Спадило.ру

Физический смысл норматива потребления отопления

Многоквартирные дома в законодательстве РФ, в том числе в целях расчета объема потребления теплоэнергии для отопления, рассматриваются как неделимые единицы. То есть МКД — это единый теплотехнический объект, потребляющий теплоэнергию для отопления входящих в его состав помещений. И именно общий объем потребленной всем домом теплоэнергии важен при расчетах исполнителя коммунальных услуг (ИКУ) с ресурсоснабжающей организацией (РСО).

Правила установления и определения нормативов потребления коммунальных услуг, утвержденные ПП РФ от 23.05.2006 N306 (далее — Правила 306) с целью расчета норматива потребления коммунальной услуги по отоплению предусматривают сначала расчет количества тепловой энергии, необходимой для отопления многоквартирного дома или жилого дома в течение года (пункт 19 Приложения 1 к Правилам 306, формула 19). Год выбран в качестве периода, за который производится расчет, для дальнейшего получения усредненного значения норматива потребления теплоэнергии в месяц, поскольку в разные календарные месяцы потребление теплоэнергии на отопление будет, разумеется, разным, а оплата по нормативу предполагает одинаковый размер платы за отопление либо в течение отопительного периода, либо равномерно в течение календарного года, в зависимости от выбранного субъектом РФ способа оплаты отопления .

Поскольку многоквартирный дом состоит из совокупности жилых и нежилых помещений и мест общего пользования (общего имущества), при этом общее имущество на праве общедолевой собственности принадлежит собственникам отдельных помещений дома, весь объем тепловой энергии, поступающей в дом, потребляется именно собственниками помещений такого дома. Следовательно, и оплата теплоэнергии, потребленной на отопление, должна производиться собственниками помещений МКД. И тут возникает вопрос — каким образом распределить стоимость всего объема теплоэнергии, потребленной многоквартирным домом, между собственниками помещений этого МКД?

Руководствуясь вполне логичными выводами о том, что потребление теплоэнергии в каждом конкретном помещении зависит от размера такого помещения, Правительство РФ установило порядок распределения объема теплоэнергии, потребляемой всем домом, среди помещений такого дома пропорционально площади этих помещений. Такой порядок предусматривают как Правила 354 (распределение показаний общедомового прибора учета отопления пропорционально долям площадей помещений конкретных собственников в общей площади всех помещений дома в собственности), так и Правила 306 при установлении норматива потребления отопления.

Пункт 18 Приложения 1 к Правилам 306 устанавливает:«18. Норматив потребления коммунальной услуги по отоплению в жилых и нежилых помещениях (Гкал на 1 кв.м общей площади всех жилых и нежилых помещений в многоквартирном доме или жилого дома в месяц) определяется по следующей формуле (формула 18):

,

где:— количество тепловой энергии, потребляемой за один отопительный период многоквартирными домами, не оборудованными коллективными (общедомовыми) приборами учета тепловой энергии, или жилыми домами, не оборудованными индивидуальными приборами учета тепловой энергии (Гкал), определяемое по формуле 19;— общая площадь всех жилых и нежилых помещений в многоквартирных домах или общая площадь жилых домов (кв.м);— период, равный продолжительности отопительного периода (количество календарных месяцев, в том числе неполных, в отопительном периоде)».

Таким образом, именно приведенной формулой обусловлено, что норматив потребления коммунальной услуги по отоплению измеряется именно в Гкал/кв.метр, что, кроме всего прочего, прямо установлено подпунктом «е» пункта 7 Правил 306:«7. При выборе единицы измерения нормативов потребления коммунальных услуг используются следующие показатели:е) в отношении отопления:в жилых помещениях — Гкал на 1 кв. метр общей площади всех помещений в многоквартирном доме или жилого дома».

Исходя из сказанного, норматив потребления коммунальной услуги по отоплению равен количеству теплоэнергии, потребляемой в многоквартирном доме на 1 квадратный метр площади помещений в собственности в месяц отопительного периода (при выборе способа оплаты равномерно в течение года применяетсякоэффициент периодичности внесения потребителями платы ).

