запуска — внешнее воздействие. Так, нажатие кнопки и дальнейшее ожидание запуска сходны со ждущим режимом. После запуска развёртывание производится однократно. Повторная развёртка требует ещё одного запуска. Подобная система работы комфортна для изучения функционирования процессов непериодического типа. Недостатком является однократный пробег светящегося пятна по дисплею. Яркость картинки недостаточна, что серьёзно затрудняет процесс наблюдения при быстрой развёртке.
Ждущий режим. Недостаточный уровень или отсутствие сигнала вызывает отсутствие развёртки и дальнейшее угасание экрана. Запуск возможен только при достижении сигналами определённого заданного оператором уровня. Возможна настройка запуска как по падающему, так и по нарастающему сигнальному фронту

Важно отметить, что при изучении непериодических типов импульсных процессов такая система гарантирует зрительную неподвижность картинки на экране. Зачастую развёртывание запускается синхронным, несколько опережающим процесс наблюдения сигналом.
Автоматическое развёртывание

В этом случае генератор функционирует в автоколебательном типе режима. Благодаря этому даже при отсутствии сигнала в момент окончания цикла произойдёт очередной момент её запуска. Это делает возможным наблюдение изображения на экране даже в ситуации подачи на входе вертикального типа отклонения постоянного напряжения или отсутствия сигнала. Подобный режим характеризуется особым захватом частоты генератора развёртывания наблюдаемым сигналом. Важно, что частота генераторов при этом в целое количество раз меньше частоты исследуемых сигналов.

Осциллограф из планшета на «Андроид»

При приобретении приставки-осциллографа выбирается ОС не «виндовс», а «андроид». Приставка должна поддерживать опции:

  • вluetooth-канал;
  • передача данных с помощью Wi-Fi.

Это позволит обойтись без контактной привязки гаджета с приставкой.

Bluetooth-канал

У подключения через Bluetooth присутствуют ограничения:

  • у тестируемой частоты граница – 1 МГц;
  • U щупа = 10 В;
  • зона покрытия – 10 м.

Это ограничивает ресурс при применении подключений такого типа.

Передача данных с помощью Wi-Fi

Подключить осциллограф из планшета фирмы Linux или иного производителя допустимо посредством беспроводной сети – wi fi канала. Пакет измерений выдаётся на планшет без промедления и для неограниченного количества участников проекта. Наличие опции записи позволяет работать с информацией в версиях офлайн и онлайн. Дальность соединения выше, чем у Bluetooth.

Автоматический расчет напряжений входных сигналов

У меня на схемах изображены механические переключатели. А как же быть, если при построении собственной схемы хочется обеспечить автоматический расчет напряжений входных сигналов? Можно реализовать и такое. 

Возможные пути:

  1. Реле с двумя группами контактов во входном делителе. Естественно со своими цепями коммутации (транзисторы, резисторы, диоды). Управление от микроконтроллера. На три диапазона требуется три реле, работающих по очереди. Соответственно еще минимум пара реле на переключение промежуточного делителя. Эти два реле уже могут иметь одну группу контактов.
  2. Реле с одной группой контактов на верхнее плечо делителей. Нижнее плечо можно переключать мультиплексором. Промежуточный делитель тоже.

Итого требуется три порта МК на управление реле. Еще два порта на управление реле промежуточного делителя.

Мультиплексор как правило управляется тремя портами (выходами) микроконтроллера.

Одна из проблем такого решения состоит в том, что электромагнитные реле имеют некоторые габариты, да еще и кушают немалый ток, что делает такую схему малопригодной под батарейное питание.

Да и сильно простой ее уже не назовешь. И микроконтроллеры уже требуются с большим количеством портов ввода-вывода.

Это все неплохо вписывается в настольные варианты осциллографов с питанием от сети, но гораздо сложнее использовать в малогабаритных вариантах с батарейным питанием.

Именно из таких соображений я и считаю целесообразным для радиолюбительских конструкций осциллографов начального уровня применять механические переключатели и производить пересчет напряжения сигнала ориентируясь по положению переключателей в уме.

