Индуктивность. генри. henry. гн. единицы измерения. доли, миллигенри, мгн, микрогенри, мкгн. соотношения. формулы

Катушка индуктивности в цепи переменного тока.

Рассмотрим цепь, в которой на катушку индуктивности подается переменный ток:

Давайте посмотрим на зависимости тока и ЭДС самоиндукции от времени, а затем уже разберемся, почему они выглядят именно так:

Как мы уже выяснили ЭДС самоиндукции у нас прямо пропорциональна и противоположна по знаку скорости изменения тока:

\varepsilon_L = -L\medspace\frac{dI}{dt}

Собственно, график нам и демонстрирует эту зависимость! Смотрите сами – между точками 1 и 2 ток у нас изменяется, причем чем ближе к точке 2, тем изменения меньше, а в точке 2 в течении какого-то небольшого промежутка времени ток и вовсе не изменяет своего значения. Соответственно скорость изменения тока максимальна в точке 1 и плавно уменьшается при приближении к точке 2, а в точке 2 равна 0, что мы и видим на графике ЭДС самоиндукции. Причем на всем промежутке 1-2 ток возрастает, а значит скорость его изменения положительна, в связи с этим на ЭДС на всем этом промежутке напротив принимает отрицательные значения.

Аналогично между точками 2 и 3 – ток уменьшается – скорость изменения тока отрицательная и увеличивается – ЭДС самоиндукции увеличивается и положительна. Не буду расписывать остальные участки графика – там все процессы протекают по такому же принципу

Кроме того, на графике можно заметить очень важный момент – при увеличении тока (участки 1-2 и 3-4) ЭДС самоиндукции и ток имеют разные знаки (участок 1-2: \varepsilon < 0, i > 0, участок 3-4: \varepsilon > 0, i < 0). Таким образом, ЭДС самоиндукции препятствует возрастанию тока (индукционные токи направлены “навстречу” току источника).

А на участках 2-3 и 4-5 все наоборот – ток убывает, а ЭДС препятствует убыванию тока (поскольку индукционные токи будут направлены в ту же сторону, что и ток источника и будут частично компенсировать уменьшение тока).

И в итоге мы приходим к очень интересному факту – катушка индуктивности оказывает сопротивление переменному току, протекающему по цепи. А значит она имеет сопротивление, которое называется индуктивным или реактивным и вычисляется следующим образом:

X_L = w\medspace L

Где w – круговая частота: w = 2 \pi f. f – это частота переменного тока. Таким образом, чем больше частота тока, тем большее сопротивление будет ему оказывать катушка индуктивности. А если ток постоянный (f = 0), то реактивное сопротивление катушки равно 0, соответственно, она не оказывает влияния на протекающий ток.

Давайте вернемся к нашим графикам, которые мы построили для случая использования катушки индуктивности в цепи переменного тока. Мы определили ЭДС самоиндукции катушки, но каким же будет напряжение u? Здесь все на самом деле просто! По 2-му закону Кирхгофа:

u + \varepsilon_L = 0

А следовательно:

u = – \varepsilon_L

Построим на одном графике зависимости тока и напряжения в цепи от времени:

Как видите ток и напряжение сдвинуты по фазе (ссылка) друг относительно друга, и это является одним из важнейших свойств цепей переменного тока, в которых используется катушка индуктивности:

Вот и с включением катушки в цепь переменного тока мы разобрались!

На этом, пожалуй, закончим сегодняшнюю статью, она получилась уже довольно объемной, поэтому разговор о катушках индуктивности мы продолжим в следующий раз. Так что до скорых встреч, будем рады видеть вас на нашем сайте!