Проблемы энергетики и охрана окружающей среды

Тепловые двигатели широко применяются на транспорте и в энергетике (тепловые и атомные электростанции). Использование тепловых двигателей сильно влияет на состояние биосферы Земли. Можно выделить следующие вредные факторы:

  • при сжигании топлива используется кислород из атмосферы, что приводит к снижению содержания кислорода в воздухе;
  • при сгорании топлива в атмосферу выделяется углекислый газ. Концентрация углекислого газа в атмосфере повышается. Это изменяет прозрачность атмосферы, так как молекулы углекислого газа поглощают инфракрасное излучение, что ведет к повышению температуры (парниковый эффект);
  • при сжигании угля в атмосферу поступают азотные, серные соединения и соединения свинца, вредные для здоровья человека.

Решение проблемы охраны окружающей среды от вредного воздействия предприятий тепловой энергетики требует комплексного подхода. Массовыми загрязнителями при работе тепловых электростанций являются летучая зола, диоксид серы и оксиды азота. Методы сокращения выбросов зависят от свойств топлива и условия его сжижения. Предотвращение загрязнения летучей золой достигается очисткой всего объема продуктов сгорания твердого топлива в высокоэффективных золоуловителях. Сокращение выбросов оксидов азота с продуктами сгорания топлива на тепловых электростанциях, а также в парогазовых и газотурбинных установках обеспечивается, главным образом, технологией сжигания топлива. Уменьшение выброса диоксида серы может быть достигнуто различными методами облагораживания и переработки топлива вне тепловых электростанций либо непосредственно на тепловых электростанциях, а также очисткой дымовых газов.

Контроль за выбросом вредных веществ электростанций осуществляется специальными приборами.

В ряде случаев достаточно эффективным решением вопросов очистки выбросов в атмосферу остается сооружение фильтров-уловителей и дымовых труб. У дымовой трубы два назначения: первое — создавать тягу и тем самым заставлять воздух — обязательный участник процесса горения — в нужном количестве и с должной скоростью входить в топку; второе — отводить продукты горения (вредные газы и имеющиеся в дыме твердые частицы) в верхние слои атмосферы. Благодаря непрерывному турбулентному движению вредные газы и твердые частицы уносятся далеко от источника их возникновения и рассеиваются.

Для рассеивания сернистого ангидрида, содержащегося в дымовых трубах тепловых электростанций, сооружаются дымовые трубы высотой 180, 250 и 320 м. Тепловые электростанции России, работающие на твердом топливе, за год выбрасывают в отвалы около 100 млн т золы и шлаков. Зола и шлаки занимают большие площади земель, неблагоприятно влияют на окружающую среду.

Более половины всех загрязнений создает транспорт. Один из путей решения проблемы защиты окружающей среды заключается в переходе на дизельные двигатели, электродвигатели, повышение КПД.

Алгоритм решения задач раздела «Термодинамика»:

  • выделить систему тел и определить ее тип (замкнутая, адиабатически замкнутая, замкнутая в механическом смысле, незамкнутая);
  • выяснить, как изменяются параметры состояния ​\( (p,V,T) \)​ и внутренняя энергия каждого тела системы при переходе из одного состояния в другое;
  • записать уравнения, связывающие параметры двух состояний системы, формулы для расчета изменения внутренней энергии каждого тела системы при переходе из одного состояния в другое;
  • определить изменение механической энергии системы и работу внешних сил по изменению ее объема;
  • записать формулу первого закона термодинамики или закона сохранения и превращения энергии;
  • решить систему уравнений относительно искомой величины;
  • проверить решение.

Основные формулы раздела «Термодинамика»

Как рассчитать теплоемкость продуктов питания

При расчёте емкости питания уравнение примет следующий вид:

с=(4.180*w)+(1.711*p)+(1.928*f)+(1.547*c)+(0.908 *a), где:

  • w – количество воды в продукте;
  • p – количество белков в продукте;
  • f – процентное содержание жиров;
  • c – процентное содержание углеводов;
  • a – процентное содержание неорганических компонентов.