Да, это менее удобно. Но это единственный путь сохранить возможность нормальной настройки и работы осциллографа во всем диапазоне доступных ему сигналов при сохранении относительной простоты схемы.

Мне понятно стремление осциллографостроителей к автоматизации. И на первом этапе обычно кажется, что «Как нибудь прорвусь. Как то настрою. Ну пусть и с искажениями…» Сам был такой когда-то.

Поверьте, входная часть осциллографа в значительной мере  определяет его рабочие качества.

И если строите прибор не только на «поиграться/похвалиться», а хотите иметь верного помощника – не упрощайте входной аттенюатор.  Именно ДВЕ группы контактов.

Все сказанное в полной мере справедливо и при выборе готовых схем, кит-наборов и готовых конструкций. Осциллограф не столь простой и дешевый прибор, чтобы стоило заведомо снижать его рабочие качества, лишь немного упростив схему входных делителей.

Особенности осциллографа miniscope

  1. Простое устройство потоковой передачи данных в реальном времени на ПК; библиотеки dll и GUI (для Win32),
  2. сэмплирование: 480 кГц, 8 бит, потоковая передача через USB FS с помощью libusb (32/64бит), используемые в качестве драйвера,
  3. 8 диапазонов напряжения (0..30, 15, 7.5, 6, 3.75, 3, 1.87, 0.94 вольт PGA — х1, х2, х4, Х5, х8, х10, х16 и х32 соответственно),
  4. входное сопротивление: 1 мегаом,
  5. шум: ~23mVpp,
  6. длина записи: 4к на 1м в dll (один экран); до 512m при записи в файл,
  7. загрузка прошивки через USB (dfu загрузчик встроенного в ПЗУ),
  8. малое количество компонентов: микроконтроллер, регулятор напряжения, мини-USB и несколько пассивных радиодеталей поверхностного монтажа на односторонней печатной плате.

Насколько оправдана самостоятельная сборка подобного измерительного прибора по сравнению с покупкой готовой приставки?

Небольшое примечание. Здесь 3,3 В регулятор напряжения может быть использован любого типа. Прошивки для miniscope, чертежи печатной платы и основные двоичные файлы слиты в один общий архив

Осциллографы на 10 В

В схемах с подобным напряжением применяются резисторы закрытого типа и стабилитрон. Их параметры чувствительности по вертикали подбираются до 2 мВ. При расчёте полосы пропускания максимальное сопротивление устройства согласовывается с ёмкостью проводных конденсаторов. Диоды подбирают с напряжением 2 В, резисторы желательно выбирать полевые. Выбор диодов на такое напряжение позволит снизить частоту дискретизации до минимума и увеличить скорость передачи. Из-за быстрой развёртки данных предельная частота резко падает. Использование стабилитрона или делителя, выполненного из модулятора, поможет решить эту проблему.

Схема на 10 В

Проверка осциллографа

В инструкции по эксплуатации обязательно описан процесс калибровки (проверки) устройства. Практически любой осциллограф имеет сзади или сбоку корпуса специальный выход генератора прямоугольных импульсов. Его используют для калибровки прибора. При подключении сигнального щупа к калибровочному выходу на экране должна появиться пилообразная линия. Поставив воспроизведение луча в режим «Авто», нужно проверить работу всех функций, покрутив ручки. Яркость должна регулироваться, фокусировка — фокусировать, луч должен двигаться вверх, вниз при масштабировании. При настройке синхронизации осциллограмма должна останавливаться.

Самый же простой способ убедиться в работоспособности прибора — это коснуться пальцами щупа. Луч должен реагировать на прикосновение.

Основные функции работы и возможности осциллографа, описанные выше? наверняка помогут начинающим. Многие вопросы, возникающие в процессе использования агрегата, можно понять лишь с опытом. Прибор достаточно сложен, но изучив его, легко решаются задачи диагностики и ремонта фактически любых электронных схем.

Оцените статью
Рейтинг автора
5
Материал подготовил
Андрей Измаилов
Наш эксперт
Написано статей
116
Добавить комментарий