Как собрать

Чтобы после чистки успешно собрать катушку для спиннинга, нужно придерживаться следующей схемы:

  1. Надеть стенку катушки на бегунок и 2 шестерни.
  2. Завинтить болт антиреверса и надеть переключатель.
  3. Завинтить болт заглушки и вставить ее обратно.
  4. Установить обратно дугу лесоукладывателя
  5. Установить обратно механизм, защелкивающий дугу лесоукладывателя.
  6. Собрать ролик с лесой.
  7. Собрать катушку для спиннинга в части ее механизма. Сборка проводится путем вкручивания зажимной гайки гаечным ключом или плоскогубцами.
  8. Установить ротор на прежнее место.
  9. Завинтить рукоять.
  10. Надеть шайбы и установить шестерни.
  11. Надеть гайку на фрикцион и на шпулю (или вернуть на прежнее место фиксатор с кнопкой).

Сборка завершена. На следующей рыбалке катушка на спиннинге работает, как надо.

Обозначение, параметры и разновидности катушек индуктивности

В свече цилиндра происходит образование искры. Примечательной особенностью катушки индуктивности для электрических схем является то, что её можно намотать как в несколько слоев, так и нированно, т.

Способ намотки и конструкция влияют на конечные размеры изделия. Для работы в цепи переменного тока низкой частоты, на звуковых частотах, во входных фильтрах блоков питания, в цепях питания осветительного электрооборудования применяются катушки с достаточно большой индуктивностью.

При замене катушки зажигания на ее место подбирают катушку со схожими рабочими параметрами, которые не должны отличаться более чем на

Я думаю, что пользоваться ее вы умеете. Сейчас это редкость.

Принцип действия

Влажность вызывает увеличение собственной емкости и диэлектрических потерь, а также понижает стабильность катушки. Индуктивность соленоида определяет формула: Формула — индуктивность катушки-соленоида Помимо этого, уровень индуктивности имеет определенную зависимость от температуры на плате. На него наматывается изолированный проводник, который может быть как одножильным, так и многожильным.

Импульс тока подается на обмотку дросселя, дроссель запасает энергию в магнитном поле. Первое кольце иногда делают шире остальных.

Величина этих зазоров может достигать Также прибор зависит от ТИК — температурного коэффициента.

При низкой частоте вращения, когда сила первичного тока к моменту его прерывания успевает достигнуть максимального значения, сопротивление вариатора также максимально. Кроме того, исключается холостая искра. Катушки, работающие на высоких частотах, можно разделить на катушки контуров, катушки связи и дроссели высокой частоты. Чем больше индуктивность катушки, тем больше энергии она запасает в своем магнитном поле. При сборке обмотки заливаются эпоксидным компаундом 8.
ЗАЧЕМ НУЖНА КАТУШКА ИНДУКТИВНОСТИ

Самостоятельное изготовление

Итак, простейший способ изготовления катушки Теслы для чайников своими руками. Часто в интернете можно увидеть суммы, превышающие стоимость неплохого смартфона, но на деле трансформатор на 12V, который даст возможность насладиться включением светильника без использования розетки, можно собрать из кучи гаражного хлама.

Что должно получиться в итоге

Понадобится медная эмалированная проволока. Если эмалированной не найти, тогда дополнительно понадобится обычный лак для ногтей. Диаметр провода может быть от 0.1 до 0.3 мм. Чтобы соблюсти количество витков понадобиться около 200 метров. Намотать можно на обычную ПВХ-трубу диаметром от 4 до 7 см. Высота от 15 до 30 см. Также придется прикупить транзистор, например, D13007, пара резисторов и проводов. Неплохо было бы обзавестись кулером от компьютера, который будет охлаждать транзистор.

