Говорит клаус гебхардт

1 Интересная информация о меди

Древние греки называли этот элемент халкосом, на латинском она именуется cuprum (Сu) или aes, а средневековые алхимики именовали этот химический элемент не иначе как Марс или Венера. Человечество давно познакомилось с медью за счет того, что в природных условиях ее можно было встретить в виде самородков, имеющих зачастую весьма внушительные размеры.

Легкая восстанавливаемость карбонатов и окислов данного элемента поспособствовала тому, что именно его, по мнению многих исследователей, наши древние предки научились восстанавливать из руды раньше всех остальных металлов.

Сначала медные породы просто-напросто нагревали на открытом огне, а затем резко охлаждали. Это приводило к их растрескиванию, что давало возможность выполнять восстановление металла.

Освоив столь нехитрую технологию, человек начал постепенно развивать ее. Люди научились вдувать при помощи мехов и труб в костры воздух, затем додумались устанавливать вокруг огня стены. В конце концов, была сконструирована и первая шахтная печь.

В наши дни медные самородки встречаются крайне редко. Медь добывают из различных медных руд, среди которых можно выделить следующие:

  • борнит (в нем купрума бывает до 65 %);
  • медный блеск (он же халькозин) с содержанием меди до 80 %;
  • медный колчедан (иначе говоря – халькоперит), содержащий порядка 30 % интересующего нас химического элемента;
  • ковеллин (в нем Cu бывает до 64 %).

Химические свойства элемента

Данный элемент является малоактивным. При контакте с сухим воздухом в обычных условиях медь не начинает окисляться. Влажный воздух, напротив, запускает окислительный процесс, при котором образуется медный карбонат (II), являющийся верхним слоем патины. Практически моментально этот элемент реагирует с такими веществами, как:

  • сера;
  • селен;
  • галогены.

Кислоты, не обладающие окислительными свойствами, не способны оказывать на медь влияние. Кроме того, она никак не реагирует при контакте с такими химическими элементами, как:

  • азот;
  • углерод;
  • водород.

Кроме уже отмеченных химических свойств, для меди характерна амфотерность. Это значит, что в земной коре она способна образовать катионы и анионы. Соединения этого металла могут проявлять как кислотные свойства, так и основные — это напрямую зависит от конкретных условий.

Ее использование в строительстве

Высокие показатели электро- и теплопроводности обусловили для меди активное использование, как в строительстве, так и в автомобиле- и приборостроении. Сам же материал устойчив к негативному воздействию коррозии и ультрафиолетовых лучей, также без деформации и нарушения структуры переносит резкие температурные перепады.

Благодаря таким особенностям, позволяет производить детали и прочие конструкции, которые рассчитаны на длительное воздействие влаги.

Провода

Наибольший спрос медь получила именно в электротехнической области, в частности для производства проводов. С этой целью используется максимально чистый металл, поскольку второстепенные компоненты существенно снижают его токопроводимость. Если в готовом материале присутствует более 0,02% алюминия, то его способность проводить ток снижается на 10%.

Существенно возрастание сопротивления происходит в результате присутствия в сырье примесей неметаллического характера. Сам же металл относится крайне низким сопротивлением, которое уступает лишь серебру. Такая особенность металла также послужила его использованию в силовых трансформаторах и энергосберегающих приводах.

Проволока

Высокий уровень вязкости и пластичности обусловили активное использование меди для производства изделий с различными узорами. Проволока, которая была изготовлена из красной меди, после обжига становится максимально пластичной и мягкой. В таком состоянии она позволяет создавать узоры и орнаменты любой сложности.

Такая проволока активно используется в следующих отраслях:

  • Электротехника;
  • Электроэнергетика;
  • Автомобилестроение;
  • Судостроение;
  • Производство кабеля и проводов.

Водо- и теплоснабжение

Благодаря своей высокой теплопроводности медь используется в различных теплообменниках и теплоотводных приборах. Иными словами, из нее изготавливают кулера для системных блоков, радиаторы отопления, трубы, кондиционеры и прочие приборы.

