Техника безопасности при работе с ацетиленом

Содержание

2. Запуск Arduino IDE

Получение ацетилена пиролизным способом

Пиролизный ацетилен получают путем сжигания метана в смеси с кислородом в реакторах при температуре 1300-1500°C. В результате чего получается смесь, которая содержит:

  • ацетилен — до 8%;
  • водород — 54%;
  • окись углерода — 25%;
  • примеси – до 13%.

При помощи растворителя (диметилформамида) из нее извлекается ацетилен концентрации 99,0-99,2%. Оставшаяся часть пиролизных газов используется для производства аммиака и других продуктов.

Также ацетилен получают путем разложения жидких горючих (нефть, керосин) действием электродугового разряда, который называется электропиролизом.

Запасы и добыча

Основные руды: ильменит (FeTiO3), рутил (TiO2), титанит (CaTiSiO5).

По данным на 2002 год, 90 % добываемого титана использовалось на производство диоксида титана TiO2. Мировое производство диоксида титана составляло 4,5 млн т. в год. Подтверждённые запасы диоксида титана (без России) составляют около 800 млн т. На 2006 год, по оценке Геологической службы США, в пересчёте на диоксид титана и без учёта России, запасы ильменитовых руд составляют 603—673 млн т., а рутиловых — 49,7—52,7 млн т. Таким образом, при нынешних темпах добычи мировых разведанных запасов титана (без учёта России) хватит более чем на 150 лет.

Россия обладает вторыми в мире, после Китая, запасами титана. Минерально-сырьевую базу титана России составляют 20 месторождений (из них 11 коренных и 9 россыпных), достаточно равномерно рассредоточенных по территории страны. Самое крупное из разведанных месторождений (Ярегское) находится в 25 км от города Ухта (Республика Коми). Запасы месторождения оцениваются в 2 миллиарда тонн руды со средним содержанием диоксида титана около 10 %.

Крупнейший в мире производитель титана — российская компания «ВСМПО-АВИСМА».

Стоимость

Химические свойства

Ацетилено-кислородное пламя (температура «ядра» 2621 °C)

Для ацетилена (этина) характерны реакции присоединения:

HC≡CH + Cl2 -> ClCH=СНСl

Ацетилен с водой, в присутствии солей ртути и других катализаторов, образует уксусный альдегид (реакция Кучерова). В силу наличия тройной связи, молекула высокоэнергетична и обладает большой удельной теплотой сгорания — 14000 ккал/м³ (50,4 МДж/кг). При сгорании в кислороде температура пламени достигает 3150 °C. Ацетилен может полимеризироваться в бензол и другие органические соединения (полиацетилен, винилацетилен). Для полимеризации в бензол необходим графит и температура в ~500 °C. В присутствии катализаторов, например, трикарбонил(трифенилфосфин)никеля, температуру реакции циклизации можно снизить до 60-70 °C.

Кроме того, атомы водорода ацетилена относительно легко отщепляются в виде протонов, то есть он проявляет кислотные свойства. Так, ацетилен вытесняет метан из эфирного раствора метилмагнийбромида (образуется содержащий ацетиленид-ион раствор), образует нерастворимые взрывчатые осадки с солями серебра и одновалентной меди.

Основные химические реакции ацетилена (реакции присоединения, сводная таблица 1.):

Основные химические реакции ацетилена (реакции присоединения, димеризации, полимеризации, цикломеризации, сводная таблица 2.):

Ацетилен обесцвечивает бромную воду и раствор перманганата калия.

Реагирует с аммиачными растворами солей Cu(I) и Ag(I) с образованием малорастворимых, взрывчатых ацетиленидов — эта реакция используется для качественного определения ацетилена и его отличия от алкенов (которые тоже обесцвечивают бромную воду и раствор перманганата калия).

Физические свойства

Физические свойства алкинов подобны свойствам соответствующих алкенов. Так, алкины с числом атомов углерода в молекуле 2—4 при комнатной температуре являются бесцветными газообразными веществами. Алкины с числом атомов углерода в молекуле от 5 до 16 — жидкости. Алкины с числом атомов углерода в молекуле больше 16 представляют собой твёрдые вещества. Температуры кипения некоторых алкинов неразветвлённого строения приведены в таблице 18.1.