Теперь можно приступить к сборке:

  1. отрезать 30 см трубы;
  2. намотать на нее проволоку. Витки должны быть как можно плотнее друг к другу. Если проволока не покрыта эмалью, покрыть в конце лаком. Сверху трубы конец провода продеть через стенку и вывести наверх так, чтобы он торчал на 2 см выше поставленной трубы.;
  3. изготовить платформу. Подойдет обычная плита из ДСП;
  4. можно делать первую катушку. Нужно взять медную трубу 6 мм, выгнуть ее в три с половиной витка и закрепить на каркасе. Если диаметр трубки меньше, то витков должно быть больше. Ее диаметр должен быть на 3 см больше второй катушки. Закрепить на каркасе. Тут же закрепить вторую катушку;
  5. способов изготовления тороида довольно много. Можно использовать медные трубки. Но проще взять обычную алюминиевую гофру и металлическую перекладину для крепления на выпирающем конце проволоки. Если проволока слишком хлипкая, чтобы удержать тороид, можно использовать гвоздь, как на картинке ниже;
  6. не стоит забывать про защитное кольцо. Хотя если один конец первичного контура заземлить, от него можно отказаться;
  7. когда конструкция готова, транзистор соединяется по схеме, крепится к радиатору или кулеру, далее нужно подвести питание и монтаж окончен.

Первую катушку можно сделать плоской, как на картинке

В качестве питания установки многие используют обычную крону Дюрасель.

Трансформатор Тесла своими руками, простейшая схема

Расчёт поправки на собственную индуктивность витков

Как я писал в начале статьи, полная индуктивность катушки L состоит из расчётной индуктивности LP и поправки на изоляцию ∆L, которая в свои очередь состоит из поправки на собственную индуктивность витков ∆1L и поправки на взаимную индуктивность витков ∆2L

Данные поправки зависят от взаимного расположения витков в катушке. Для провода круглого сечения возможны следующие варианты заполнения катушки

Расположение провода круглого сечения в катушке индуктивности. s – диаметр провода с изоляцией, sp – диаметр голого провода (без изоляции), p – шаг намотки по длине катушки, q – шаг намотки по толщине катушки.

В общем случае поправка на собственную индуктивность витков рассчитывается по следующему выражению

где μ – магнитная постоянная, μ = 4π•10-7 Гн/м;

ω – число витков соленоида;

DСР – средний диаметр катушки, м;

I – коэффициент, зависящий от расположения витков катушки.

Коэффициент I определяется в зависимости от расположения провода, варианты которого изображены на рисунке выше.

Для варианта а), провод намотан с небольшим коэффициентом заполнения

где s – диаметр провода с изоляцией, sp – диаметр голого провода (без изоляции).

Для варианта б), провод намотан с большим коэффициентом заполнения

где s – диаметр провода с изоляцией, sp – диаметр голого провода (без изоляции).

Для варианта в), провод намотан с шагом p по длине катушки и с шагом q по толщине катушки

где s – диаметр провода с изоляцией, sp – диаметр голого провода (без изоляции).

Для варианта г), провод намотан в один слой по длине катушки с шагом p. В зависимости от способа вычисления расчётной индуктивности LP

— если при вычислении расчётной индуктивности LP толщина намотки t принята равной диаметру голого провода sP, то коэффициент I будет равен

— если при вычислении расчётной индуктивности LP толщина намотки t принята равной нулю (расcчитывалась как соленоид), то коэффициент I будет равен

где p – шаг намотки по длине катушки, sp – диаметр голого провода (без изоляции).

Для варианта д), провод намотан в один слой по толщине намотки с шагом q, также возможно два случая

— если при вычислении расчётной индуктивности LP длина намотки l принята равной диаметру голого провода sP, то коэффициент I будет равен

— если при вычислении расчётной индуктивности LP длина намотки l принята равной нулю (рассчитывалась как плоская катушка), то коэффициент I будет равен

где q – шаг намотки по толщине катушки, sp – диаметр голого провода (без изоляции).

Как чистить катушку на спиннинг

Чтобы провести профилактический осмотр и очистку катушки для спиннинга, необходимо выполнить следующие действия:

  1. Ослабить и открутить винт фрикциона (или нажать на кнопку фиксатора).
  2. Извлечь шпулю.
  3. Удалить грязь, пыль, песчинки с поверхности катушки и шпули.
  4. Удалить песчинки со шпули.
  5. Протереть шпулю изнутри.
  6. Отвинтить ролик лесоукладывателя и аккуратно снять его.
  7. Снять рукоять.
  8. Удалить песчинки и грязь.
  9. Смазать 2 подшипника, на которых установлена рукоять и иные разобранные детали.