Определим теплоемкость плавленого сливочного сыра Viola. Для этого выписываем нужные значения из состава продукта (масса 140 грамм):

  • вода – 35 г;
  • белки – 12,9 г;
  • жиры – 25,8 г;
  • углеводы – 6,96 г;
  • неорганические компоненты – 21 г.

Затем находим с:

с=(4.180*w)+(1.711*p)+(1.928*f)+(1.547*c)+(0.908*a)=(4.180*35)+(1.711*12,9)+(1.928*25,8) + (1.547*6,96)+(0.908*21)=146,3+22,1+49,7+10,8+19,1=248 кДж /кг*ºC.

Тепловые явления

Определение

Явления, которые связаны с изменением температуры тела, приводящей к его нагреванию или охлаждению, называют тепловыми. 

В качестве примера можно привести нагревание и охлаждение воздуха, таяние льда, плавление металлов и др.

Закон сохранения энергии

Закон сохранения энергии постулирует, что в природе не происходит возникновения или исчезновения энергии. Энергия существует всегда, просто она превращается из одного вида в другой, передается от одного тела другому, и при этом ее значение сохраняется.

Уравнение, иллюстрирующее закон сохранения механической энергии, выглядит так:

\(E_{k_1}+E_{p_1}=E_{k_2}+E_{p_2}\)

и означает следующее: 

Сумма кинетической и потенциальной энергии тел, которые находятся в замкнутой системе и взаимодействуют между собой силами тяготения и упругости, остается постоянной.

В данном уравнении \(E_{k_1}\) и \(E_{k_2}\) — кинетическая энергия тела, \(E_{p_1}\) и \(E_{p_2}\) — потенциальная энергия тела.

Полная механическая энергия (E) будет определяться по формуле:

\(E=E_k+E_p\)

где \(E_k\) — кинетическая энергия, \(E_p\) — потенциальная.

Формула вычисления количества теплоты

Внутренняя энергия тела может изменяться двумя путями:

  • за счет совершения работы; 
  • без совершения работы, за счет теплопередачи. 

Определение

Энергия, которую получает или теряет тело при теплопередаче, называется количеством теплоты.

Определяется по формуле:

\(Q=c\times m\times\left(t_2-t_1\right)\)

где Q — количество теплоты, измеряемое в джоулях, c — удельная теплоемкость, m — масса тела, \(t_1\) — начальная, \(t_2\) — конечная температуры.  

Формула вычисления количества теплоты при сгорании топлива

Определение

Количеством теплоты при сгорании топлива называется величина, которая равняется количеству энергии, выделяемой при полном сгорании топлива. 

Для определения количества теплоты при сгорании топлива необходимо знать удельную теплоту сгорания q — количество теплоты, которое выделяет 1 килограмм топлива при полном сгорании.

Формула выглядит так:

\(Q=q\times m\)

где Q — количество теплоты при сгорании топлива, измеряется в джоулях, m — масса топлива.

Количество теплоты плавления (кристаллизации)

Определение

Количество теплоты плавления или кристаллизации — это физическая величина, которая показывает, какое количество теплоты необходимо для плавления тела при условии, что оно находится в условиях температуры плавления и нормальном атмосферном давлении. 

Для определения количества теплоты плавления нужно знать удельную теплоту плавления (\lambda) — величину, показывающую, какое количество теплоты необходимо дать кристаллическому телу массой 1 кг, чтобы при температуре плавления полностью перевести его в жидкое состояние.

Количество теплоты плавления определяется по формуле:

\(Q=\lambda\times m,\)

Количество теплоты кристаллизации находят таким образом:

\(Q=-\lambda\times m\)

где Q — количество теплоты плавления или кристаллизации, измеряется в джоулях, m — масса тела.

Формула вычисления абсолютной влажности

Определение

Влажностью воздуха называется содержание водяного пара в атмосфере, которое возможно за счет непрерывного испарения воды с поверхности водоемов.