Таблица 18.1. Температуры кипения алкинов

Название

Структурная формула

Температура кипения (tкип, °С)

Этин

–84

Пропин

–23

Бутин-1

8

Пентин-1

39

Гексин-1

71

Гептин-1

100

Октин-1

126

Алкины нерастворимы в воде, но хорошо растворимы в органических растворителях.

*Присоединение галогеноводородов и воды к гомологам ацетилена

Гомологи ацетилена присоединяют галогеноводороды и воду в соответствии с правилом Марковникова, т. е. водород присоединяется к более гидрогенизированному атому углерода тройной связи.

Присоединение галогеноводородов. Гидрогалогенирование

Приведём уравнение реакции присоединения хлороводорода к пропину:

Присоединение воды. Гидратация

Присоединение воды к ацетилену происходит в присутствии солей ртути и серной кислоты. При этом образуется уксусный альдегид:

Эта реакция носит имя русского химика Михаила Григорьевича Кучерова.

Рассмотрим подробнее, как протекает данная реакция. Сначала молекула воды присоединяется по одной π-связи молекулы ацетилена. При этом образуется неустойчивый виниловый спирт:

Спирты, у которых гидроксильная группа находится при двойной связи C C неустойчивы, поэтому виниловый спирт сразу же превращается в уксусный альдегид:

Теперь рассмотрим присоединение воды к пропину. Реакция протекает в соответствии с правилом Марковникова, поэтому в данном случае образуется кетон. Присоединение воды к пропину:

Порядок строительства

Литература

Добавить ваш

Переходные оправки и втулки

Переходные втулки конусов Морзе. Для уменьшения номенклатуры инструмента выпускаются разнообразные переходники из одних конусов в другие. Переходник типа наружный конус — внутренний конус именуют переходной втулкой. Переходник типа наружный конус — наружный конус именуют переходной оправкой. Например, оправка с конуса 7:24 на укороченный конус Морзе обозначается ISO30-B16.

Лучшие диваны с ортопедическим эффектом

Ортопедический эффект

Ортопедический диван – это полноценное место для отдыха. Оно оснащено специальным матрасом, разработанным на основании рекомендаций врачей-ортопедов. Такой матрас соответствует анатомии человеческого тела и оказывает полноценную поддержку позвоночника во время сна.

Ортопедическая мебель имеет отличие от прочей:

  • наличие ортопедического матраса, который будет поддерживать позвоночник в ровном состоянии во время отдыха за счет оптимальной жесткости;
  • компактность дивана в сложенном виде;
  • такая мебель имеет воздухопроницаемый матрас, крепкий каркас, экологически чистые комплектующие материалы и безопасность применения за счет закругленных углов в большинстве моделей.

К лучшим изделиям с ортопедическим матрасом относятся:

  1. Гудвин – от 62 000 рублей. Оснащен механизмом аккордеон. Длина изделия 212 см, высота 90 см. Очень комфортный, габаритный и удобный для отдыха. Производитель мебели ANDERSSEN.
  2. Хилтон – от 17 000 рублей, имеет ортопедический матрас. Оснащен механизмом еврокнижка и каркасом из хвойной породы. Спальное место 195 см * 130 см. Хилтон с более габаритным спальным местом стоит от 20 000 рублей.

Окисление алкинов

Реакции окисления в органической химии сопровождаются увеличением числа атомов кислорода (или числа связей с атомами кислорода) в молекуле и/или уменьшением числа атомов водорода (или числа связей с атомами водорода).

2.1. Горение алкинов

Алкины, как и прочие углеводороды, горят с образованием углекислого газа и воды.

Уравнение сгорания алкинов в общем виде:

CnH2n-2 + (3n-1)/2O2 → nCO2 + (n-1)H2O + Q

Например, уравнение сгорания пропина:

C3H4 + 4O2 → 3CO2 + 2H2O

2.2. Окисление алкинов сильными окислителями 

Алкины реагируют с сильными окислителями (перманганаты или соединения хрома (VI)). При этом происходит окисление тройной связи С≡С и связей С-Н у атомов углерода при тройной связи. При этом образуются связи с кислородом.

При окислении трех связей у атома углерода в кислой среде образуется карбоксильная группа СООН, четырех — углекислый газ СО2. В нейтральной среде — соль карбоновой кислоты и карбонат (гидрокарбонат) соответственно.