Медные трубы обладают абсолютно уникальными характеристиками, которые и обусловили их широкое распространение не смотря на высокую стоимость самого сырья. Такие изделия не бояться ультрафиолетового излучения, устойчивы к возникновению коррозии и температурным перепадам. Эти свойства позволяют производить монтаж медных труб даже при низких температурах воздуха.

Высокий показатель механической прочности, а также возможность механической обработки материала позволяют создавать бесшовные медные трубы, обладающие круглым сечением. Они рассчитаны на транспортировку жидких веществ или газов в системах газо- и водоснабжения, кондиционирования и отопления.

О роли медных труб в водоснабжении расскажет данное видео:

Кровля

Одним из первых материалов, используемых в качестве кровельного покрытия, является медь. Такая кровля отличается длительным сроком службы (до 200 лет), который происходит благодаря ее уникальным особенностям. Кровля из меди спустя некоторое время претерпевает процесс окисления, который заключается в образовании патины.

Этот своего рода защитный слой уберегает поверхность меди от негативного влияния ультрафиолета, низких температур, влаги и прочих погодных явлений.

Таким образом, медная кровля сразу после своего монтажа имеет золотистый оттенок, но уже через 10 лет становится более темной, в некоторых случаях практически черного цвета. Этот процесс образования патины при желании можно искусственно ускорить.

Про иные сфера применения меди читайте ниже.

Прочие сферы использования

  • Помимо вышеперечисленных областей, медные сплавы могут использоваться в сочетании с золотом. Это необходимо для придания ювелирным изделиям большей прочности и устойчивости к истиранию.
  • Широкое распространение металл получил и в области архитектурного строительства. Кровля, фасады, различные декоративные элементы – все это можно изготовить абсолютно любой формы и уровня сложности.
  • Среди новой сферы использования является применение меди в качестве бактерицидной поверхности в лечебных заведениях: перила, ручки, двери, столешницы и многое другое.

Преимущества данного металла послужили не только его широкому распространению, но и расширению сфер применения.

Сегодня применение разных марок меди в промышленности, в быту, в электротехнике и строительстве, медицине считается весьма выгодным и перспективным.

О том, как переделать медь в «золото», расскажет данное видео:

Расчет молярной массы

Молярную массу рассчитывают так:

  • определяют атомные массы элементов по таблице Менделеева;
  • определяют количество атомов каждого элемента в формуле соединения;
  • определяют молярную массу, складывая атомные массы входящих в соединение элементов, умноженные на их количество.

Например, рассчитаем молярную массу уксусной кислоты

Она состоит из:

  • двух атомов углерода
  • четырех атомов водорода
  • двух атомов кислорода

Расчет:

  • углерод C = 2 × 12,0107 г/моль = 24,0214 г/моль
  • водород H = 4 × 1,00794 г/моль = 4,03176 г/моль
  • кислород O = 2 × 15,9994 г/моль = 31,9988 г/моль
  • молярная масса = 24,0214 + 4,03176 + 31,9988 = 60,05196 g/mol

Наш калькулятор выполняет именно такой расчет. Можно ввести в него формулу уксусной кислоты и проверить что получится.

Автор статьи: Anatoly Zolotkov

Молярная масса элементов и соединений

Соединения — вещества, состоящие из различных атомов, которые химически связаны друг с другом. Например, приведенные ниже вещества, которые можно найти на кухне у любой хозяйки, являются химическими соединениями:

  • соль (хлорид натрия) NaCl
  • сахар (сахароза) C₁₂H₂₂O₁₁
  • уксус (раствор уксусной кислоты) CH₃COOH

Молярная масса химических элементов в граммах на моль численно совпадает с массой атомов элемента, выраженных в атомных единицах массы (или дальтонах). Молярная масса соединений равна сумме молярных масс элементов, из которых состоит соединение, с учетом количества атомов в соединении. Например, молярная масса воды (H₂O) приблизительно равна 1 × 2 + 16 = 18 г/моль.