После смазки катушки нужно собирать ее в обратном порядке. Очищать ее можно только мягкой тряпкой.

Маркировка

При рассмотрении катушек индуктивности оценивается цветовая и кодовая маркировка. Если смотреть на первые цифры, отображается показатель индуктивности. Далее учитывается параметр отклонения:

  • Серебряный 0,01 мкГн, 10%.
  • Золотой 0,1 мкГн, 5%.
  • Черный 0,1мкГн, 20%.
  • Коричневый 1,1 мкГн.
  • Красный 2, 2 мкГн.
  • Оранжевый 1 мкГн.
  • Желтый 4 мкГн.
  • Зеленый 5 мкГн.
  • Голубой 6 мкГн.
  • Фиолетовый 7мкГн.
  • Серый 8 мкГн.
  • Белый 9 мкГн.

Маркировка

В нестабильной цепи переменного электрического тока не обойтись без катушки индуктивности. Выше описаны основные типы изолированных проводников, продемонстрированы их параметры. Учитывается уровень частоты, а также свойства.

Меры безопасности

Собрав КТ, перед запуском нужно принять некоторые меры предосторожности. Во-первых, нужно проверить проводку в помещении, где планируется подключение трансформатора

Во-вторых, проверить изоляцию обмоток.

Также стоит помнить, о простейших мерах предосторожности. Напряжение вторичной обмотки в среднем равняется 700А, 15А для человека уже смертельно

Дополнительно стоит подальше убрать все электроприборы, попав в зону работы катушки, они с большой вероятностью сгорят.

КТ ­– это революционное открытие своего времени, недооцененное в наши дни. Сегодня трансформатор Тесла служит лишь для развлечения домашних электриков и в световых представлениях. Сделать катушку можно самостоятельно из подручных средств. Понадобятся ПВХ труба, несколько сотен метров медного провода, пара метров медных труб, транзистор и пара резисторов.

Индуктивность соленоида

Катушка в форме соленоида (конечной длины).

Соленоид — длинная, тонкая катушка, то есть катушка, длина которой намного больше, чем её диаметр (также в дальнейших выкладках здесь подразумевается, что толщина обмотки намного меньше, чем диаметр катушки). При этих условиях и без использования магнитного материала плотность магнитного потока (или магнитная индукция) B{\displaystyle B}, которая выражается в системе СИ в тесла , внутри катушки является фактически постоянной и (приближённо) равна

B=μNil{\displaystyle \displaystyle B=\mu _{0}Ni/l}

или

B=μni,{\displaystyle \displaystyle B=\mu _{0}ni,}

где μ{\displaystyle \mu _{0}} − магнитная постоянная, N{\displaystyle N} − число витков, i{\displaystyle i} − ток, записанный в амперах , l{\displaystyle l} − длина катушки в метрах и n{\displaystyle n} — плотность намотки витков в . Пренебрегая краевыми эффектами на концах соленоида, получим, что потокосцепление через катушку равно плотности потока B{\displaystyle B} , умноженному на площадь поперечного сечения S{\displaystyle S} и число витков N{\displaystyle N}:

Ψ=μN2iSl=μn2iV,{\displaystyle \displaystyle \Psi =\mu _{0}N^{2}iS/l=\mu _{0}n^{2}iV,}

где V=Sl{\displaystyle V=Sl} − объём катушки. Отсюда следует формула для индуктивности соленоида (без сердечника):

L=μN2Sl=μn2V.{\displaystyle \displaystyle L=\mu _{0}N^{2}S/l=\mu _{0}n^{2}V.}

Если катушка внутри полностью заполнена магнитным материалом (сердечником), то индуктивность отличается на множитель μ{\displaystyle \mu } — относительную магнитную проницаемость сердечника:

L=μμN2Sl=μμn2V.{\displaystyle \displaystyle L=\mu _{0}\mu N^{2}S/l=\mu _{0}\mu n^{2}V.}

В случае, когда μ>>1{\displaystyle \mu >>1}, можно (следует) под S понимать площадь сечения сердечника и пользоваться данной формулой даже при толстой намотке, если только полная площадь сечения катушки не превосходит площади сечения сердечника во много раз.