Таблица соответствия окисляемого фрагмента молекулы и продукта:

Окисляемый фрагмент KMnO4, кислая среда KMnO4, H2O, t
R-C≡ R-COOH -COOMe
CH≡ CO2 Me2CO3 (MeHCO3)

При окислении бутина-2 перманганатом калия в среде серной кислоты окислению подвергаются два фрагмента СН3–C≡, поэтому образуется уксусная кислота:

При окислении 3-метилпентина-1  перманганатом калия в серной кислоте окислению подвергаются фрагменты R–C и H–C , поэтому образуются карбоновая кислота и углекислый газ:

При окислении алкинов сильными окислителями в нейтральной среде углеродсодержащие продукты реакции жесткого окисления (кислота, углекислый газ) могут реагировать с образующейся в растворе щелочью в соотношении, которое определяется электронным балансом с образованием соответствующих солей.

Например, при окислении бутина-2 перманганатом калия в воде при нагревании окислению подвергаются два фрагмента R–C≡, поэтому образуется соль уксусной кислоты – ацетат калия

Аналогичные органические продукты образуются при взаимодействии алкинов с хроматами или дихроматами.

Окисление ацетилена протекает немного иначе, σ-связь С–С не разрывается, поэтому в кислой среде образуется щавелевая кислота:

В нейтральной среде образуется соль щавелевой кислоты – оксалат калия:

Обесцвечивание раствора перманганата калия — качественная реакция на тройную связь.

Презентация на тему: » АЛКИНЫ СТРОЕНИЕ АЦЕТИЛЕНА СВОЙСТВА, ПОЛУЧЕНИЕ И ПРИМЕНЕНИЕ АЦЕТИЛЕНА.» — Транскрипт:

1

АЛКИНЫ СТРОЕНИЕ АЦЕТИЛЕНА СВОЙСТВА, ПОЛУЧЕНИЕ И ПРИМЕНЕНИЕ АЦЕТИЛЕНА

2

Алкины – непредельные углеводороды, в молекулах которых между атомами углерода имеется одна тройная связь Н С С Н – электронная формула Н С С Н — структурная формула

3

ГИБРИДИЗАЦИЯ Атомы углерода в молекуле ацетилена находятся в состоянии sp –гибридизации. Гибридизации подвергаются два электронных облака: 1s-облако и 1p-облако. Образуются два гибридных облака и два p-облака сохраняют форму объемной восьмерки. + = + s p 3 sp p 2

4

180 0 Гибридные облака атомов углерода, стремясь максимально удалиться друг от друга, располагаются под углом и образуют в этих направлениях по 2 σ-связи: 1σ-связь с соседним атомом углерода и 1σ- связь с атомом водорода. Так как σ-связи лежат на одной прямой молекула С 2 Н 2 имеет линейное строение.

5

Негибридизированные р-облака, по два от каждого атома углерода, располагаются во взаимно перпендикулярных плоскостях и при боковом перекрытии с р-облаками соседнего атома углерода образуют 2 π-связи. В молекуле ацетилена тройная связь, образованная 1σ-связью и 2 π-связями.

6

ХАРАКТЕРИСТИКА ТРОЙНОЙ СВЯЗИ Е разрыва = 808 КДж/моль Длина С С-связи = 0,120 нм Валентный угол = 180 0

7

ХИМИЧЕСКИЕ СВОЙСТВА АЛКИНОВ Химические свойства алкинов обусловлены наличием в их молекулах тройной связи. Но в отличие от алкенов они менее активны, так как увеличивается степень перекрывания электронных облаков => ядра атомов углерода сближаются => связь прочнее. Для алкинов характерны реакции присоединения, замещения, изомеризации, окисления.

8

I. Реакции присоединения 1.Галогенирование. Взаимодействие с бромной водой – качественная реакция. Взаимодействие с бромной водой – качественная реакция. Взаимодействие с хлором. 2. Гидрогалогенирование – присоединение галогеноводородов. 3.Гидрирование. 4. Гидратация – реакция Кучерова.

9

II. Реакция замещения Ацетилен в отличие от этилена вступает в реакции замещения с оксидами металлов. Качественная реакция на концевую тройную связь с оксидом серебра. с оксидом меди Ацетилениды металлов непрочные соединения и легко разлагаются.непрочные

10

III. Реакции окисления 1. Полное окисление – горение.горение. 2. Неполное сгорание. 3. Смесь кислорода с ацетиленом взрывоопасна. взрывоопасна. 4. Обесцвечивание раствора перманганата калия – качественная реакция.качественная реакция.