Понос у коровы: причины диареи, что делать и чем лечить

Производство, добыча и запасы меди

Мировая добыча меди в 2000 году составляла около 15 млн т., a в 2004 году — около 14 млн т. . Мировые запасы в 2000 году составляли, по оценке экспертов, 954 млн т., из них 687 млн т. подтверждённые запасы , на долю России приходилось 3.2 % общих и 3.1 % подтверждённых мировых запасов . Таким образом, при нынешних темпах потребления запасов меди хватит примерно на 60 лет.

Производство рафинированной меди в России в 2006 году составило 1,009 тыс. тонн, потребление — 714 тыс. тонн. Основными производителями меди в России являются:

Компания тыс. тонн %
425 45 %
351 37 %
166 18 %

Как добывают медь
Этот металл встречается в природе в самородном виде чаще, чем золото, серебро и железо. Нашли однажды самородок, который весил 420 т. Наверняка медь была первым металлом, с которым познакомились древние люди. Первые свои орудия делали они из кремниевой и железной руды, из меди, и уже потом научились изготовлять их из бронзы и железа. Сплав меди с оловом (бронзу) получили впервые за 3000 лет до н.э. на Ближнем Востоке. Бронза привлекала людей прочностью и хорошей ковкостью, что делало ее пригодной для изготовления орудий труда и охоты, посуды, украшений. Все эти предметы находят в археологических раскопах. Добычу меди называют прабабушкой металлургии. Ее добыча и выплавка были налажены еще в Древнем Египте, во времена фараона Рамзеса II (1300—1200 гг. до н.э.). Древние египтяне нагнетали воздух в плавильные печи с помощью мехов, а древесный уголь получали из акации и финиковой пальмы. Они выплавили около 100 т чистой меди. На территории России и сопредельных стран медные рудники появились за два тысячелетия до н.э. Остатки их находят на Урале, в Закавказье, на Украине, в Сибири, на Алтае. В XIII—XIV вв. освоили промышленную выплавку меди. В Москве в XV в. был основан Пушечный двор, где отливали из бронзы орудия разных калибров. О нем напоминает теперешняя Пушечная улица в Москве. Сейчас известно более 170 минералов, содержащих медь, но из них только 14—15 имеют промышленное значение. Это — халькопирит (он же медный колчедан), малахит, встречается и самородная медь. В медных рудах часто в качестве примесей встречаются молибден, никель, свинец, кобальт, реже — золото, серебро. Обычно мед-ные руды обогащаются на фабриках, прежде чем поступают на медеплавильные комбинаты. Богаты медью Казахстан, США, Чили, Канада, африканские страны — Заир, Замбия, Южно-Африканская республика. Очень крупное Удоканское месторождение медной руды сравнительно недавно обнаружено на севере Читинской области.

Большая часть добываемой меди используется в электротехнике, потому что медь обладает высокой электропроводностью, уступая в этом только серебру, которое, конечно, намного дороже. Миллионы километров проводов опутали земной шар, и большинство из них медные. Медь нужна для производства двигателей, телевизоров, телефонных аппаратов, различных электроприборов, автомобилей, электровозов, холодильников и даже музыкальных инструментов. Ее используют в химической промышленности для борьбы с вредителями садов и огородов, для подкормки растений и животных. Всюду нужна медь.
По объему мирового производства и потребления медь занимает третье место после железа и алюминия.

Физические свойства

Оптические

Цвет в свежем изломе светло-розовый, быстро переходящий в медно-красный, затем в коричневый; часто с желтой или пестрой побежалостью.

Черта медно-красная, блестящая.

Блеск металлический.

Отлив

Прозрачность. Непрозрачна. В тончайших пластинках просвечивает зеленым цветом.

Показатели преломления

 Ng = , Nm = и Np =

Твердость 2,5-3.

Плотность 8,4—8,9

Спайность не наблюдается.

Излом занозистый, крючковатый.

Химические свойства

Легко растворяется в разбавленной HNO3 и в царской водке, в H2SO4— при нагревании, в НСl — с трудом. В водном растворе аммиака растворяется, окрашивая его в синий цвет. В полированных шлифах травится всеми основными реактивами. Внутреннее строение легко выявляется с помощью NH4OH + Н2O2 или НСl+ CrO3 (50%-ный раствор).

