Мартенсит: как и почему

Структура и свойства[править | править код]

Кристаллическая структура мартенсита тетрагональна, элементарная ячейка имеет форму прямоугольного параллелепипеда, атомы железа расположены в вершинах и центре ячейки, атомы углерода в объёме ячеек. Структура неравновесна, и в ней есть большие внутренние напряжения, что в значительной степени определяет высокую твёрдость и прочность сталей с мартенситной структурой.

При нагреве сталей с мартенситной структурой происходит диффузионное перераспределение атомов углерода. В стали возникают две фазы — феррит, содержащий очень мало углерода (до 0,02 %) и цементит (6,67 % углерода). Элементарная ячейка феррита имеет форму куба, атомы железа расположены в вершинах и в центре куба (объемноцентрированная структура), цементит имеет ромбическую структуру. Элементарная ячейка цементита имеет форму прямоугольного параллелепипеда.

Кристаллическая решётка мартенсита связана постоянными кристаллографическими соотношениями с решёткой исходной структуры аустенита, то есть плоскости с определёнными кристаллографическими индексами в структуре мартенсита параллельны плоскостям с определёнными индексами в структуре аустенита. Соотношение между кристаллографическими направлениями в решётках мартенсита и аустенита аналогично.

Фазовая диаграмма Железо — Углерод.

Сталь — мартенситный класс

Стали мартенситного класса используют для изготовления деталей энергетического оборудования ( лопатки, диафрагмы, турбинные диски, роторы), длительно работающих при температурах 600 — 620 С. Высокая жаропрочность этих сталей достигается при закалке от 1000 — 1050 С в масле на мартенсит с последующим отпуском на сорбит или троостит.

Стали мартенситного класса в условиях сварочного термического цикла в участках зоны термического влияния ( а также и в металле шва, если он подобен по составу свариваемому металлу) закаливаются на мартенсит.

Стали мартенситного класса — это коррозионностойкие нержавеющие ( 2X13, 1Х17Н2, 1Х12Н2ВМФ и др.) и жаростойкие стали ( 4Х10С2М и пр. Коррозионнсстойкойназывзют сталь, которая обладает стойкостью к электрохимической коррозии в атмосфере, в среде влажного пара, в некоторых кислотах и в растворах щелочей. Жаростойкими, или окалиностойкими, называют стали, стойкие против химического разрушения поверхности в газовых средах при температуре более 550 С, работающие в ненагруженном или слабонагруженном состоянии.

Стали мартенситного класса закаливаются при охлаждении на воздухе на мартенсит.

Механические свойства стали мартенситного и мартенситно .| Назначение стали мартенситного и мартенситно-ферритного классов.| Характеристики длительной.

Стали мартенситного класса обладают более высокой жаропрочностью и повышенным сопротивлением окислению ( Сг12 %), чем перлитные.

Стали мартенситного класса ( получаемые при быстром охлаждении и имеющие закалку и резко выраженную мартенситную структуру), а также стали ферритного класса, например высокохромиетые стали, структура которых состоит из феррита и первичных карбидов, образующихся при застывании стали, в котлострое-нии, как правило, не применяются.

Схема классификации легированных сталей по назначению.

Стали мартенситного класса закаливаются на мартенсит при охлаждении на воздухе. Они относятся в основном к среднелегированным сталям. Их применяют в качестве материала труб, нефтеаппаратуры, режущих медицинских инструментов.

Стали мартенситного класса ( Fe — 13Сг) используются для изделий, работающих в слабоагрессивных средах, клапанов гидравлических прессов, предметов домашнего обихода и др. Из них изготавливают режуший, мерительный и хирургический инструмент, пружины, карбюраторные иглы, пластины клапанных компрессоров.

Анодная потенциоегатическая кривая и области применения методов испытания на МКК., Е — критические ток и потенциал пассивации. DTI пп — ток и потенциал полной запасснвирован-ности.

Стали мартенситного класса вследствие относительно низкого содержания хрома реже применяют в агрессивных средах, вызывающих МКК. Однако все же МКК в этих сталях наблюдается.

Схемы изотермического распада аустенита сталей перлитного ( а, мартенситного ( б и аустенитного ( в классов.

Стали мартенситного класса отличаются высокой устойчивостью переохлажденного аустенита ( рис. 9.1 6); при охлаждении на воздухе они закаливаются на мартенсит. К этому классу относятся средне — или высоколегированные стали.