11

IV. Реакции изомеризации 1. Димеризация под действием водного раствора CuCl и NH4Cl: НC CH + НC CH Н 2 C=CH C CH (винилацетилен) 2. Тримеризация ацетилена над активированным углем приводит к образованию бензола (реакция Зелинского): С, 600 С 3НC CH С 6 H 6 (бензол)

12

ПОЛУЧЕНИЕ АЛКИНОВ 1. Карбидный способ.Карбидный способ. CaC 2 + 2H 2 O C 2 H 2 + Ca(OH) 2 ( CаО + 3С СаС 2 + СО ) 2. Неполное термическое разложение алканов. 2СН 4 С 2 Н 2 + 3Н 2 С 2 Н 6 С 2 Н 2 + 3Н 2 3. Действием спиртового раствора щелочи на дигалогеналканы. t С С

13

Применение алкинов

Карбидные лампы

Название «карбидная лампа» обусловлено использованием в качестве источника света открытого пламени струи сжигаемого ацетилена. Он, соответственно, получен в результате взаимодействия карбида кальция с водой.

Такие лампы были широко распространены в прошлом. Их можно было увидеть на каретах, автомобилях и даже велосипедах. В современное время карбидные лампы используют только в случае острой необходимости в мощном автономном светильнике. Так, спелеологи часто пользуются ими. Отдаленные маяки снабжают именно такими лампами, ведь такой тип освещения намного выгоднее, нежели подведение линий электропередач. Достаточно распространенным является использование таких ламп на судах дальнего плавания.

Хранение и меры безопасности

Хранить ацетилен нужно в помещении отдельно от кислорода и воспламеняющихся газов. Нельзя допускать контакта газа с серебром или медью. В помещении для хранения должен осуществляться не только контроль содержания газа в воздухе. Желательно всегда держать следить за давлением и температурой. От повышения давления до критической отметки ацетилен взрывается. То же самое происходит и при повышении температуры.

Там, где хранится и используется ацетилен, недопустимы источники открытого огня. В помещениях всегда требуется поддерживать оптимальную температуру. Особенно опасны в таких местах пожары. Если вдруг произошло возгорание, то следует охладить и вынести ацетиленовые баллоны. В некоторых случаях возникает утечка ацетилена. Чтобы избежать взрыва, нужно воспользоваться специальным неискрящимся ключом и перекрыть баллон.

При тушении лучше использовать асбестовое полотно, песок, огнетушители с соедржанием азота и диоксида углерода. При сильных пожарах необходимо производить тушение огня на расстоянии и обязательно использовать специальный защитный костюм.

Чтобы предотвратить несчастные случаи, нужно регулярно производить проверку баллонов с газом. Они должны быть герметичными. Об утечке газа можно узнать по запаху и характерному шуму.

Получение этилена (этена). Химические реакции – уравнения получения этилена (этена):

Этилен получают как в лабораторных условиях, так и в промышленных масштабах.

В промышленных масштабах этилен получается в результате следующей химической реакции:

  1. 1. каталитическое дегидрирование этана:

CH3-CH3 → CH2=CH2 + H2 (kat = Pt, Ni, Al2O3, Cr2O3, to = 400-600 °C).

Этилен в лабораторных условиях получается в результате следующих химических реакций:

  1. 1. дегидратация этанола:

CH3-CH2-OH → CH2=CH2 + H2O (H2SO4(conc), to = 170).

  1. 2. дегалогенирования дигалогенпроизводных этана:

CH3-CH2-Br + NaOH → CH2=CH2 + NaBr + H2O (to);

Cl-CH2-CH2-Cl + Zn → CH2=CH2 + ZnCl2.

Cl-CH2-CH2-Cl + Mg → CH2=CH2 + MgCl2.

  1. 3. неполное гидрирование ацетилена:

CH≡CH + H2 → CH2=CH2 (Pd, to).

  1. 4. дегидрогалогенирование галогенпроизводных алканов под действием спиртовых растворов щелочей:

CH3-CH2-Br + KOH → CH2 = CH2 + KBr + H2O.

Использование в промышленности и быту

Впрочем, автогенная сварка и резка металлов — не единственная сфера применения. Достаточно часто ацетилен используют в качестве источника яркого белого света в автономных приборах освещения. В данном случае его получают с помощью реакции воды и карбида кальция.