Прочие свойства

Очень ковка и тягуча. Электропроводность очень высокая; существенно понижается от примесей.

Поведение при нагревании. Чистая медь плавится при 1083°. Теплопроводность несколько меньше, чем у серебра.

Расчет молярной массы

Молярную массу рассчитывают так:

  • определяют атомные массы элементов по таблице Менделеева;
  • определяют количество атомов каждого элемента в формуле соединения;
  • определяют молярную массу, складывая атомные массы входящих в соединение элементов, умноженные на их количество.

Например, рассчитаем молярную массу уксусной кислоты

Она состоит из:

  • двух атомов углерода
  • четырех атомов водорода
  • двух атомов кислорода

Расчет:

  • углерод C = 2 × 12,0107 г/моль = 24,0214 г/моль
  • водород H = 4 × 1,00794 г/моль = 4,03176 г/моль
  • кислород O = 2 × 15,9994 г/моль = 31,9988 г/моль
  • молярная масса = 24,0214 + 4,03176 + 31,9988 = 60,05196 g/mol

Наш калькулятор выполняет именно такой расчет. Можно ввести в него формулу уксусной кислоты и проверить что получится.

Автор статьи: Anatoly Zolotkov

История появления меди

О том, какое великое значение имел этот химический элемент в истории человечества и планеты, можно догадаться уже по названиям исторических эпох. После каменного века наступил медный, а за ним — бронзовый, также имеющий прямое отношение к этому элементу.

Медь является одним из семи металлов, которые стали известны человечеству еще в древности. Если верить историческим данным, знакомство древних людей с этим металлом произошло примерно девять тысяч лет назад.

Древнейшие изделия из этого материала были обнаружены на территории современной Турции. Археологические раскопки, проведенные на месте крупного поселения времен неолита под названием Чаталхеюк, позволили отыскать небольшие медные шарики-бусины, а также медные пластины, которыми древние люди украшали свой наряд.

Найденные вещицы были датированы стыком восьмого и седьмого тысячелетий до нашей эры. Помимо самих изделий, на месте раскопок был обнаружен шлак, что говорит о производившихся выплавках металла из руды.

Получение меди из руды было относительно доступно. Поэтому несмотря на свою высокую температуру плавления, этот металл в числе первых был быстро и широко освоен человечеством.

Способы добычи

В природных условиях этот химический элемент существует в двух формах:

  • соединения;
  • самородки.

Любопытным фактом является следующее: медные самородки в природе попадаются гораздо более часто, чем золотые, серебряные и железные.

Природные соединения меди — это:

  • оксиды;
  • углекислые и сернистые комплексы;
  • гидрокарбонаты;
  • сульфидные руды.

Рудами, имеющими наибольшее распространение, являются медный блеск и медный колчедан. Меди в этих рудах содержится всего один-два процента. Первичная медь добывается двумя основными способами:

https://youtube.com/watch?v=BcizmNDdP8g

  • гидрометаллургическим;
  • пирометаллургическим.

Доля первого способа составляет десять процентов. Оставшиеся девяносто относятся ко второму методу.

Пирометаллический способ включает в себя комплекс процессов. Сначала медные руды обогащаются и обжигаются. Затем сырье плавится на штейн, после чего продувается в конвертере. Таким образом получается черновая медь. Превращение ее в чистую осуществляется путем рафинирования — сначала огневого, затем электролитического. Это последняя стадия. По ее окончании чистота полученного металла составляет практически сто процентов.

Процесс получения меди гидрометаллургическим способом делится на два этапа.

  1. Вначале сырье выщелачивается при помощи слабого раствора серной кислоты.
  2. На заключительном этапе металл выделяется непосредственно из упомянутого в первом пункте раствора.

Данный метод используется при переработке только бедных руд, так как, в отличие от предыдущего способа, при его проведении невозможно попутно извлечь драгоценные металлы. Именно поэтому приходящийся на этот способ процент так невелик по сравнению с другим методом.