Стали мартенситного класса характеризуются способностью к самозакаливанию на воздухе. Например, сталь, содержащая 0 1 % углерода и 13 % хрома, при нагреве приобретает структуру аустенита, а при охлаждении на воздухе претерпевает — а-превращение с образованием мартенсита. Эта особенность сталей мартенситного класса вводит в технологию изготовления деталей обязательные условия медленного охлаждения или отжига после каждой операции, связанной с горячей обработкой или сваркой металла. Отжиг следует проводить при температуре 860 С. В некоторых случаях для отжига достаточен нагрев до 750 — 770 С, однако полное смягчение этих сталей достигается только после отжига при 860 С и последующего очень медленного охлаждения.

Мартенсит

Три типа плоскостей наиболее плотной упаковки в мартенсите с периодической слоистой структурой, образующемся из исходной / 32 -фазы типа CsCI. Стрелка обозначает вектор смещения каждого слоя относительно слоя А, принятого за начало отсчета.| Шесть типов слоев наиболее плотной упаковки в мартенсите с периодической слоистой структурой, образующейся из исходной ftt — фазы типа Fe3A.

Мартенсит со структурой ЗЯ или 9 Я, состоящий из трех плотноупа-кованных плоскостей А, В и С, образуется в ( 32-сплавах с исходной фазой типа CsCI. Однако мартенсит со структурой 2Н обнаруживается во всех сплавах.

Мартенсит, который для сталей является пересыщенным твердым раствором углерода в а-железе, под влиянием температуры распадается — происходит выделение углерода из решетки о-же-леза.

Мартенсит — структурная составляющая кристаллических твердых тел, возникающая в результате мартенситного превращения.

Схемы основных видов термической обработки сталей.

Мартенсит получается путем реализации только первого этапа вторичной кристаллизации и имеет характерное пластинчатое, под микроскопом — игольчатое, строение. Рост пластин путем сдвига происходит мгновенно со скоростью около 1000 м / с по бездиффузионному механизму, так как диффузионный переход атомов из кристаллов аустенита в мартенсит при низких температурах невозможен.

Мартенсит имеет наибольший удельный объем по сравнению с другими структурными составляющими сталей и особенно с аустенитом. Увеличение удельного объема при образовании мартенсита приводит к возникновению при закалке больших внутренних напряжений, вызывающих деформацию изделий или даже появление трещин.

Элементарная кристаллическая ячейка мартенсита ( а. мартенсит.

Мартенсит — очень твердая и прочная структура. Он тверже и прочнее бейнита. Но пластические свойства его низки, особенно ударная вязкость. В мартенсите имеются высокие остаточные напряжения, возникшие вследствие увеличения удельного объема в результате превращений и не устраненные из-за низкой пластичности мартенсита.

Мартенсит, имеющий после закалки кристаллическую решетку с тетрагональной элементарной ячейкой, при нагреве выше 80 С начинает превращаться в кубический. Как всякий пересыщенный раствор, мартенсит неустойчив. Он распадается при комнатной температуре, но скорость распада чрезвычайно мала ввиду малой тепловой подвижности атомов. При температуре выше 80 С подвижность атомов оказывается достаточной для того, чтобы углерод частично перешел из пересыщенного раствора в пластинки карбида толщиной всего в несколько атомных слоев за относительно небольшой промежуток времени. Это превращение происходит в интервале от 80 до 170 С и сопровождается уменьшением искажения кристаллической решетки мартенсита. Внутренние напряжения снижаются, уменьшается удельный объем мартенсита, размеры детали немного сокращаются. Твердость и прочность остаются неизменными, а пластические свойства несколько повышаются.

Тетрагональная ячейка а-фазы в кристаллической решетке аустеннта.

Мартенсит в стали обладает тетрагональной решеткой, по-видимому, даже при малом содержании углерода ( 0 1 %), если он образуется в условиях, при которых практически не реализуются диффузионные процессы. Но в малоуглеродистом мартенсите ( 0 5 % С) в результате диффузионных процессов тетрагональная решетка может перейти в решетку с кубической симметрией.

Мартенсит без внутренних двойников наблюдался в малоуглеродистой стали ( где эти двойники обычно соседствуют с гексагональным е-мартенситом) и в марганцовистой, а также хромистой стали.

Два способа нагрева под закалку.

Мартенсит при закалке получается только при условии охлаждения со скоростью, превышающей определенную, так называемую критическую. Для каждой марки стали характерна своя критическая скорость.

