Содержание
- 1 Какие бывают сплавы металлов список
- 2 Сплавы
- 3 Сталь У9, У9А
- 4 Самый распространенный машиностроительный материал
- 5 Основные виды сплавов
- 6 Взаимодействие с кислородом
- 7 Ковкий чугун
- 8 Классификация стали по содержанию примесей
- 9 Бронированный кабель для прокладки в земле
- 10 Нахождение металлов и способы их получения
- 11 Что мы узнали?
- 12 Популярные темы сообщений
- 13 Сплавы, их классификация и свойства
- 14 Свойства
- 15 Белый чугун
- 16 Вариант №2
Какие бывают сплавы металлов список
Металлы используются человеком уже много тысячелетий. По именам металлов названы определяющие эпохи развития человечества: Бронзовый Век, Железный Век, Век Чугуна и т.д.
Ни одно металлическое изделие из числа окружающих нас не состоит на 100% из железа, меди, золота или другого металла.
В любом присутствуют сознательно введенные человеком добавки и попавшие помимо воли человека вредные примеси.
Абсолютно чистый металл можно получить только в космической лаборатории. Все остальные металлы в реальной жизни представляют собой сплавы — твердые соединения двух или более металлов (и неметаллов), полученные целенаправленно в процессе металлургического производства.
Классификация однородности сплавов
Сплавы
Главная страница —>
Учебное пособие по химии металлов —>
Сплавы
металлическими свойствами и состоящие из двух или более
элементов, из которых хотя бы один является металлом. Их
получают охлаждением расплавленных смесей, совместным осаждением из газовой фазы, электроосаждением из растворов и расплавов, диффузионным насыщением. Свойства сплавов значительно отличаются от свойств металлов (см. табл. 9). Например, прочность на разрыв сплава меди и цинка (латуни) в три раза выше, чем у меди и в шесть раз по сравнению с цинком. Железо хорошо растворимо, а его сплав с хромом и никелем (нержавеюща сталь) – устойчив в разбавленной серной кислоте.
и алюминием (LaAl4), лантаном и никелем (LaNi5), кальцием
и цинком (CaZn10) и многими другими.
Таблица 9
Характеристики сплавов
Название сплава |
Состав |
Способы получения |
Характерные свойства |
Области применения |
1 |
2 |
3 |
4 |
5 |
Стали |
Fe + C (до 1,7 %) + легирующие добавки (Cr, Ni, Mo, W, Al, Mn) + металлургические примеси (Si, S, P) |
Переработка чугуна мартеновским и электротермическим способами, основанными на выжигании (окислении) углерода. Мартеновским способом получают 15 % стали, электротермическим – стали, содержащие W, Mo и др. |
Обладают большей твердостью по сравнению с чистым железом и имеют в своем составе до 10 различных элементов |
Основной материал, применяемый в машиностроении, строительстве и во многих отраслях техники и науки |
Чугун |
Fe + C (> 2 %) + + Si, Mn, P, S |
Выплавка в доменных печах (93 % Fe + 4,5 % C + 0,5 – 2 % Si, 1 – 3 % Mn, 0,02 – 2 % P и до 0,08 % S) |
Очень тверд и хрупок по сравнению с чистым железом |
Массивные детали различных машин и сырье для получения стали |
Бронза оловянистая, свинцовая, кремниевая |
Cu + Sn Cu + Al Cu + Pb Cu + Si |
Сплавлением в специальных печах |
Обладает высокой стойкостью к атмосферной коррозии |
Части машин и художественные отливки |
Латунь |
Cu + Zn |
Сплавлением в специальных печах |
Обладает высокой пластичностью и стойкостью к атмосферной коррозии |
Приборы, детали машин, предметы домашнего обихода, находит применение в моторостроении |
Дуралюмин |
Al (95 %) + Mg + + Cu + Mn |
То же |
По прочности равен стали, но в 3 раза легче ее |
Детали в самолетостроении |
Окончание табл. 9
1 |
2 |
3 |
4 |
5 |
Нихром |
Ni + Cr + Fe + Mn |
–«– |
Обладает высокой жаростойкостью и большим электросопротивлением |
Электрические нагревательные приборы |
Силумин |
86…88 % Al + + 12…14 % Si |
–«– |
Обладает хорошими литейными свойствами |
Детали машин |
Манганин |
Cu + Mn (11 – 14%) + Ni (2- 4%) |
–«– |
Обладает низким коэффициентом электрического сопротивления при 15 – 35 0С |
Эталонные сопротивления в приборах высокого класса точности |
Монель-металл |
Ni + Cu (23…27%)+ + Fe (2…3 %) + + Mn (1…2 %) |
–«– |
Отличается высокой устойчивостью в атмосферных условиях, в кислотах, не обладающих окислительными свойствами, крепких растворах щелочей, высокопрочен и пластичен |
Конструкционный материал в судостроении, химической промышленности, медицине |
Предыдущие материалы:
|
Следующие материалы:
|
Сталь У9, У9А
- Нелегированные стали
- Легированные стали
- Нержавеющие стали
- Ст0
- Ст2кп
- Ст2пс
- Ст2сп
- Ст3кп
- Ст3пс
- Ст3сп
- Ст3Гпс
- Ст4кп
- Ст4пс
- Ст5пс
- Ст5сп
- Ст6пс
- Ст6сп
- 08кп
- 10кп
- 10Г2
- 15кп
- 15Г
- 20кп
- 20Г
- 30Г
- 35Г2
- 40Г
- 45Г2
- 50Г
- 50Г2
- У10
- У12
Марка стали — У9, У9А Стандарт — ГОСТ 1435
Заменитель — У7, У7А, У8, У8А
Сталь У9
содержит в среднем 0,9% углерода, букваУ показывает, что сталь углеродистая.