Расчёт катушки с броневым сердечником

Броневые сердечники представляют собой сборную конструкцию, состоящую из двух чашеобразных частей. В центре каждой чашки имеется центральный керн, в большинстве случаев имеющий осевое отверстие, используемое для подстройки величины индуктивности.

Такие сердечники имеют универсальное применение благодаря высокой добротности в заданной полосе частот, низким искажениям, отсутствие полей рассеяния и небольшими габаритами.

Расчёт постоянных С1 и С2 данного типа сердечника выполняется по аналогии с предыдущими типами, но в связи с формой броневого сердечника имеются свои особенности. Рассмотрим сечение броневого сердечника

Разделим данный сердечник на простейшие линейные и угловые участки с различным сечением: линейные – l1, l2, l3 и угловые – l4, l5, так же выделим соответствующие им поперечные сечения: S1, S2, S3, S4, S5. Длины линейных участков достаточно просто определить, для нахождения длины угловых участков и сечений на всех участках можно используя следующие выражения

Таким образом, вычислив длину и площадь поперечного сечения отдельных участков, можно вычислить постоянные для данного типа сердечников

Данные выражения определяют параметры сердечника без технологических пазов и вырезов. При желании их учитывать необходимо, внести следующие поправки

где n – число пазов,

g – ширина паза.

Пример. В качестве примера рассчитаем индуктивность дросселя выполненного на броневом сердечнике, состоящем из двух чашек типа Ч22 из феррита марки 50ВН (μr = 50), количество витков ω = 100.

123412

С учётом конструктивных особенностей выразим величины заложенные в требуемые нам выражения:

Найдем длины и сечение участков магнитопровода. Расчёт будем вести без учёта технологических пазов и вырезов.

С учётом рассчитанных выше значений определим индуктивность исходного дросселя

На этом можно и остановиться с расчётами индуктивных элементов с замкнутыми сердечниками. В следующей статье я рассмотрю индуктивные элементы на разомкнутых сердечниках.

Обозначение катушек с отводами и начала обмотки

В радио и электротехнической аппаратуре, например, в приемниках или импульсных преобразователях напряжения, иногда используют не всю индуктивность катушки, а только некоторую ее часть. Для таких случаев катушки изготавливают с отводом или отводами.

При разработке некоторых конструкций иногда необходимо строго соблюсти начало и конец обмотки катушки или трансформатора. Чтобы указать, какой из концов обмотки является началом, а какой – концом, у вывода начала обмотки ставят жирную точку.

Для подстройки катушек на частотах свыше 15…20 МГц часто применяют магнитопроводы из немагнитных материалов (меди, алюминия и т.п.). Возникающие в таком магнитопроводе под действием магнитного поля катушки вихревые токи создают свое поле, противодействующее основному, в результате чего индуктивность катушки уменьшается.

Немагнитный магнитопровод-подстроечник обозначают так же, как и ферритовый, но рядом указывают химический символ металла, из которого он изготовлен. На рисунке изображен подстроечник, изготовленный из меди.

Вот и все, что хотел рассказать о катушках индуктивности.
Удачи!

Литература:
1. В. А. Волгов «Детали и узлы радиоэлектронной аппаратуры».
2. В. В. Фролов «Язык радиосхем».
3. М. А. Сгут «Условные обозначения и радиосхемы».