Классификация

Основным параметрам для классификации специальных сталей является их структура. У таких материалов критические точки смещены книзу, а потому при медленном охлаждении на воздухе они могут приобретать дополнительные качества. На основании этого их подразделили на четыре класса.

Мартенситные стали

Структура таких материалов игольчатая и состоит из мартенсита, который подразумевает содержание углерода не менее 0,15 %, хрома около 11-17 % и ряда дополнительных компонентов в виде ванадия, никеля, вольфрама, молибдена. Она преобладает во многих чистых металлах и металлах, прошедших закалку. При этом в мартенситный компонент входит углеродный раствор железа в виде кристаллической решетки, которая имеет неравновесную структуру. Именно поэтому мартенситные стали обладают значительным внутренним напряжением. К таким материалам относят сплавы под марками:

  • 20Х13 – содержит 12-14 % хрома, до 1 % марганца и кремния, 0,16-0,25 % углерода (легирование никелем не проходит);
  • 10Х12НДЛ – отличается большим содержанием никеля (до 1,5 %);
  • 18Х11МНФБ – в состав входят молибден до 1,1 %, хром 11,5 %, углерод 0,8 %, никель 1 %;
  • 10Х9МФБ, 12Х11В2МФ, 13Х11Н2В2МФ и 15Х11МФ – легируются молибденом и ванадием в разных пропорциях.

Всем перечисленным материалам присуща высокая твердость, устойчивость к коррозии, жаропрочность, способность к самозакаливанию, водородоустойчивость и малая пластичность. Но при таких показателях они довольно хрупкие. В связи с этим их резка и сваривание довольно затруднительны.

Перлитные стали

Подобные специальные виды сталей относятся к низко- или среднелегированным. В их состав входит перлит и феррит. Причем оба компонента легируются хромом. В результате материал обладает высокой устойчивостью к хладноломкости.

Кроме этого, на исходные качества сплава влияет скорость охлаждения. При ее изменении перлит может приобретать различные переходные структуры. Но многое зависит от, какие легирующие примеси в стали содержаться. Некоторые могут способствовать повышению прочности, вязкости и чувствительности к термической обработке.

К перлитным сталям относятся 12МХ, 15ХМ, 12Х1МФ, 20ХМ, 25Х1МФ, 25Х2М1Ф, 18Х3МВ, 20Х3МВФ. Все материалы могут подвергаться закалке, но при разной температуре.

Аустенитные стали

Сплавы такого характера отличаются тем, что имеют наибольшее количество примесей. В результате этого они сохраняют структуру аустенита при любой скорости охлаждения. Для их упрочнения не прибегают к помощи термической обработки. Тем не менее, они могут иметь разные характеристики. При содержании хрома 12-18 % повышается устойчивость к коррозии, а при 17-25 % – хладостойкость. Также с помощью примесей можно изменять показатели по жаростойкости и жаропрочности.

В целом аустенитные стали обладают большой вязкостью, хорошей плотностью и высоким сопротивлением к механическому воздействию. Из негативных сторон стоит выделить трудность обработки резцом.

Перечень специальных сплавов этого класса довольно обширен, так как к нему относятся высоконикелевые, марганцевые, хромникелевые, хромоникельмарганцевые, метастабильные и другие сплавы.

Карбидные стали

Сплавы карбидного класса в своем составе содержат значительное количество углерода, хрома, молибдена, вольфрама и ванадия. Все эти компоненты способствуют формированию прочной аустенитной матрицы и устойчивых карбидов. При кристаллизации из жидкого состояния, в результате которого происходит уменьшение растворения углерода в аустените, в сплаве образуется ледебурит. Он способен сохранять высокую твердость при значительных температурах, а потому широко используется для изготовления инструментов для быстрого резания различных сталей. Наиболее ярким примером таких сталей является материал, выпускаемый под маркой Р6М5. Также к этому классу относятся хромовольфрамовые, хромомолибденовые, высокохромистые сплавы.

Как выглядит мартенсит?

Мартенсит – это фаза, которая формируется в сплавах при охлаждении с высокой скоростью. Мартенситное превращение может происходить в сталях и цветных сплавах. В разных сплавах мартенсит выглядит по-разному.

Самый красивый мартенсит формируется в чугуне при быстром охлаждении. Такой мартенсит показан на рис.1. Это зона сплавления стали 45 и чугуна. Температура в зоне контакта была настолько высока, что в ней сформировался аустенит, который потом в результате быстрого охлаждения превратился в мартенсит. В верхней части снимка — мартенсит в чугуне, в нижней — мартенсит в стали 45. Чугун содержит 3,3% углерода, следовательно мартенсит в таком чугуне высокоуглеродистый. В стали 45 углерода меньше и иглы мартенсита мельче (низкоуглеродистый мартенсит). Серые включения — это пластинчатый графит, белый фон — остаточный аустенит.