Сталь У9А
содержит в среднем 0,9% углерода, букваУ показывает, что сталь углеродистая, букваА в конце марки означает, что сталь относится к категории высококачественной.
Нелегированные инструментальные стали У9
иУ9А применяются для изготовления:
- инструментов, работающих в условиях, не вызывающих разогрева режущей кромки;
- инструментов для обработки дерева (фрез, зенковок, цековок, топоров, стамесок, долот, продольных и дисковых пил);
- накатных роликов, плит и стержней для форм литья под давлением оловянно-свинцовистых сплавов;
- калибров простой формы и пониженных классов точности;
- холоднокатаной термообработанной ленты толщиной от 2,5 до 0,02 мм, предназначенной для изготовления плоских и витых пружин и пружинящих деталей сложной конфигурации, клапанов, щупов, берд, ламелей двоильных ножей, конструкционных мелких деталей, в том числе для часов.
Массовая доля основных химических элементов, % | ||
C — углерода | Si — кремния | Mn — марганца |
0,85-0,94 | 0,17-0,33 | 0,17-0,33 (У9) 0,17-0,28 (У9А) |
Температура критических точек, °С | |||
Ac1 | Ac3 | Ar1 | Ar3 |
740 | 760 | 700 | — |
Технологические свойства | |
Ковка | Температура ковки, °С: начала 1125, конца 750. Сечения до 100 мм охлаждаются на воздухе. |
Свариваемость | Не применяется для сварных конструкций. |
Обрабатываемость резанием | В отожженном состоянии при HB 200: Kv твердый сплав = 1,2 Kv быстрорежущая сталь = 1,1 |
Флокеночувств. | Не чувствительна |
Склонность к отпускной хрупкости | Не склонна |
Физические свойства | Температура испытаний, °С | |||||||||
20 | 100 | 200 | 300 | 400 | 500 | 600 | 700 | 800 | 900 | |
Модуль нормальной упругости E, ГПа | 207 | — | — | — | — | — | — | — | — | — |
Модуль упругости при сдвиге кручением G, ГПа | 79 | — | — | — | — | — | — | — | — | — |
Плотность ρn, кг/м3 | 7745 | 7726 | 7717 | 7690 | 7686 | 7655 | 7622 | 7586 | 7568 | 7523 |
Коэффициент теплопроводности λ, Вт/(м*К) | — | 49 | 48 | 46 | 43 | 40 | 37 | 33 | — | — |
Удельное электросопротивление ρ, нОм*м | — | 253 | 329 | 418 | 525 | 646 | 789 | 943 | 1155 | 1198 |
20-100 | 20-200 | 20-300 | 20-400 | 20-500 | 20-600 | 20-700 | 20-800 | 20-900 | 20-1000 | |
Коэффициент линейного расширения α*106, K-1 | 11,3 | 12,1 | 12,9 | 13,6 | 14,2 | 14,7 | 15,2 | 14,0 | — | — |
Удельная теплоемкость c, Дж/(кг*К) | — | — | — | — | — | — | — | — | — | — |
Самый распространенный машиностроительный материал
Серый чугун ГОСТ 1412-85 содержит в своем составе около 3,5% углерода, от 1,9 до 2,5% кремния, до 0,8% марганца, до 0,3% фосфора и менее 0,12% серы.