Абсолютная влажность (ρ) показывает плотность водяного пара, т.е. сколько граммов водяного пара содержится в воздухе объемом 1 кубический метр при заданных условиях.

Вычисляется по формуле:

\(p=\frac mV\)

где m — масса водяного пара в воздухе, V — объем воздуха.

Измеряется в \(г/{м^3}\).

Вычисление относительной влажности воздуха

Определение 6

Относительная влажность воздуха \((\varphi)\) — это отношение абсолютной влажности воздуха (ρ) к плотности насыщенного водяного пара при той же температуре (\(ρ_0\)), выражается в процентах.

Насыщение водяного пара зависит от:

  • температуры;
  • количества водяных паров;
  • давления.

Соответственно, относительную влажность воздуха можно вычислить при помощи формулы:

\(\varphi=\frac p{p_0}\times100\%\)

КПД тепловой машины

С помощью коэффициента полезного действия (КПД) двигателя определяют экономичность различных тепловых двигателей.

Определение

КПД называется отношение совершенной двигателем полезной работы к энергии, полученной от нагревателя.

КПД двигателя находят по формуле:

\(\eta=\frac{Q_1-Q_2}{Q_1}\times100\%\)

где \eta — КПД, выражается в процентах; \(Q_1\) — количество теплоты, полученное от нагревателя, \(Q_2\) — количество теплоты, отданное телом холодильнику.

Методы теплоизоляции

В зависимости от того, какой элемент конструкции здания изолируют, можно выделить 2 способа .

Теплоизоляция перекрытия

Первый вариант — это утепление перекрытия. Способ недорогой, очень простой в исполнении. Заключается в укладке ваты на бетонные плиты основания или, в случае деревянного перекрытия, между элементами конструкции. Подойдет любой вид минеральной ваты, даже мягкая и гранулированная. Укладка проста, не требуется обходить стропила, как при утеплении скатов крыши, можно легко заполнить все просветы, щели.

Теплозащита скатов

Второй вариант – это утепление скатов крыши. Если помещение на чердаке не эксплуатируется, то такой вариант невыгоден экономически. Намного увеличивается расход материалов, требуется больше времени из-за обхода стропил и дополнительного крепления минваты.

Утепление скатов может быть произведено двумя способами: поверх открытых стропил или между ними. При первом варианте деревянные балки остаются видимыми внутри помещения и несут дополнительную декоративную функцию.

Термос. Сосуд Дьюара. Калориметр

Достаточно часто требуется остановить или задержать процесс остывания. В бытовых целях для этого используются термосы. Устройство их несложно. Главную роль здесь играет прослойка с низкой теплопроводностью между стенками двойного стеклянного (бывает и из другого вещества) сосуда.

 

Для сохранения повышенных или пониженных температур веществ в промышленности, медицине, ветеринарии, косметологии, лабораториях используют теплонепроницаемый сосуд, который носит название своего изобретателя – сосуд Дьюара. 

 

Состоит сосуд из двух основных резервуаров, изготовленных из термостойкого алюминия. Меньший резервуар находится внутри большего и скреплен с ним небольшими прочными перемычками. Внешний резервуар покрыт защитным веществом, а внутренний очень хорошо отполирован. Сосуд закрыт непроводящей тепло пенопластиковой крышкой. Устройство сосуда Дьюара аналогично строению обычного бытового термоса, но термос – это упрощенный вариант дьюаровского изобретения.

Изначально сосуды Дьюара применялись для легко испаряющихся жидкостей. Теперь же эти сосуды используют для поддержания и сохранения свойств веществ при необходимых температурах. Чаще других в таких сосудах хранят жидкий азот, применение которого очень разнообразно:

  • удаление недоброкачественных и доброкачественных опухолей в медицине;
  • удаление бородавок и папиллом в косметологии;
  • транспортировка биоматериалов для искусственного оплодотворения животных в ветеринарии;
  • научные исследования в лабораториях;
  • достижение прочности металлов в машиностроении;
  • шоу, развлечения.