Немного о названии

Химический элемент Cuprum, обозначаемый символом Cu, получил свое название в честь небезызвестного острова Кипр. Именно там в далеком третьем веке до нашей эры были обнаружены крупные месторождения медной руды. Местными мастерами, трудившимися на этих рудниках, производилась выплавка данного металла.

4 Где чаще всего применяются изделия из меди?

Главная сфера применения алюминия и меди известна, пожалуй, всем. Из них делают разнообразные кабели, в том числе и силовые. Способствует этому малое сопротивление алюминия и купрума, их особые магнитные возможности. В обмотках электрических приводов и в трансформаторах (силовых) широко используются медные провода, которые характеризуются уникальной чистотой меди, являющейся исходным сырьем для их выпуска. Если в такое чистейшее сырье добавить всего лишь 0,02 процента алюминия, электропроводимость изделия уменьшится процентов 8–10.

Сu, имеющий высокую плотность и прочность, а также малый вес, прекрасно поддается механической обработке. Это позволяет производить отличные медные трубы, которые демонстрируют свои высокие эксплуатационные характеристики в системах подачи газа, отопления, воды. Во многих европейских государствах именно медные трубы используются в подавляющем большинстве случаев для обустройства внутренних инженерных сетей жилых и административных строений.

Мы много сказали об электропроводимости алюминия и меди. Не забудем и об отличной теплопроводности последней. Данная характеристика дает возможность использовать медь в следующих конструкциях:

  • в тепловых трубках;
  • в кулерах персональных компьютеров;
  • в отопительных системах и системах охлаждения воздуха;
  • в теплообменниках и многих других устройствах, отводящих тепло.

Молекулярно-кинетическая теория

Все молекулы состоят из мельчайших частиц – атомов. Все открытые на настоящий момент атомы собраны в таблице Менделеева.

Атом – это мельчайшая, химически неделимая частица вещества, сохраняющая его химические свойства. Атомы соединяются между собой химическими связями. Ранее мы уже рассматривали виды химических связей и их свойства. Обязательно озучите теорию по теме: Типы химических связей, перед тем, как изучать эту статью!

Теперь рассмотрим, как могут соединяться частицы в веществе.

В зависимости от расположения частиц друг относительно друга свойства образуемых ими веществ могут очень сильно различаться. Так, если частицы расположены друг от друга далеко (расстояние между частицами намного больше размеров самих частиц), между собой практически не взаимодействуют, перемещаются в пространстве хаотично и непрерывно, то мы имеем дело с газом.

Если частицы расположены близко друг к другу, но хаотично, больше взаимодействуют между собой, совершают интенсивные колебательные движения в одном положении, но могут перескакивать в другое положение, то это модель строения жидкости.

Если же частицы расположены близко к друг другу, но более упорядоченно, и больше взаимодействуют между собой, а двигаются только в пределах одного положения равновесия, практически не перемещаясь в другиеположения, то мы имеем дело с твердым веществом.

Большинство известных химических веществ и смесей могут существовать в твердом, жидком и газообразном состояниях. Самый простой пример – это вода. При нормальных условиях она жидкая, при 0 оС она замерзает – переходит из жидкого состояния в твердое, и при 100 оС закипает – переходит в газовую фазу – водяной пар. При этом многие вещества при нормальных условиях – газы, жидкости или твердые. Например, воздух – смесь азота и кислорода – это газ при нормальных условиях. Но при высоком давлении и низкой температуре азот и кислород конденсируются и переходят в жидкую фазу. Жидкий азот активно используют в промышленности. Иногда выделяют плазму, а также жидкие кристаллы, как отдельные фазы.

Очень многие свойства индивидуальных веществ и смесей объясняются взаимным расположением частиц в пространстве друг относительно друга!

Данная статья рассматривает свойства твердых тел, в зависимости от их строения. Основные физические свойства твердых веществ: температура плавления, электропроводность, теплопроводность, механическая прочность, пластичность и др.