Графит в таком чугуне имеет пластинчатую форму. При этом не требуется специального модифицирования.
Пластинки графита имеют сильно ослабляющее действие и потому серому чугуну характерны очень низкая ударная вязкость и практически полное отсутствие относительного удлинения (показатель составляет мене 0,5%).
Серый чугун хорошо подвергается обработке. Структура сплава может быть следующей:
- Феррито-графитовой.
- Феррито-перлито-графитовой.
- Перлито-графитовой.
На сжатие серый чугун работает гораздо лучше, нежели на растяжение. Также он довольно хорошо сваривается, но для этого требуется предварительный подогрев, а в качестве присадочного материала следует использовать специальные чугунные стержни с высоким содержанием кремния и углерода. Без предварительного разогрева сварка будет затруднена, поскольку будет происходить отбеливание чугуна в зоне шва.
Из серого чугуна производят детали, работающие при отсутствии ударной нагрузки (шкивы, крышки, станины).
Обозначение данного чугуна происходит по такому принципу: СЧ 25-52. Две буквы сигнализируют о том, что это именно серый чугун, число 25 – показатель предела прочности при растяжении (в Мпа или кгс/мм 2 ), число 52 – предел прочности в момент изгиба.
Основные виды сплавов
Самые многочисленные виды сплавов металлов изготавливаются на основе железа. Это стали, чугуны и ферриты.
Сталь — это вещество на основе железа, содержащее не более 2,4% углерода, применяется для изготовления деталей и корпусов промышленных установок и бытовой техники, водного, наземного и воздушного транспорта, инструментов и приспособлений. Стали отличаются широчайшим диапазоном свойств. Общие из них — прочность и упругость. Индивидуальные характеристики отдельных марок стали определяются составом легирующих присадок, вводимых при выплавке. В качестве присадок используется половина таблицы Менделеева, как металлы , так и неметаллы. Самые распространенные из них — хром, ванадий, никель, бор, марганец, фосфор.
Легированная сталь
Если содержание углерода более 2,4% , такое вещество называют чугуном. Чугуны более хрупкие, чем сталь. Они применяются там, где нужно выдерживать большие статические нагрузки при малых динамических. Чугуны используются при производстве станин больших станков и технологического оборудования, оснований для рабочих столов, при отливке оград, решеток и предметов декора. В XIX и в начале XX века чугун широко применялся в строительных конструкциях. До наших дней в Англии сохранились мосты из чугуна.
Чугунные радиаторы
Вещества с большим содержанием углерода, имеющие выраженные магнитные свойства, называют ферритами. Они используются при производстве трансформаторов и катушек индуктивности.
Сплавы металлов на основе меди, содержащие от 5 до 45% цинка, принято называть латунями. Латунь мало подвержена коррозии и широко применяется как конструкционный материал в машиностроении.
Желтая латунь
Если вместо цинка к меди добавить олово, то получится бронза. Это, пожалуй, первый сплав, сознательно полученный нашими предками несколько тысячелетий назад. Бронза намного прочнее и олова, и меди и уступает по прочности только хорошо выкованной стали.
Вещества на основе свинца широко применяются для пайки проводов и труб, а также в электрохимических изделиях, прежде всего, батарейках и аккумуляторах.
Двухкомпонентные материалы на основе алюминия, в состав которых вводят кремний, магний или медь, отличаются малым удельным весом и высокой обрабатываемостью. Они используются в двигателестроении, аэрокосмической промышленности и производстве электрокомпонентов и бытовой техники.
Взаимодействие с кислородом
Многие металлы могут вступать в реакцию с кислородом. Обычно продуктами этих реакций являются оксиды, но есть и исключения, о которых вы узнаете на следующем уроке. Рассмотрим взаимодействие магния с кислородом.
Магний горит в кислороде, при этом образуется оксид магния:
2Mg + O2 = 2Mg+2O-2
Рис. 1. Горение магния в кислороде
Атомы магния отдают свои внешние электроны атомам кислорода: два атома магния отдают по два электрона двум атомам кислорода. При этом магний выступает в роли восстановителя, а кислород – в роли окислителя.
Видео-опыт: “Горение магния”
Обратите внимание!!! Серебро, золото и платина с кислородом не реагируют. 2
Взаимодействие с галогенами, образуются галогениды
2. Взаимодействие с галогенами, образуются галогениды
Для металлов характерна реакция с галогенами. Продуктом такой реакции является галогенид металла, например, хлорид.