Рисунок 1. Мартенсит в зоне сплавления стали 45 и чугуна СЧ20.

Вид мартенсита зависит от состава сплава, от режима закалки, от состава травителя, которым выявляли микроструктуру и от некоторых других факторов. На рисунке 2 показан мартенсит в легированном чугуне. Синей стрелкой отмечен ледебурит, красной – иглы мартенсита.

   

Рисунок 2. Иглы мартенсита в хромистом чугуне; 2000х

Мартенсит в чугуне — это не удивительно. Сколько бы ни было углерода в чугуне, выше линии PSK (по диаграмме состояния железо-углерод) всегда есть свободный аустенит (доэвтектический чугун), а также аустенит, который входит в состав ледебурита. При медленном охлаждении при переходе через линию перлитного превращения этот аустенит закономерно превратится в перлит. Если скорость охлаждения равна или выше критической, то аустенит превратится в мартенсит. При увеличении 800х мартенсит в чугуне может выглядеть так:

   

Рисунок 3. Мартенсит в наплавленном слое чугуна; нагрев ТВЧ, закалка в воду.

В принципе, охлаждение в воде совсем не обязательно для образования мартенсита. Главное — задать определенную скорость охлаждения. Охлаждение может произойти отводом тепла вглубь образца, так сказать «на массу». На рис.4 показан чугун (феррито-перлитный, с шаровидным графитом) после воздействия на поверхность лазерного излучения. Верхняя зона, которая подверглась оплавлению при воздействии лазера, имеет структуру литого доэвтектического чугуна. Ниже располагается слой мартенсита (красная стрелка) и остаточного аустенита (синяя стрелка). В этой зоне (нагревшейся до температуры ниже температуры плавления) скорость охлаждения оказалась достаточной для превращения аустенита в мартенсит. Кстати, в мартенсит превратились участки, в которых до обработки был перлит. В этой зоне видны также феррит и графит.

 

Рисунок 4. Структура чугуна после обработки поверхности лазером.

На рисунке 5 показан упрочненный слой, сформировавшийся на поверхности стали после обработки лазером. В слое видны мартенситные иглы (зеленого цвета), а также аустенит (светлый фон).

Рисунок 5. Мартенсит в поверхностном слое стали после лазерного воздействия.

В различных сталях мартенсит выглядит по-разному. Мартенсит в подшипниковой стали столь мелкий, что при исследовании в оптическом микроскопе неразличим.Такой мартенсит называют «скрытоигольчатый мартенсит» (рис.6,а).

   
 а б 

Рисунок 6. а —  Скрытоигольчатый мартенсит в подшипниковой стали, закалка, отпуск; б — Мартенсит в стали 65Г; закалка, отпуск.

Мартенсит в стали 65Г различим при увеличении 400х (рис.6,б). Иглы мартенсита дают возможность оценить размеры бывшего аустенитного зерна. Мартенсит отпуска в различных сталях представлен на рис.7. 

   
 а б 

Рисунок 7. а —  Мартенсит отпуска в стали 12ХН3А; б — сталь 45 , мартенсит и карбиды

Управляя процессом нагрева и охлаждения, можно создать мартенсит в определенном участке детали, не обязательно на поверхности (рис.8 ).

Рисунок 8. Формирование мартенсита на участке структуры (деталь-толкатель).

Превращения в стали. Мартенситное превращение. Мартенсит. Мартенсит структура. Критическая скорость закалки.

Данное превращение имеет место при высоких скоростях охлаждения, когда диффузионные процессы подавляются. Сопровождается полиморфным превращением Feγ в Feα.

При охлаждении стали со скоростью, большей критической (V > Vк), превращение начинается при температуре начала мартенситного превращения (Мн) и заканчивается при температуре окончания мартенситного превращения (Мк). В результате такого превращения аустенита образуется продукт закалки – мартенсит.

Превращения в стали. Промежуточное превращение. Бейнит.Превращения в стали. Превращение мартенсита в перлит. Мартенсит отпуска. Троостит отпуска. Сорбит отпуска.

Минимальная скорость охлаждения Vк, при которой весь аустенит переохлаждается до температуры т.Мн и превращается, называется критической скоростью закалки.