приготовление мороженого, заморозка сметаны или фруктов в кулинарии

Шоу                                                          Заморозка фруктов

При исследованиях в школе и проведении опытов вместо сосудов Дьюара и термосов используют более простой прибор, который называют калориметром     

 

Такое приспособление не может исключить полную связь содержимого внутреннего сосуда с внешней средой. Чтобы потеря тепла во внешнюю среду была минимальной, нужно опыты проводить достаточно быстро.

Используя калориметр, в условиях учебного класса можно проверить справедливость уравнения теплового баланса. Для этого понадобится одинаковое количество (например, 50 г) холодной и горячей воды, калориметр и термометр.

Пусть в первом калориметре температура горячей воды 80оС, а во втором — комнатная температура, равная 20оС.

Нужно аккуратно холодную воду перелить в калориметр с горячей водой

Полученную смесь осторожно перемешать термометром (трубочку или ложку для смешивания брать не стоит, чтобы лишний раз не нарушать выбранную изолированную систему тел)

Начальные температуры воды и температуру смеси записать и использовать в дальнейших расчетах. Учитывая табличное значение удельной теплоемкости воды (4200 Дэ/кг о С), взятую массу (50 г = 0, 05 кг), вычисления будут следующими:

Конечно, такой результат может получиться лишь теоретически. В опыте с калориметром есть недостаток в том, что существует недостаточная изоляция системы рассматриваемых тел. Тепло горячей воды попадает во внешнюю среду, так как калориметр с горячей водой не закрыт. Нельзя забывать, что измерения проводятся с определенной долей погрешности.

Но суть проделанных набольших исследований понятна и подтверждает уравнение теплового баланса.

Пример расчетов для теплообмена между холодным и горячим телом

К горячей воде, массой 200 грамм, имеющей температуру +80 градусов Цельсия, добавили холодную воду, в количестве 100 грамм при температуре +15 градусов Цельсия. Какую температуру будет иметь смесь после установления теплового равновесия? Считать, что окружающая среда в теплообмене не участвует.

Примечание: Здесь мы рассматриваем упрощенную задачу, для того, чтобы облегчить понимание закона сохранения энергии. Мы не учитываем в этой задаче, что вода содержится в емкости. И часть тепловой энергии будет затрачиваться на то, чтобы изменить температуру емкости.

При решении других задач обязательно учитывайте, что емкость, в которой будет содержаться вещество, имеет массу. И часть тепловой энергии будет затрачиваться на то, чтобы изменить температуру емкости.

 Решение:

В условии сказано, что окружающая среда в теплообмене не участвует. Поэтому, будем считать рассматриваемую . А в замкнутых системах выполняются законы сохранения. Например, закон сохранения энергии.

Иными словами, с сосудом и окружающим воздухом теплообмен не происходит и, все тепловая энергия, отданная горячей водой, будет получена холодной водой.

1). Запишем уравнение теплового баланса, в правой части которого можно записать ноль:

\

2). Теперь запишем формулу для каждого количества теплоты:

\

\

Примечания:

  1. \(\large c_{\text{воды}} \) – воды находим в справочнике;
  2. Массу воды переводим в килограммы;
  3. Горячая вода остывает и отдает тепловую энергию. Поэтому, разность \(\large (t_{\text{общ}} — t_{\text{горяч}} ) \) будет иметь знак «минус», потому, что конечная температура горячей воды меньше ее начальной температуры;
  4. Холодная вода получает тепловую энергию и нагревается. Из-за этого, разность \(\large (t_{\text{общ}} — t_{\text{холодн}} ) \) будет иметь знак «плюс», потому, что конечная температура холодной воды больше ее начальной температуры;

3). Подставим выражения для каждого Q в уравнение баланса:

\

4). Для удобства, заменим символы числами:

\

Проведем упрощение:

\

Раскрыв скобки и решив это уравнение, получим ответ:

\

Ответ: Температура смеси после прекращения теплообмена будет равна 58,33 градуса Цельсия.