Для чего она нужна и где используется

Подобные элементы находят множество применений, но наиболее часто они используются в качестве:

  • Элементов индуктивности в слаботочных электрических цепях;
  • Реакторов в силовой электронике, в качестве элементов компенсации реактивного характера нагрузки;
  • Дросселей для сглаживания пульсаций выпрямленного или переменного тока;
  • Электромагнитов в качестве источников магнитного поля в электромагнитных реле или органах управления различных устройств;
  • Индукторов в установках индукционного нагрева;
  • Накопителя энергии в источниках преобразования напряжения;
  • Датчиков магнитных полей (магнитные головки в накопителях на жестких магнитных дисках);
  • Линий задержки сигнала;
  • Антенн для приема и передачи электромагнитных волн.

Индуктивная антенна

Оптимизация добротности катушек индуктивности

Не менее важным параметром, чем индуктивность, при расчете индуктивных компонентов контуров, фильтров, линий задержек является их добротность.

На заданной частоте добротность катушки индуктивности определяют по формуле

QL = 2 π
F L / r,

где r — активное сопротивление потерь, которое имеет несколько составляющих. Сопротивление потерь можно представить в виде суммы

r =
r + rf +
rk +
rем + rэкр +
rс,

где r — сопротивление обмотки постоянному току;
rf — высокочастотные потери;
rk — потери в материале каркаса;
rем — емкостные потери; rэкр — потери в материале экрана;
rс — потери в материале сердечника.

Сопротивление высокочастотных потерь в обмотке состоит из потерь, обусловленных поверхностным (скин) эффектом и эффектом близости
rf= rскин + rблиз. Обе эти составляющие имеют выраженную зависимость от диаметра провода намотки, как показано на рис. 4.5. Это свойство используется для получения максимальной добротности путем выбора оптимального диаметра провода намотки.

Рис. 4.5. Оптимальный диаметр провода намотки

Диэлектрические потери, возникающие в поле собственной емкости катушки через диэлектрик, имеют ту же природу, что и в
конденсаторах и описываются тангенсом диэлектрических потерь на рабочей частоте.

Дросселем высокой частоты называют катушку индуктивности, включаемую в цепь для увеличения сопротивления токам высокой частоты. Основные параметры:
zдр — полное сопротивление, R — сопротивление постоянному току,
Сдр — собственная емкость. Полное сопротивление на рабочих частотах должно быть большим и иметь индуктивный характер. Собственная емкость дросселя (рис. 4.6) определяет его критическую частоту
fкр = 1/(2п(LдрСдр)1/2, ниже которой расположен рабочий интервал частот.

Рис. 4.6. Эквивалентная схема и зависимость полного сопротивления дросселя

Серийно выпускаются ВЧ
дроссели типа ДМ с ферритовым сердечником. Интервал индуктивностей 1…500 мкГ. Допустимое значение тока 60 мА.

Вернуться на главную страницу …

Варианты измерения

Индуктивность катушки в физике определяется путём выполнения вычислений. Однако эту величину можно не только рассчитать, но и измерить. Делается это при помощи прямого или косвенного метода.

Прямой метод

Для измерения индуктивности катушки этим методом необходимо использовать специальные мостовые или прямопоказывающие устройства. С их помощью можно получить максимально точные данные, которые помогут выбрать требуемую катушку для схемы.

Порядок проведения измерений включает в себя следующие этапы:

  1. К прямопоказывающему приспособлению подключают катушку.
  2. После этого постепенно изменяют диапазоны измерений. Это делается до тех пор, пока получаемый результат не будет находиться примерно в середине интервала.
  3. Полученный результат фиксируют и высчитывают с учётом цены деления прибора, а также коэффициента, соответствующего положению переключателя.

Измерение выполняют путём проведения таких действий:

  1. Включённый мостовой прибор подсоединяют к катушке, индуктивность которой необходимо определить.
  2. Аналогично прямопоказывающему устройству проводят переключение интервалов измерений.
  3. После каждого такого действия ручку регулятора балансировки моста поочерёдно перемещают в одно и другое предельное положение.
  4. Как только удалось определить диапазон, в котором мост будет сбалансирован, можно выполнять дальнейшие действия.
  5. На следующем этапе измерений выполняется постепенное перемещение стрелочного индикатора.
  6. После того как в динамике прибора исчезнет звук, необходимо зафиксировать показатели.
  7. Затем их рассчитывают в соответствии с ценой деления шкалы и предусмотренным коэффициентом.