Такие лампы были крайне востребованы в прошлом столетии, ими освещали кареты и автомобили. Но и сегодня карбидные устройства, то есть созданные с использованием ацетилена, применяют при благоустройстве отдаленных маяков. Ключевое преимущество карбидных ламп — экономичность и отсутствие необходимости в подключении к электросети. Соответственно, при их установке на маяке не возникает необходимости в подведении линии электропередач, то есть оплате дорогостоящей услуги. Также лампы востребованы на судах дальнего плавания.

Ацетилен используют в промышленности. Его применяют при получении различных продуктов органического синтеза. Например, его используют для создания:

  • уксусной кислоты;
  • синтетического каучука;
  • растворителей;
  • некоторых видов пластмасс.

Следует отметить, что ацетилен нашел применение и в медицине, например, его иногда используют при ингаляционном наркозе.

Применение ацетилена при сварке

Ацетилен – основной горючий газ, используемый при газовой сварке, а также широко применяется для газовой резки (кислородной резки). Температура ацетилено-кислородного пламени может достигать 3300°C. Благодаря этому ацетилен по сравнению с более доступными горючими газами (пропан-бутаном, природным газом и др.) обеспечивает более высокое качество и производительность сварки.

Снабжение постов ацетиленом для газовой сварки и резки может осуществляться

  • от баллонов с ацетиленом и
  • от ацетиленового генератора.

Для хранения ацетилена обычно используются стандартные баллоны емкостью 40 л, окрашенные в белый цвет, с надписью «Ацетилен» красного цвета (ПБ 10-115-96, ГОСТ 949-73). Согласно ГОСТ 5457-75 для газопламенной обработки металлов применяется технический ацетилен растворенный марки Б и газообразный.

Таблица. Характеристики марок технического ацетилена (ГОСТ 5457-75), используемого при сварке и резке.

Параметр Ацетилен технический
растворенный марки Б газообразный
первого сорта второго сорта
Объемная доля ацетилена C2H2, %, не менее 99,1 98,8 98,5
Объемная доля воздуха и других газов, малорастворимых в воде, %, не более 0,8 1,0 1,4
Объемная доля фосфористого водорода PH3, %, не более 0,02 0,05 0,08
Объемная доля сероводорода H2S, %, не более 0,005 0,05 0,05
Массовая концентрация водяных паров при давлении 101,3 кПа (760 мм рт. ст.) и температуре 20°С, г/м3, не более 0,5 0,6 не нормируется
что соответствует температуре насыщения, не выше (°C) -24 -22  

Баллоны заполнены пористой массой, пропитанной ацетоном. Ацетилен хорошо растворяется а ацетоне: при нормальной температуре и давлении в 1 л ацетона растворяется 23 л ацетилена (в 1 л бензина растворяется 5,7 л ацетилена, в 1 л воды – 1,15 л ацетилена). Пористая масса выполняет следующие функции:

  • повышает безопасность при работе с баллоном – за счет пористой массы общий объем ацетилена разделен на отдельные ячейки; таким образом, вероятность распространения общего фронта горения и взрыва значительно уменьшается;
  • позволяет повысить количество ацетилена в баллоне, ускорить процесс его растворения при заполнении баллона и выделении при отборе газа – поскольку при использовании пористой массы, пропитанной ацетоном, обеспечивается большая поверхность взаимного контакта между газом и ацетоном.

В качестве пористых масс могут применяться активированный уголь, пемза, волокнистый асбест.

Таблица. Допустимое давление газа в баллоне в зависимости от температуры (при номинальном давлении 1,9 МПа / +20°С) (ГОСТ 5457-75)

Температура, °С -5 +5 +10 +15 +20 +25 +30 +35 +40
Давление в баллоне, не более МПа 1,34 1,4 1,5 1,65 1,8 1,9 2,15 2,35 2,6 3
кгс/см2 13,4 14 15 16,5 18 19 21,5 23,5 26 30

Таблица. Остаточное давление газа в баллоне, поступающем от потребителя (ГОСТ 5457-75)

Температура, °С до 0 от 0 до +15 от +15 до +25 от +25 до +35
Остаточное давление в баллоне, не менее МПа 0,05 0,1 0,2 0,3
кгс/см2 0,5 1 2 3

40-литровые баллоны с максимальным давлением газа 1,9 МПа при температуре 20°С обычно заполняют 5–5,8 кг ацетилена (4,6–5,3 м3 газа при температуре 20°С и давлении 760 мм рт. ст.). Масса ацетилена в баллоне определяется по разности масс баллона до и после наполнения газом. Объем ацетилена равен отношению его массы и плотности. Так, объем 5,5 кг ацетилена при температуре 20°С и давлении 760 мм рт. ст. составляет 5,5/1,09 = 5,05 м3.