Задача для самостоятельного решения:

В алюминиевом калориметре массой 100 грамм находится керосин массой 250 грамм при температуре +80 градусов Цельсия. В керосин поместили свинцовый шарик, массой 300 грамм. Начальная температура шарика +20 градусов Цельсия. Найдите температуру тел после установления теплового равновесия. Внешняя среда в теплообмене не участвует.

Примечание к решению: В левой части уравнения теплового баланса теперь будут находиться три слагаемых. Потому, что мы учитываем три количества теплоты:

  • \(\large Q_{1} \) – охлаждение алюминия от температуры +80 градусов до конечной температуры;
  • \(\large Q_{2} \) – охлаждение керосина от температуры +80 градусов до конечной температуры;
  • \(\large Q_{3} \) – нагревание свинца от температуры +20 градусов до конечной температуры;

А справа в уравнение теплового баланса запишем ноль. Так как внешняя среда в теплообмене не участвует.

КПД тепловой машины

Коэффициентом полезного действия (КПД) тепловой машины (двигателя) называется отношение работы ​ \( A \) ​, совершаемой двигателем за цикл, к количеству теплоты ​ \( Q_1 \) ​, полученному за цикл от нагревателя:

Тепловая машина с максимальным КПД была создана Карно. В машине осуществляется круговой процесс (цикл Карно), при котором после ряда преобразований система возвращается в начальное состояние.

Цикл Карно состоит из четырех стадий:

  1. Изотермическое расширение (на рисунке — процесс 1–2). В начале процесса рабочее тело имеет температуру ​ \( T_1 \) ​, то есть температуру нагревателя. Затем тело приводится в контакт с нагревателем, который изотермически (при постоянной температуре) передает ему количество теплоты ​ \( Q_1 \) ​. При этом объем рабочего тела увеличивается.
  2. Адиабатное расширение (на рисунке — процесс 2–3). Рабочее тело отсоединяется от нагревателя и продолжает расширяться без теплообмена с окружающей средой. При этом его температура уменьшается до температуры холодильника ​ \( T_2 \) ​.
  3. Изотермическое сжатие (на рисунке — процесс 3–4). Рабочее тело, имеющее к тому времени температуру ​ \( T_2 \) ​, приводится в контакт с холодильником и начинает изотермически сжиматься, отдавая холодильнику количество теплоты ​ \( Q_2 \) ​.
  4. Адиабатное сжатие (на рисунке — процесс 4–1). Рабочее тело отсоединяется от холодильника. При этом его температура увеличивается до температуры нагревателя ​ \( T_1 \) ​.

КПД цикла Карно:

Отсюда видно, что КПД цикла Карно с идеальным газом зависит только от температуры нагревателя ​ \( (T_1) \) ​ и холодильника \( (T_2) \) .

Из уравнения следуют выводы:

  • для повышения КПД тепловой машины нужно увеличить температуру нагревателя и уменьшить температуру холодильника;
  • КПД тепловой машины всегда меньше 1.

Цикл Карно обратим, так как все его составные части являются равновесными процессами.

КПД тепловых двигателей: двигатель внутреннего сгорания — 30%, дизельный двигатель — 40%, паровая турбина — 40%, газовая турбина — 25–30%.

Электрические явления

Раздел «Электрические явления» учебника 8-го класса рассматривает основные закономерности и параметры, характерные для работы электроцепей.

Закон Ома для участка цепи

В 1827 году немецкий физик Георг Ом вывел и доказал опытным путем зависимость силы тока от напряжения и сопротивления. Эта зависимость называется законом Ома и звучит так: сила тока на участке электрической цепи прямо пропорциональна напряжению на этом участке и обратно пропорциональна его сопротивлению. 

Формула, отражающая эту зависимость, выглядит так:

\(I=\frac UR\)

где I — сила тока на участке цепи, измеряется в амперах, U — напряжение на участке электроцепи, R — сопротивление участка цепи.