Косвенное определение

Для того чтобы измерить коэффициент самоиндукции, необходимо провести несколько подготовительных мероприятий. В первую очередь нужно собрать измерительную цепь по стандартной схеме, а также подготовить все необходимые приспособления (генератор синусоидального напряжения, частотомер, а также миллиамперметр и вольтметр, рассчитанные на переменный ток).

Порядок определения параметра:

  1. К выходу генератора параллельно подключают вольтметр. Он должен быть переключён в режим, при котором верхнее предельное значение будет соответствовать напряжению в 3−5 вольт.
  2. Аналогично подсоединяют и частотомер.
  3. Отдельно собирают вторую цепь. В ней последовательно соединяют миллиамперметр и катушку, индуктивность которой нужно определить.
  4. Затем обе цепи подключают параллельно друг к другу.
  5. Подключённый генератор устанавливают в режим выработки синусоидального напряжения.
  6. Путём изменения частоты добиваются такой работы приборов, при которой вольтметр будет показывать примерно 2 вольта. При этом сила тока на миллиамперметре будет постепенно уменьшаться.
  7. После этого ручку частотомера перемещают в положение, соответствующее частоте измерений.
  8. Как только эти действия будут выполнены, можно фиксировать значения.

Полученные данные переводятся в СИ, а затем выполняются все необходимые расчёты. Первым делом определяется индуктивное сопротивление. Для этого значения приборов подставляются в следующую зависимость: X=U/I, где U — напряжение, а I — сила тока. Результат расчётов будет выражен в омах.

После этого вычисляется индуктивность по формуле L=X/2 πF. В ней используются такие условные обозначения:

  • X — индуктивное сопротивление;
  • π — математическая постоянная (примерно 3,14);
  • F — частота в герцах, при которой проводились измерения.

Индуктивность — это важный физический параметр, позволяющий определить магнитные свойства электроцепи. При точном его измерении и правильном проведении предусмотренных расчётов можно получить достоверные данные, которые понадобятся при выборе катушки.

Терминология

При использовании для подавления помех, сглаживания пульсаций электрического тока, изоляции (развязки) по высокой частоте разных частей схемы и накопления энергии в магнитном поле сердечника часто называют дросселем, а иногда реактором.

В силовой электротехнике (для ограничения тока при, например, коротком замыкании ЛЭП) называют реактором.

Цилиндрическую катушку индуктивности, длина которой намного превышает диаметр, называют соленоидом, магнитное поле внутри длинного соленоида однородно. Кроме того, зачастую соленоидом называют устройство, выполняющее механическую работу за счёт магнитного поля при втягивании ферромагнитного сердечника, или электромагнитом. В электромагнитных реле называют обмоткой реле, реже — электромагнитом.

Нагревательный индуктор — специальная катушка индуктивности, рабочий орган установок индукционного нагрева.

При использовании для накопления энергии (например, в схеме импульсного стабилизатора напряжения) называют индукционным накопителем или накопительным дросселем.

Для чего нужны и какие бывают

В зависимости от того, где применяется катушка индуктивности и её функциональных особенностей, она может называться по-разному: дроссели, соленоиды и прочее. Давайте рассмотрим, какие бывают катушки индуктивности и их сферу применения.

Дроссели. Обычно так называются устройства для ограничения тока, область применения:

  • В пускорегулирующей аппаратуре для розжига и питания газоразрядных ламп.

  • Для фильтрации помех. В блоках питания — фильтр электромагнитных помех со сдвоенным дросселем на входе компьютерного БП, изображен на фото ниже. Также используется в акустической аппаратуре и прочем.