Рис. 2. Горение калия в хлоре
Калий сгорает в хлоре образованием хлорида калия:
2К + Cl2 = 2K+1Cl-1
Два атома калия отдают молекуле хлора по одному электрону. Калий, повышая степень окисления, играет роль восстановителя, а хлор, понижая степень окисления,- роль окислителя
3. Взаимодействие с серой
Многие металлы реагируют с серой с образованием сульфидов. В этих реакциях металлы также выступают в роли восстановителей, тогда как сера будет окислителем. Сера в сульфидах находится в степени окисления -2, т.е. она понижает свою степень окисления с 0 до -2. Например, железо при нагревании реагирует с серой с образованием сульфида железа (II):
Fe + S = Fe+2S-2
Рис. 3. Взаимодействие железа с серой
Видео-опыт: “Взаимодействие цинка с серой”
Металлы также могут реагировать с водородом, азотом и другими неметаллами при определенных условиях.
4. Взаимодействие с водой
Металлы по — разному реагируют с водой:
Помните!!!
Алюминий реагирует с водой подобно активным металлам, образуя основание:
Видео-опыт: “Взаимодействие натрия с водой”
Раскалённое железо реагирует с водяным паром, образуя смешанный оксид — железную окалину Fe3O4 и водород: 3Fe+4H+12O−2 → Fe+2O−2⋅Fe+32O−23 + 4H2
5. Взаимодействие с кислотами
Металлы особо реагируют с серной концентрированной и азотной кислотами:
H2SO4 (конц.) + Me = соль + H2O + Х
Щелочные и щелочноземельные |
Fe, Cr, Al |
Металлы до водорода Сd-Pb |
Металлы после водорода (при t) |
Au, Pt |
|
X |
1)пассивируются на холоде; |
S↓ могут H2S илиSO2 |
— |
H2SO4 (разб) + Cu ≠
Внимание!
Pt, Au + H2SO4 (конц.) →реакции нет
Al, Fe, Cr + H2SO4 (конц.) холодная→ пассивация
Ковкий чугун
Структура ковкого чугуна заключается в наличии в нем графита в хлопьевидной или шаровидной форме. При этом хлопьевидный графит может иметь различную дисперсность и компактность, что, в свою очередь, оказывает непосредственное влияние на механические свойства чугуна.
В промышленности ковкий чугун производится зачастую с ферритной основой, которая обеспечивает большую пластичность.
Внешний вид излома ферритного ковкого чугуна имеет черно-бархатистый вид. Чем выше количество перлита в структуре, тем светлее будет становиться излом.
В целом же, ковкий чугун получается из отливок белого чугуна благодаря длительному томлению в печах, нагретых до температуры 800–950 градусов Цельсия.
На сегодняшний день есть два способа изготовления ковкого чугуна: европейский и американский.
Американский метод заключается в томлении сплава в песке при температуре 800-850 градусов. В этом процессе графит располагается между зернами чистейшего железа. В итоге чугун приобретает вязкость.
В европейском методе отливки томятся в железной руде. Температура при этом составляет около 850-950 градусов Цельсия. Углерод переходит в железную руду, за счет чего поверхностный слой отливок обезуглероживается и становится мягким. Чугун становится ковким, а сердцевина сохраняет хрупкость.
Маркировка ковкого чугуна: КЧ 40-6, где КЧ – это, разумеется ковкий чугун; 40 – показатель прочности при растяжении; 6 – относительное удлинение, %.
Классификация стали по содержанию примесей
Кроме классификации по содержанию углерода и по степени раскисления, применяется классификация по качеству, определяемому методом производства и содержанием вредных примесей, прежде всего, серы и фосфора. Классификация сталей по качеству:
Группа | Сера, % | Фосфор, % |
Обыкновенные (рядовые) | < 0,06 | < 0,07 |
Качественные | < 0,04 | < 0,035 |
Высококачественные | < 0,025 | < 0,025 |
Особовысококачественные | < 0,015 | < 0,025 |
В некоторых классификациях особовысококачественные включают в состав высококачественных.
Обыкновенного качества
Большую часть рядовых сталей составляют углеродистые сплавы (С < 0,6%) Их производят мартеновским способом или конвертерным с использованием кислорода. Эти виды стали предназначены для самых массовых применений, недороги в производстве, хорошо поддаются обработке, но и не обладают особой прочностью или износостойкостью.