Таблица. Сравнительные характеристики ацетилена, пропана и метилацетилен-алленовой фракции (МАФ)

Параметр ацетилен пропан МАФ
Чувствительность к удару, безопасность нестабилен стабилен стабилен
Токсичность незначительная
Предел взрываемости в воздухе (%) 2,2–81 2,0–9,5 3,4–10,8
Предел взрываемости в кислороде (%) 2,3–93 2,4–57 2,5–60
Температура пламени (°С) 3087 2526 2927 *
Реакции с обычными металлами избегать сплавов, содержащих более 70% меди незначительные ограничения избегать сплавов, содержащих более 65–67% меди
Склонность к обратному удару значительная незначительная незначительная
Скорость сгорания в кислороде (м/с) 6,10 3,72 4,70
Плотность газа (кг/м3) 1,17 (при 0°С) 1,09 (при 20°С) 2,02 (при 0°С) 1,70 (при 0°С) *
Плотность в жидком состоянии при 15,6°С (кг/м3) 513 575
Отношение расхода кислорода к горючему газу (м3/м3) при нормальном пламени 1–1,2 3,50 2,3–2,5

Физические свойства ацетилена

Физические свойства ацетилена представлены в таблицах ниже.

Ацетилен в баллоне

Наименование Объем баллона, л Масса газа в баллоне, кг Объем газа (м3) при Т=15°С, Р=0,1 МПа
С2Н2 40 5 4,545

Благодаря информации в таблице можно дать ответы на часто задаваемые вопросы:

  • Сколько ацетилена в одном баллоне? Ответ: в 40 л баллоне 5 кг или 4,545 м3 ацетилена
  • Сколько весит баллон ацетилена? Ответ: 58,5 кг — масса пустого баллона из углеродистой стали согласно ГОСТ 949; 18-20 кг — масса пористого материала, пропитанного ацетоном; 5,0 — кг масса С2Н2 в баллоне; Итого: 58,5 + 20,0 + 5,0= 83,5 кг вес баллона с ацетиленом.
  • Сколько м3 ацетилена в баллоне Ответ: 4,545 м3

Реакции присоединения

Тройная связь состоит из σ-связи и двух π-связей. Сравним характеристики одинарной связи С–С, тройной связи С≡С и связи С–Н:

Энергия связи, кДж/моль Длина связи, нм
С–С 348 0,154
С≡С 814 0,120
С–Н 435 0,107

Таким образом, тройная связь С≡С короче, чем одинарная связь С–С, поэтому π-электроны тройной связи прочнее удерживаются ядрами атомов углерода и обладают меньшей поляризуемостью и подвижностью. Реакции присоединения по тройной связи к алкинам протекают сложнее, чем реакции присоединения по двойной связи к алкенам.

Для алкинов характерны реакции присоединения по тройной связи С≡С с разрывом π-связей. 

1.1. Гидрирование

Гидрирование алкинов протекает в присутствии катализаторов (Ni, Pt) с образованием алкенов, а затем сразу алканов.

Например, при гидрировании бутина-2 в присутствии никеля образуется сначала бутен-2, а затем бутан.

При использовании менее активного катализатора (Pd, СaCO3, Pb(CH3COO)2) гидрирование останавливается на этапе образования алкенов.

Например, при гидрировании бутина-1 в присутствии палладия преимущественно образуется бутен-1.

1.2. Галогенирование алкинов

Присоединение галогенов к алкинам происходит даже при комнатной температуре в растворе (растворители — вода, CCl4).

При взаимодействии с алкинами  красно-бурый раствор брома в воде (бромная вода) обесцвечивается. Это качественная реакция на тройную связь.
Например, при бромировании пропина сначала образуется 1,2-дибромпропен, а затем — 1,1,2,2-тетрабромпропан.

Аналогично алкины реагируют с хлором, но обесцвечивания хлорной воды при этом не происходит, потому что хлорная вода и так бесцветная)

Реакции протекают в присутствии полярных растворителей по ионному (электрофильному) механизму.