Так как процесс диффузии не происходит, то весь углерод аустенита остается в решетке Feα и располагается либо в ценрах тетраэдров, либо в середине длинных ребер (рисунок 1).

Превращения в стали. Превращение аустенита в перлит. Диаграмма изотермического превращения аустенита.Превращения в стали. Изотермическая диаграмма превращения сталей. Превращение перлита в аустетит. Перегрев. Пережог.

Мартенсит – пересыщенный твердый раствор внедрения углерода в Feα.

При образовании мартенсита кубическая решетка Feα сильно искажается, превращаясь в тетрагональную (рисунок 1, позиция а). Искажение решетки характеризуется степенью тетрагональности: с/а > 1. Степень тетрагональности прямопролорциональна содержанию углерода в стали (рисунок 1, позиция б).

Влияние углерода на сталь. Влияние углерода на свойства стали.

а — кристаллическая решетка мартенсита; б — влияние содержания углерода на параметры а и с решетки мартенсита

Механизм мартенситного превращения имеет ряд особенностей.

1. Бездиффузионный характер.

Превращение осуществляется по сдвиговому механизму. В начале превращения имеется непрерывный переход от решетки аустенита к решетке мартенсита (когерентная связь). При превращении гранецентрированной кубической решетки в объемно-центрированную кубическую атомы смещаются на расстояния меньше межатомных, т.е. нет необходимости в самодиффузии атомов железа.

Дефекты кристаллического строения. Точечные дефекты.Дефекты кристаллического строения. Линейные дефекты. Теория дислокаций. Плотность дислокаций.

2. Ориентированность кристаллов мартенсита.

Кристаллы имеют форму пластин, сужающихся к концу, под микроскопом такая структура выглядит как игольчатая. Образуясь мгновенно пластины растут либо до границы зерна аустенита, либо до дефекта. Следующие пластины расположены к первым под углами 60 o или 120 o, их размеры ограничены участками между первыми пластинами (рисунок 2).

Рисунок 2 — Ориентированность кристаллов мартенсита

Ориентированный (когерентный) рост кристаллов мартенсита обеспечивает минимальную поверхностную энергию. При когерентном росте, из-за различия объемов аустенита и мартенсита, возникают большие напряжения. При достижении определенной величины кристаллов мартенсита, эти напряжения становятся равными пределу текучести аустенита. В результате этого нарушается когерентность и происходит отрыв решетки мартенсита от решетки аустенита. Рост кристаллов прекращается.

3. Очень высокая скорость роста кристалла, до 1000 м/с.

Компоненты железоуглеродистых сплавов. Фазы железоуглеродистых сплавов.

4. Мартенситное превращение происходит только при непрерывном охлаждении.

Для каждой стали начинается и заканчивается при определенной температуре, независимо от скорости охлаждения. Температуру начала мартенситного превращения называют мартенситной точкой МН, а температуру окончания превращения – МК. Температуры МНи МК зависят от содержания углерода и не зависят от скорости охлаждения Для сталей с содержанием углерода выше 0,6 % МК уходит в область отрицательных температур (рисунок 3).

Мартенсит: как и почему

Самым замечательным свойством стали является ее способность упрочняться до высокого уровня прочности путем простой закалки. Закалка стали обычно происходит при погружении нагретого металла в охлаждающую жидкость, такую как вода, масло или жидкая соль. Для увеличения прочности необходимо, чтобы эта разогретая сталь содержала аустенит, а лучше – была полностью аустенитной. Тогда очень быстрое охлаждение не даст аустениту возможности превратиться в термодинамически «выгодную» структуру феррит + цементит. Вместо нее образуется новая структура, которая называется мартенсит. Эта мартенситная фаза и дает стали очень высокий уровень прочности.

Углерод: много в аустените – мало в феррите

Как известно аустенит имеет гранецентрированную кубическую кристаллическую (ГЦК) структуру, феррит – объемно-центрированную кристаллическую (ОЦК) структуру. Фазовая диаграмма стали показывает, что ГЦК структура – аустенит – будет растворять намного больше углерода, чем ОЦК структура — феррит. При температуре А1 количество углерода, которое может раствориться в аустените – в 38,5 раза (0,77/0,02 = 38,5) больше, чем в феррите.

Дело в том, что атомы углерода намного меньше, чем атомы железа. Растворенные атомы углерода располагаются в промежутках между относительно большими атомами железа. ОЦК структура способна «поглотить» больше атомов углерода, так как некоторые промежутки между атомами в этой структуре значительно больше, чем любые промежутки в ГЦК структуре.