Температура плавления – это такая температура, при которой вещество переходит из твердой фазы в жидкую, и наоборот.

Пластичность – это способность вещества деформироваться без разрушения.

Электропроводность – это способность вещества проводить ток.

Ток – это упорядоченное движение заряженных частиц. Таким образом, ток могут проводить только такие вещества, в которых присутствуют подвижные заряженные частицы. По способности проводить ток вещества делят на проводники и диэлектрики. Проводники – это вещества, которые могут проводить ток (т.е. содержат подвижные заряженные частицы). Диэлектрики – это вещества, которые практически не проводят ток.

В твердом веществе частицы вещества могут располагаться хаотично, либо более упорядоченно. Если частицы твердого вещества расположены в пространстве хаотично, вещество называют аморфным. Примеры аморфных веществ – уголь, слюдяное стекло.

Аморфный бор

Если частицы твердого вещества расположены в пространстве упорядоченно, т.е. образуют повторяющиеся трехмерные геометрические структуры, такое вещество называют кристаллом, а саму структуру – кристаллической решеткой. Большинство известных нам веществ – кристаллы. Сами частицы при этом расположены в узлах кристаллической решетки.

Кристаллические вещества различают, в частности, по типу химической связи между частицами в кристалле – атомные, молекулярные, металлические, ионные; по геометрической форме простейшей ячейки кристаллической решетки – кубическая, гексагональная и др.

В зависимости от типа частиц, образующих кристаллическую решетку, различают атомную, молекулярную, ионную и металлическую кристаллическую структуру.

В каких продуктах содержится медь: таблица

Перед тем как планировать свой рацион, нужно узнать, какая концентрация меди в продуктах. Информация, представленная в таблице, указывает, сколько и в каких часто употребляемых пищевых продуктах содержится минерал. Концентрация меди в продуктах питания

Наименование продукта Содержание меди

(мг/100 г)

Печень трески 12
Шпинат 7,0
Какао 4,3
Кунжут 4,1
Печень (говядины, свинины) 3,8
Подсолнечные семечки 1,8
Грецкие орехи 1,5
Тыквенные семечки 1,4
Фисташки, арахис 1,3
Темный шоколад 1,2
Зеленый горох 0,75
Макароны твердых сортов 0,70
Гречневая каша 0,64
Пшенная крупа 0,37
Перловка 0,28
Рис 0,25
Сосиски, колбаса (полукопчёная, вареная) 0,18
Картофель 0,14
Яблоки 0,11
Репчатый и зеленый лук 0,9
Капуста, морковь, куриные яйца 0,8

Как правило, медь находится практически в каждом продукте в определенном количестве. Недостаток микроэлемента в организме встречается редко, но в профилактических целях рекомендуется следить за тем, чтобы меню было сбалансировано и включало максимальное количество питательных веществ.

Виды кристаллических решеток металлов

В огромном ряду материалов, с незапамятных времен известных человеку и широко используемых им в своей жизни и деятельности, металлы всегда занимали особое место.

Подтверждение этому: и в названиях эпох (золотой, серебряный, бронзовый, железный века), на которые греки делили историю человечества: и в археологических находках металлических изделий (кованые медные украшения, сельскохозяйственные орудия); и в повсеместном использовании металлов и сплавов в современной технике. Причина этого — в особых свойствах металлов, выгодно отличающих их от других материалов и делающих во многих случаях незаменимыми.

Материаловедение. Металловедение.

Металлы – один из классов конструкционных материалов, характеризующийся определенным набором свойств:

  • «металлический блеск» (хорошая отражательная способность);
  • пластичность;
  • высокая теплопроводность;
  • высокая электропроводность.

Строение металлов. Атомно-кристаллическое строение металлов

Данные свойства обусловлены особенностями строения металлов.

Согласно теории металлического состояния, металл представляет собой вещество, состоящее из положительных ядер, вокруг которых по орбиталям вращаются электроны.

На последнем уровне число электронов невелико и они слабо связаны с ядром. Эти электроны имеют возможность перемещаться по всему объему металла, т.е. принадлежать целой совокупности атомов.