1.3. Гидрогалогенирование алкинов

Алкины присоединяют галогеноводороды. Реакция протекает по механизму электрофильного присоединения с образованием галогенопроизводного алкена или дигалогеналкана.

Например, при взаимодействии ацетилена с хлороводородом образуется хлорэтен, а затем 1,1-дихлорэтан.

При присоединении галогеноводородов и других полярных молекул к симметричным алкинам образуется, как правило, один продукт реакции, где оба галогена находятся у одного атома С.

При присоединении полярных молекул к несимметричным алкинам образуется смесь изомеров. При этом выполняется правило Марковникова.

Правило Марковникова: при присоединении полярных молекул типа НХ к несимметричным алкинам водород преимущественно присоединяется к наиболее гидрогенизированному атому углерода при двойной связи.
Например, при присоединении хлороводорода HCl к пропину преимущественно образуется 2-хлорпропен.

1.4. Гидратация алкинов

Гидратация (присоединение воды) алкинов протекает в присутствии кислоты и катализатора (соли ртути II). 

Сначала образуется неустойчивый алкеновый спирт, который затем изомеризуется в альдегид или кетон.

Например, при взаимодействии ацетилена с водой в присутствии сульфата ртути образуется уксусный альдегид.

Гидратация алкинов  протекает по ионному (электрофильному) механизму.

Для несимметричных алкенов присоединение воды преимущественно по правилу Марковникова. 

Например, при гидратации пропина  образуется  пропанон (ацентон).

1.5. Димеризация, тримеризация и полимеризация

Присоединение одной молекулы ацетилена к другой (димеризация) протекает под действием аммиачного раствора хлорида меди (I). При этом образуется винилацетилен:

Тримеризация ацетилена (присоединение трех молекул друг к другу) протекает под действием температуры, давления и в присутствии активированного угля с образованием бензола (реакция Зелинского):

Алкины также вступают в реакции полимеризации — процесс многократного соединения молекул низкомолекулярного вещества (мономера) друг с другом с образованием высокомолекулярного вещества (полимера).

nM → Mn   (M – это молекула мономера)

Например, при полимеризации ацетилена образуется полимер линейного или циклического строения.

… –CH=CH–CH=CH–CH=CH–…

Особенности свойств стирола

Стирол (винилбензол, фенилэтилен) – это производное бензола, которое имеет в своем составе двойную связь в боковом заместителе.

Общая формула гомологического ряда стирола: CnH2n-8.

Молекула стирола содержит заместитель с кратной связью у бензольного кольца, поэтому стирол проявляет все свойства, характерные для алкенов – вступает в реакции присоединения, окисления, полимеризации.

Стирол присоединяет водород, кислород, галогены, галогеноводороды и воду в соответствии с правилом Марковникова.

Например, при гидратации стирола образуется спирт:

Стирол присоединяет бром при обычных условиях, то есть обесцвечивает бромную воду

При полимеризации стирола образуется полистирол:

Как и алкены, стирол окисляется водным раствором перманганата калия при обычных условиях. Обесцвечивание водного раствора перманганата калия — качественная реакция на стирол:

При жестком окислении стирола перманганатом калия в кислой среде (серная кислота) разрывается двойная связь и образуется бензойная кислота и углекислый газ:

При окислении стирола перманганатом калия в нейтральной среде при нагревании также разрывается двойная связь и образуется соль бензойной кислоты и карбонат:

Модели молекулы ацетилена

Формулы, показывающие распределение электронов, послужили фундаментом для создания атомно-орбитальных моделей, пространственных формул молекул (стереохимических). Еще в конце XVIII века получили распространение шаростержневые модели – например, шарики разного цвета и размера, обозначающие углерод и водород, которые образуют ацетилен. Структурная формула молекулы представлена в виде стержней, символизирующих химические связи и их количество у каждого атома.

Шаростержневая модель ацетилена воспроизводит валентные углы, равные 180°, но межъядерные расстояния в молекуле отражаются приблизительно. Пустоты между шариками не создают представления о заполнении пространства атомов электронной плотностью. Недостаток устранен в моделях Дрейдинга, обозначающих ядра атомов не шариками, а точками присоединения стержней друг к другу. Современные объемные модели дают более яркое представление об атомных и молекулярных орбиталях.