Качественные
К качественным относятся как углеродистые, так и легированные. Также производятся мартеновским или конвертерным способом с кислородным дутьем, но к составу сырья предъявляются намного более строгие требования, чем в случае рядовых. Также строже требования к соблюдению параметров плавки и розлива. Такие группы сталей стоят дороже и применяются для более ответственных деталей, работающих в условиях серьезных нагрузок.
Классификация сталей по качеству
Высококачественные
Эта группа производится более совершенными с точки зрения технологии способами, такими, как выплавка в электропечах. Особенности технологии производства позволяют добиться особо низкого содержания вредных примесей неметаллов и газовых включений, что гарантирует высокие механические свойства. Такие стали используются в особо ответственных узлах, а стоимость их в несколько раз выше, чем обычных.
Высокопрочная сталь
Бронированный кабель для прокладки в земле
Нахождение металлов и способы их получения
Самый распространенный на земле элемент-металл – алюминий. За ним следуют железо, кальций, натрий.
Некоторые металлы встречаются в природе в самородном состоянии (золото, ртуть, платина), но в основном они находятся в природе в виде оксидов и солей.
Получение металлов происходит с помощью металлургии (получение из руд), пирометаллургии (получение с помощью реакции восстановления при высокой температуре), гидрометаллургии (извлечение из руд в виде растворимых соединений), электрометаллургии (получение металлов электролизом расплавов и растворов их соединений).
Что мы узнали?
Металлы – вещества, которые обладают высокой электро- и теплопроводностью, ковкостью, пластичностью и металлическим блеском. В данной статье по химии 9 класса рассматриваются их физические и химические свойства, формулы класса металлов, а также способы получения.
-
Вопрос 1 из 10
Начать тест(новая вкладка)
Популярные темы сообщений
-
Южная Америка
Материк Южная Америка расположился в Западном полушарии Земли вместе со своей соседкой Северной Америкой. Эти два материка соединяются с помощью Панамского канала. Южная Америка, хоть и лежит совсем рядом с Северной Америкой,
-
Безопасность в повседневной жизни
Обыкновенная жизнь человека не такая-то безопасная. Можно подумать, что вокруг все в порядке, но на самом деле, если человек будет беспечным, то может сильно навредить себе и окружающим. Есть люди, которые не думают о том,
-
Правила дорожного движения
Правила дорожного движения существовали ещё во времена правления Цезаря. Учитывая огромное количество гужевого транспорта в Риме, было введено на некоторых улицах одностороннее движение. Люди, которые приезжали в город на своих повозках,
Сплавы, их классификация и свойства
Существует несколько способов классификации сплавов:
- по способу изготовления (литые и порошковые сплавы);
- по способу получения изделия (литейные, деформируемые и порошковые сплавы);
- по составу (гомогенные и гетерогенные сплавы);
- по характеру металла – основы (черные –основа Fe, цветные – основа цветные металлы и сплавы редких металлов – основа радиоактивные элементы);
- по числу компонентов (двойные, тройные и т.д.);
- по характерным свойствам (тугоплавкие, легкоплавкие, высокопрочные, жаропрочные, твердые, антифрикционные, коррозионностойкие и др.);
- по назначению (конструкционные, инструментальные и специальные).
Свойства
Особенности взаимодействия металлов с разными веществами представлены в таблице химических свойств металлов.
Реакция |
Особенности |
Уравнение |
С кислородом |
Большинство металлов образует оксидные плёнки. Щелочные металлы самовоспламеняются в присутствии кислорода. При этом натрий образует пероксид (Na2O2), остальные металлы I группы – надпероксиды (RO2). При нагревании щелочноземельные металлы самовоспламеняются, металлы средней активности – окисляются. Во взаимодействие с кислородом не вступают золото и платина |
– 4Li + O2 → 2Li2O; – 2Na + O2 → Na2O2; – K + O2 → KO2; – 4Al + 3O2 → 2Al2O3; – 2Cu + O2 → 2CuO |
С водородом |
При комнатной температуре реагируют щелочные, при нагревании – щелочноземельные. Бериллий не вступает в реакцию. Магнию дополнительно необходимо высокое давление |
– Sr + H2 → SrH2; – 2Na + H2 → 2NaH; – Mg + H2 → MgH2 |
С азотом |
Только активные металлы. Литий вступает в реакцию при комнатной температуре. Остальные металлы – при нагревании |
– 6Li + N2 → 2Li3N; – 3Ca + N2 → Ca3N2 |
С углеродом |
Литий и натрий, остальные – при нагревании |
– 4Al + 3C → Al3C4; – 2Li+2C → Li2C2 |
С серой |
Не взаимодействуют золото и платина |
– 2K + S → K2S; – Fe + S → FeS; – Zn + S → ZnS |
С фосфором |
При нагревании |
3Ca + 2P → Ca3P2 |
С галогенами |
Не реагируют только малоактивные металлы, медь – при нагревании |
Cu + Cl2 → CuCl2 |
С водой |
Щелочные и некоторые щелочноземельные металлы. При нагревании, в условиях кислой или щелочной среды реагируют металлы средней активности |
– Ca + 2H2O → Ca(OH)2 + H2; |
С кислотами |
Металлы слева от водорода. Медь растворяется в концентрированных кислотах |
|
Со щелочами |
Только амфотерные металлы |
|
С солями |
Активные замещают менее активные металлы |
3Na + AlCl3 → 3NaCl + Al |
Металлы взаимодействуют между собой и образуют интерметаллические соединения – 3Cu + Au → Cu3Au, 2Na + Sb → Na2Sb.