Вычисление удельного сопротивления проводника

Зависимость сопротивления проводника от его размера и материала, из которого он изготовлен, впервые изучил Ом. Он доказал, что сопротивление прямо пропорционально длине проводника, обратно пропорционально площади его поперечного сечения и зависит от материала изготовления.

Зависимость сопротивления от материала изготовления проводника длиной 1 м и площадью поперечного сечения 1м^2 называют удельным сопротивлением вещества (p).

Сопротивление проводника определяем по формуле:

\(R=\frac{pl}S\)

где R — сопротивление проводника, измеряется в омах, l — длина проводника, S — площадь сечения.

Законы последовательного соединения проводников

Следующие закономерности справедливы для последовательно соединенных проводников в любом количестве:

\(I=I_1=I_2\)

\(U=U_1+U_2\)

\(R=R_1+R_2\)

где \(I_1, U_1, R_1\) — сила тока, напряжение и сопротивление на одном участке цепи, \(I_2, U_2, R_2\) — сила тока, напряжение и сопротивление на другом участке цепи.

Сила тока измеряется в амперах, напряжение — в вольтах, сопротивление — в омах.

Законы параллельного соединения проводников

Для параллельного соединения действуют следующие закономерности:

\(I=I_1+I_2\)

\(U=U_1=U_2\)

\(R=\frac{R_1\times R_2}{R_1+R_2}\)

где \(I_1, U_1, R_1\)1 — сила тока, напряжение и сопротивление первого участка цепи, \(I_2, U_2, R_2\) — сила тока, напряжение и сопротивление второго участка цепи.

Единицы измерения основных характеристик электроцепи одинаковые при последовательном и параллельном соединениях.

Вычисление величины заряда

Определение

Электрический заряд (q) — это физическая величина, которая описывает особенность частиц или тел выступать источником электромагнитных полей и участвовать в электромагнитном взаимодействии.

Измеряется в кулонах, вычисляется по формуле:

\(q=I\times t, \)

где I — сила, t — время прохождения тока.

Нахождение работы электрического тока

Определение

Работа электрического тока — это физическая величина, которая показывает, какая работа была совершена электрическим полем при перемещении зарядов по проводнику.

Работа электрического тока обозначается символом A, измеряется в джоулях, рассчитывается по формуле:

\(A=U\times I\times t\)

где I — сила тока в проводнике, U — напряжение на концах проводника, t — время протекания тока через проводник.

Формула электрической мощности

Определение

Мощность электротока — это величина, которая измеряется в ваттах и показывает, какую работу совершает ток за единицу времени. 

Для вычисления мощности тока верно следующее уравнение:

\(P=I\times U\)

где I — сила тока на участке цепи, U — электрическое напряжение.

Закон Джоуля-Ленца

Закон Джоуля-Ленца — закон физики, который дает количественную оценку теплового действия электрического тока. Открыт в 1841 и 1842 году независимо друг от друга Джеймсом Джоулем и Эмилием Ленцем.

Уравнением этот закон выражается так:

\(Q=I^2\times R\times\Delta t\)

где Q — количество теплоты, выделяемое за время \((\Delta t)\), в течение которого ток течет в проводнике, измеряется в джоулях, I — сила тока в проводнике, R — сопротивление проводника.  

Мощность в спорте

Оценивать работу с помощью мощности можно не только для машин, но и для людей и животных. Например, мощность, с которой баскетболистка бросает мяч, вычисляется с помощью измерения силы, которую она прикладывает к мячу, расстояния которое пролетел мяч, и времени, в течение которого эта сила была применена. Существуют сайты, позволяющие вычислить работу и мощность во время физических упражнений. Пользователь выбирает вид упражнений, вводит рост, вес, длительность упражнений, после чего программа рассчитывает мощность. Например, согласно одному из таких калькуляторов, мощность человека ростом 170 сантиметров и весом в 70 килограмм, который сделал 50 отжиманий за 10 минут, равна 39.5 ватта. Спортсмены иногда используют устройства для определения мощности, с которой работают мышцы во время физической нагрузки. Такая информация помогает определить, насколько эффективна выбранная ими программа упражнений.