  • Для фильтрации определенных частот или полосы частот, например, в акустических системах (для разделения частот по соответствующим динамикам).
  • Основа в импульсных преобразователях — накопитель энергии.

Токоограничивающие реакторы — используются для ограничения токов короткого замыкания на ЛЭП.

Примечание: у дросселей и реакторов должно быть низкое активное сопротивление для уменьшения их нагрева и потерь.

Контурные катушки индуктивности. Используются в паре с конденсатором в колебательном контуре. Резонансная частота подбирается под частоту приема или передачи в радиосвязи. У них должна быть высокая добротность.

Вариометры. Как было сказано — это настраиваемые или переменные катушки индуктивности. Чаще всего используются в тех же колебательных контурах для точной настройки частоты резонанса.

Соленоид — так называется катушка, длина которой значительно больше диаметра. Таким образом внутри соленоида образуется равномерное магнитное поле. Чаще всего соленоиды используются для совершения механической работы — поступательного движения. Такие изделия называют еще электромагнитами.

Рассмотрим, где используются соленоиды.

Это может быть активатор замка в автомобиле, шток которого втягивается после подачи на соленоид напряжения, и звонок, и различные исполнительные электромеханические устройства типа клапанов, грузоподъёмные магниты на металлургических производствах.

В реле, контакторах и пускателях соленоид также выполняет функцию электромагнита для привода силовых контактов. Но в этом случае его чаще называют просто катушка или обмотка реле (пускателя, контактора соответственно), как выглядит, на примере малогабаритного реле вы видите ниже.

Рамочные и кольцевые антенны. Их назначение — передача радиосигнала. Используются в иммобилайзерах автомобилей, металлодетекторах и для беспроводной связи.

Индукционные нагреватели, тогда она называется индуктором, вместо сердечника помещают нагреваемое тело (обычно металл).

Описание прибора

Если очень коротко, то катушка Тесла (КТ) – это резонансный трансформатор, создающий высокочастотный ток. Есть информация, что в своих экспериментах военные довели катушку до мощности в 1 Тгц.

Огромная катушка Тесла

Тут стоит затронуть такой вопрос – зачем Тесла ее изобрел? Согласно записям ученый работал над технологией беспроводной передачи электроэнергии. Вопрос крайне актуальный для всего человечества. В теории с помощью эфира две мощные КТ, размещенные в паре километров друг от друга, смогут передавать электричество. Для этого они должны быть настроены на одинаковую частоту. Также есть мнение, что КТ может стать своего рода вечным двигателем.

Внедрение данной технологии сделает все имеющиеся сегодня АЭС, ТЭС, ГЭС и прочие просто ненужными. Человечеству не придется сжигать твердые ископаемые, подвергаться риску радиационного заражения, перекрывать русла рек. Но ответ на вопрос, почему никто не развивает данную технологию, остается за конспирологами.

Настольная катушка Тесла, продающаяся сегодня в качестве сувенира

Катушки с регулируемой индуктивностью

В радиоприемной и радиопередающей аппаратуре нередко применяют катушки с регулируемой индуктивностью, являющиеся основным органом настройки колебательного контура в широком диапазоне частот. Часть витков такой катушки наматывают на каркасе большего диаметра, а другую часть — на каркасе меньшего диаметра. Малую катушку помещают внутрь большой и закрепляют на валике, ось которого перпендикулярна оси большой катушки, а выводы обмоток соединяют последовательно.

При повороте валика взаимное влияние катушек изменяется, а в результате изменяется и индуктивность. Такие устройства получили название вариометров. На схемах их изображают двумя символами катушек, расположенными параллельно или перпендикулярно один другому. Изменение индуктивности показывают знаком регулирования, пересекающим оба символа

Обозначение катушек на схеме.

Оцените статью
Рейтинг автора
5
Материал подготовил
Андрей Измаилов
Наш эксперт
Написано статей
116
Добавить комментарий