Медленное охлаждение аустенита – феррит плюс цементит

Рисунок 1 показывает схему превращения аустенита стали с содержанием углерода 0,60 % в феррит. Вертикальная линия представляет собой фронт превращения, который движется слева направо. После того, как этот фронт продвинется, например, на 25 мм, в этой области длиной 25 мм содержание углерода должно упасть с 0,6 % до 0,02 %. При медленном охлаждении углерод может успевать двигаться впереди фронта превращения в аустените вдоль направления, которое показано штриховой стрелкой, за счет механизма диффузии.

Рисунок 1 – Схема продвижения фронта превращения аустенита в феррит

Быстрое охлаждение аустенита – мартенсит

Однако, если это превращение вынуждено происходить очень быстро путем закалки, уже не будет времени для диффузионного движения атомов углерода. Поэтому часть их – или они все –  останутся в феррите. Это чрезмерное содержание углерода в феррите приводит к резкому искажению его ОЦК структуры – в результате возникает мартенситная структура.

Атомная решетка: из феррита в мартенсит

На рисунке 2 показаны рядом атомная ячейка ОЦК феррита и искаженная атомная ячейка мартенсита. Атомная ячейка мартенсита похожа на ОЦК ячейку феррита в том, что она тоже имеет атом в центре и по атому в каждом из восьми углов. Однако эта атомная ячейка уже не является кубом. Одна из ее сторон, которую называют периодом решетки с или гранью с (см. рисунок 2), длиннее, чем две другие, которые называют периодами а или гранями а. Эта кристаллическая структура называется объемноцентрированной тетрагональной (ОЦТ).

Рисунок 2 – Сравнение кристаллических структур феррита и мартенсита

Больше углерода – выше твердость

Рисунок 3 показывает, как с увеличением в мартенсите растворенного углерода его грань с становится все больше и больше по сравнению с гранью а. Повышенное содержание углерода в мартенсите достигается закалкой аустенита с более высоким содержанием углерода. На графике на рисунка 3 видно, что с увеличением содержания углерода искажение атомной решетки от кубической – грань с становится все больше по сравнению с гранью а. Это происходит из-за внедренных в ОЦТ решетку мартенсита атомов углерода.

Рисунок 3 – Размеры граней а и с объемно-центрированной ячейки мартенсита(1 нм = 1000 мкм)

Прочность и твердость мартенсита с увеличением в нем содержания углерода возрастает очень сильно, как это видно из рисунка 4.

Рисунок 4 – Твердость по Роквеллу свежезакаленного мартенситав зависимости от содержания углерода

Понять, почему с увеличением содержания углерода прочность мартенсита возрастает, помогает следующая интерпретация. Удобно представить себе, что химические связи, которые держат вместе атомы железа, являются пружинами. С увеличение содержания углерода эти пружины растягиваются, чтобы поместить в решетке дополнительные атомы углерода. А чтобы растянуть эти растянутые пружины дальше – деформировать мартенсит – требуется все больше и больше усилий.

Влияние отжига на особенности распада аустенита

Практически все виды отжига и нормализации основаны на взаимообратном превращении аустенита. Полный и неполный отжиг применяют к доэвтектоидным сталям. Детали нагревают в печи выше критических точек Ac3 и Ас1 соответственно. Для первого типа характерно наличие длительного периода выдержки, который обеспечивает полное преобразование: феррит-аустенит и перлит-аустенит. После чего следует медленное охлаждение заготовок в печи. На выходе получают мелкодисперсную смесь феррита и перлита, без внутренних напряжений, пластичную и прочную. Неполный отжиг менее энергоемкий, изменяет только строение перлита, оставляя феррит практически без изменений. Нормализация подразумевает более высокую скорость снижения температур, однако и более крупнозернистую и менее пластичную структуру на выходе. Для стальных сплавов с содержанием углерода от 0,8 до 1,3% при охлаждении в рамках нормализации происходит распад по направлению: аустенит-перлит и аустенит-цементит.

Еще одним видом термической обработки, который основан на структурных превращениях, является гомогенизация. Он применим для крупных деталей. Подразумевает абсолютное достижение аустенитного крупнозернистого состояния при температурах 1000-1200˚С и выдержку в печи в период до 15 часов. Изотермические процессы продолжаются медленным охлаждением, которое способствует выравниванию структур металла.

Оцените статью
Рейтинг автора
5
Материал подготовил
Андрей Измаилов
Наш эксперт
Написано статей
116
Добавить комментарий