Белый чугун
Таким чугуном называется тот, у которого практически весь углерод химически связан. В машиностроении этот сплав применяется не очень часто, потому что он твёрдый, но очень хрупкий. Также он не поддается механической обработке различными режущими инструментами, а потому используется для отливания деталей, которые не требуют какой-либо обработки. Хотя этот вид чугуна допускает шлифование абразивными кругами. Белый чугун может быть как обыкновенным, так и легированным. При этом сварка его вызывает затруднения, поскольку сопровождается образованием различных трещин во время охлаждения или нагрева, а также по причине неоднородности структуры, формирующейся в точке сварки.
Белые износостойкие чугуны получают за счет первичной кристаллизации жидкого сплава при скоротечном охлаждении. Чаще всего они используются для работы в условиях сухого трения (например, тормозные колодки) или для производства деталей, обладающих повышенной износостойкостью и жаростойкостью (валки прокатных станов).
Кстати, белый чугун получил свое название благодаря тому, что внешний вид его излома – светло-кристаллическая, лучистая поверхность. Структура этого чугуна представляет собой совокупность ледебурита, перлита и вторичного цементита. Если же данный чугун подвергают легированию, то перлит трансформируется в троостит, аустенит или мартенсит.
Вариант №2
Сплавы
1) Причины использования2) Классификации3) Компоненты и лигатуры4) Применение
Человек революционный шаг сделал, когда понял, что смесь меди и олова гораздо твёрже, чем любой из этих металлов в чистом виде. Считается, что это произошло не менее восьми тысяч лет назад.
В современном мире используются десятки тысяч сплавов, и продолжается разработка новых. Используют несколько критериев для классификации сплавов.
Прежде всего, выделяют две большие группы: чёрные металлы (т.е. сплавы на основе железа) и цветные металлы (на основе других элементов).
В зависимости от того, где будет использован данный металл, его относят к сплавам общего назначения или к специальным. Далее, различают двойные и сложные (тройные, четверные и т.д.) сплавы по числу элементов, входящих в его состав.
Выделяют легированные сплавы. В них вносят специальные примеси для получения нужных свойств. С точки зрения производственного процесса сплавы бывают литейные, порошковые (спекаемые) и деформируемые.
Степень связанности элементов в сплаве может быть разной, поэтому различают механическую смесь (каждый элемент образует отдельный кристалл), твёрдый раствор (разные элементы встраивается в общую кристаллическую решётку) и соединение (атомы образуют химическую связь).
Для придания железу большей твёрдости вносят углерод, но одновременно металл становится более хрупким. Сталь содержит 0.3-2.14% углерода. Малоуглеродистая сталь используется как конструкционный материал, более твёрдые сорта идут на изготовление инструментов. Легированная сталь применяется в машиностроении и изготовлении инструментов с большой скоростью резания. Легируют сталь введением хрома, марганца, титана, ванадия и др. Таким способом добиваются увеличения прочности без потери твёрдости.
Чугун содержит от 2 до 4% углерода. Из него литьём изготавливают изделия, обладающие хорошей стойкостью к истиранию, прочностью, жёсткостью.
Кадмий замедляет износ медных сплавов. В медных сплавах цинк увеличивает пластичность и устойчивость к коррозии. Титан намного увеличивает температурный предел эксплуатации. Никель и, в меньшей степени, хром увеличивают прочность феррита, не влияя на пластичность.
9 класс по химии