Дефекты кристаллического строения. Точечные дефекты.Аллотропия. Полиморфные превращения. Магнитные превращения.

Таким образом, пластичность, теплопроводность и электропроводность обеспечиваются наличием «электронного газа».

Кристаллическая решетка металлов

Все металлы, затвердевающие в нормальных условиях, представляют собой кристаллические вещества, то есть укладка атомов в них характеризуется определенным порядком – периодичностью, как по различным направлениям, так и по различным плоскостям. Этот порядок определяется понятием кристаллическая решетка. Другими словами, кристаллическая решетка это воображаемая пространственная решетка, в узлах которой располагаются частицы, образующие твердое тело.

Элементарная ячейка – элемент объема из минимального числа атомов, многократным переносом которого в пространстве можно построить весь кристалл. Элементарная ячейка характеризует особенности строения кристалла. Основными параметрами кристалла являются:

  • размеры ребер элементарной ячейки. a, b, c – периоды решетки – расстояния между центрами ближайших атомов  (в одном направлении выдерживаются строго определенными);
  • углы между осями (α, β, χ);
  • координационное число (К) указывает на число атомов, расположенных на ближайшем одинаковом расстоянии от любого атома в решетке;
  • базис решетки количество атомов, приходящихся на одну элементарную ячейку решетки;
  • плотность упаковки атомов в кристаллической решетке – объем, занятый атомами, которые условно рассматриваются как жесткие шары. Ее определяют как отношение объема, занятого атомами к объему ячейки (для объемно-центрированной кубической решетки – 0,68, для гранецентрированной кубической решетки – 0,74).

Схема кристаллической решетки

Рис. 1

Классификация возможных видов кристаллических решеток была проведена французским ученым О. Браве, соответственно они получили название «решетки Браве». Всего для кристаллических тел существует четырнадцать видов решеток, разбитых на четыре типа:

  • примитивный – узлы решетки совпадают с вершинами элементарных ячеек;
  • базоцентрированный – атомы занимают вершины ячеек и два места в противоположных гранях;
  • объемно-центрированный – атомы занимают вершины ячеек и ее центр;
  • гранецентрированный – атомы занимают вершины ячейки и центры всех шести граней.

Интересные факты об алюминии

Заключение

Твердая медь переходит в жидкое состояние при температуре 1083 градуса по Цельсию. Расплавление представляет собой сложный химический процесс, при котором разрушается твердая кристаллическая решетка вещества, что приводит к изменению его формы. Для повышения температуры меди нужно выполнить ее нагрев. На заводах и фабриках для этого используют специальные камеры и печи. Выполнить нагрев вещества можно в домашних условиях — для этого нужно собрать или приобрести мощную печь, которая может нагревать вещества до температуры выше 1100 градусов. Нагревать медь нужно с запасом, что связано с теплопотерями и особенностями процедуры нагрева.

Для переплавки меди в домашних условиях помимо печи нужно подготовить дополнительное оборудование — тигель, металлургические щипцы, крюк, керамическую форму и так далее. Переплавка выполняется просто — с помощью печи медь нагревается до 1083 градусов, а потом она переливается в форму для застывания. Расплавление медных сплавов отличается от расплавления чистой меди. Сплавы характеризуются «плавающей» температурой плавления. Например, латунь плавится при температуре от 880 до 950 градусов в зависимости от концентрации легирующих элементов. Металлурги рекомендуют плавить латуниевый сплав при температуре 950 градусов (точка ликвидуса).

  • Лидин Р. А., Молочко В. А., Андреева Л. Л. Химические свойства неорганических веществ. — «Химия», 2000.
  • Максимов М. М., Горнунг М. Б. Очерк о первой меди. — М.: Недра, 1976.
  • Электротехнический справочник. Т. 1. / Составитель И. И. Алиев. — М. : ИП РадиоСофт, 2006.
  • Статья на Википедии

Оцените статью
Рейтинг автора
5
Материал подготовил
Андрей Измаилов
Наш эксперт
Написано статей
116
Добавить комментарий