Гибридные атомные орбитали ацетилена

Углерод в возбужденном состоянии содержит три р-орбитали и одну s с неспаренными электронами. При образовании метана (СН4) они принимают участие в создании равноценных связей с атомами водорода. Известный американский исследователь Л. Полинг разработал учение о гибридном состоянии атомных орбиталей (АО). Объяснение поведения углерода в химических реакциях заключается в выравнивании АО по форме и энергии, образовании новых облаков. Гибридные орбитали дают более прочные связи, становится устойчивее формула.

Атомы углерода в молекуле ацетилена, в отличие от метана, подвергаются sp-гибридизации. По форме и энергии смешиваются s- и р электроны. Появляются две sp-орбитали, лежащие под углом 180°, направленные по разные стороны от ядра.

Безопасность

Оборудование для газовой сварки и резки:справа — ацетиленовый газовый баллон с ацетиленовым редуктором,слева кислородный газовый баллон с кислородным редуктором.

Поскольку ацетилен нерастворим в воде, и его смеси с кислородом могут взрываться в очень широком диапазоне концентраций, его нельзя собирать в газометры.

Ацетилен взрывается при температуре около 500 °C или давлении выше 0,2 МПа; КПВ 2,3—80,7 %, температура самовоспламенения 335 °C. Взрывоопасность уменьшается при разбавлении ацетилена другими газами, например азотом, метаном или пропаном.

При длительном соприкосновении ацетилена с медью и серебром образуются ацетилениды меди и серебра, которые взрываются при ударе или повышении температуры. Поэтому при хранении ацетилена не используются материалы, содержащие медь (например, вентили баллонов).

Ацетилен обладает незначительным токсическим действием. Для ацетилена нормирован ПДКм.р. = ПДК с.с. = 1,5 мг/м³ согласно гигиеническим нормативам ГН 2.1.6.1338-03 «Предельно допустимые концентрации (ПДК) загрязняющих веществ в атмосферном воздухе населённых мест».

ПДКр.з. (рабочей зоны) не установлен (по ГОСТ 5457-75 и ГН 2.2.5.1314-03), так как концентрационные пределы распределения пламени в смеси с воздухом составляет 2,5—100 %.

Хранят и перевозят его в заполненных инертной пористой массой (например, древесным углём) стальных баллонах белого цвета (с красной надписью «А») в виде раствора в ацетоне под давлением 1,5—2,5 МПа.

История получения ацетилена

В 1836 г. в Бристоле на заседании Британской ассоциации Эдмунд Дэви (Edmund Davy), профессор химии Дублинского Королевского общества и двоюродный брат Гемфри Дэви (Humphry Davy), сообщил:

Дэви получил карбид калия К2С2 и обработал его водой.

В статье о получении карбида кальция мы писали о том, что его «двууглеродистый водород» впервые был назван ацетиленом французским химиком Пьером Эженом Марселеном Бертло (Marcellin Berthelot) в 1860 г. Только через 60 лет после открытия Дэви предсказанное им использование ацетилена для освещения явилось первым толчком для его промышленного получения.

Как работает трансформатор

Преимущества

Упоминание о газовой сварке моментально наводит на мысли об ацетилене. Действительно для этого процесса чаще всего применяют этот газ. Он в сочетании с кислородом обеспечивает самую высокую  температуру горения пламени. Но в последние годы из-за развития различных видов сварки использование этого вида соединения металлов несколько снизилось. Более того, в некоторых отраслях произошел полный отказ от применения этих технологий. Но для выполнения определенного вида ремонтных работ она до сих пор остается незаменима.

Применение ацетилена позволяет  получить следующие преимущества:

  • максимальная температура пламени;
  • существует возможность генерации ацетилена непосредственно на рабочем месте или приобретения его в специальных емкостях;
  • довольно низкая стоимость, в сравнении с другими горючими газами.

Вместе с тем, у ацетилена есть и определенные недостатки, которые ограничивают его использование. Самый главный — это взрывоопасность. При работе с этим газом необходимо строго соблюдать меры безопасности. В частности, работы должны выполняться в хорошо проветриваемом помещении. При нарушении режимов работы возможно появление некоторых дефектов, например, пережогов.

Оцените статью
Рейтинг автора
5
Материал подготовил
Андрей Измаилов
Наш эксперт
Написано статей
116
Добавить комментарий