Динамометры

Для измерения мощности используют специальные устройства — динамометры. Ими также можно измерять вращающий момент и силу. Динамометры используют в разных отраслях промышленности, от техники до медицины. К примеру, с их помощью можно определить мощность автомобильного двигателя. Для измерения мощности автомобилей используется несколько основных видов динамометров. Для того, чтобы определить мощность двигателя с помощью одних динамометров, необходимо извлечь двигатель из машины и присоединить его к динамометру. В других динамометрах усилие для измерения передается непосредственно с колеса автомобиля. В этом случае двигатель автомобиля через трансмиссию приводит в движение колеса, которые, в свою очередь, вращают валики динамометра, измеряющего мощность двигателя при различных дорожных условиях.

Этот динамометр измеряет крутящий момент, а также мощность силового агрегата автомобиля

Динамометры также используют в спорте и в медицине. Самый распространенный вид динамометров для этих целей — изокинетический. Обычно это спортивный тренажер с датчиками, подключенный к компьютеру. Эти датчики измеряют силу и мощность всего тела или отдельных групп мышц. Динамометр можно запрограммировать выдавать сигналы и предупреждения если мощность превысила определенное значение

Это особенно важно людям с травмами во время реабилитационного периода, когда необходимо не перегружать организм

Согласно некоторым положениям теории спорта, наибольшее спортивное развитие происходит при определенной нагрузке, индивидуальной для каждого спортсмена. Если нагрузка недостаточно тяжелая, спортсмен привыкает к ней и не развивает свои способности. Если, наоборот, она слишком тяжелая, то результаты ухудшаются из-за перегрузки организма. Физическая нагрузка во время некоторых упражнений, таких как велосипедный спорт или плавание, зависит от многих факторов окружающей среды, таких как состояние дороги или ветер. Такую нагрузку трудно измерить, однако можно выяснить с какой мощностью организм противодействует этой нагрузке, после чего изменять схему упражнений, в зависимости от желаемой нагрузки.

Автор статьи: Kateryna Yuri

Для чего все это нужно

Проблему следует рассмотреть с двух точек зрения – с точки зрения многоквартирных домов и частных. Начнем с первых.

Многоквартирные здания

Здесь ничего сложного нет: гигакалории применяются в тепловых расчетах. И если знать, какое количество тепловой энергии остается в доме, то можно предъявить потребителю конкретный счет. Приведем небольшое сравнение: если централизованное отопление будет функционировать в отсутствие счетчика, то платить приходится по площади обогреваемого помещения. Если же есть тепловой счетчик, это уже само по себе разводку подразумевает горизонтального типа (либо коллекторную, либо последовательную): в квартиру заводят два стояка (для «обратки» и подачи), а уже внутриквартирная система (точнее, е конфигурация) определяется жильцами. Подобного рода схема применяются в новостройках, благодаря чему люди регулируют расход тепловой энергии, делая выбор между экономией и комфортом.

Выясним, каким образом осуществляется данная регулировка.

1. Монтаж общего термостата на магистрали «обратки». В таком случае расход рабочей жидкости определяется температурой внутри квартиры: если она будет снижаться, то расход, соответственно, увеличится, а если повышаться – снизится.

2. Дросселирование радиаторов отопления. Благодаря дросселю проходимость отопительного прибора ограничивается, температура снижается, а значит, сокращается расход тепловой энергии.

Частные дома

Продолжаем говорить про расчет Гкал на отопление. Владельцы загородных домов интересуются, прежде всего, стоимостью гигакалории тепловой энергии, полученной от того или иного вида топлива. В этом может помочь приведенная ниже таблица.

Таблица. Сравнение стоимости 1 Гкал (с учетом транспортных расходов)

* — цены примерные, так как тарифы могут отличаться в зависимости от региона, более того, они еще и постоянно растут.

Оцените статью
Рейтинг автора
5
Материал подготовил
Андрей Измаилов
Наш эксперт
Написано статей
116
Добавить комментарий