Принцип работы генераторов переменного тока

Устройство генератора переменного тока

Схематическое устройство однофазного генератора переменного тока. Генератор с вращающимися магнитными полюсами и неподвижным статором.

Автомобильный генератор переменного тока в разрезе. Видны полюсные наконечники.

К трёхфазному генератору (соединение «звездой») подключена активная нагрузка (соединение «звездой»), нейтральный провод отсутствует.

По конструкции можно выделить:

  • генераторы с неподвижными магнитными полюсами и вращающимся якорем;
  • генераторы с вращающимися магнитными полюсами и неподвижным статором.

Последние получили большее распространение, так как благодаря неподвижности статорной обмотки отпадает необходимость снимать с ротора большой ток высокого напряжения с использованием скользящих контактов (щёток) и контактных колец.

Подвижная часть генератора называется ротор, а неподвижная — статор.

Статор собирается из отдельных железных листов, изолированных друг от друга. На внутренней поверхности статора имеются пазы, куда вкладываются провода статорной обмотки генератора.

Ротор изготавливается, обычно, из сплошного железа, полюсные наконечники магнитных полюсов ротора собираются из листового железа. При вращении между статором и полюсными наконечниками ротора присутствует минимальный зазор, для создания максимально возможной магнитной индукции. Геометрическая форма полюсных наконечников подбирается такой, чтобы вырабатываемый генератором ток был наиболее близок к синусоидальному.

На сердечники полюсов посажены катушки возбуждения, питаемые постоянным током. Постоянный ток подводится с помощью щёток к контактным кольцам, расположенным на валу генератора.

По способу возбуждения генераторы переменного тока делятся на:

  • генераторы, обмотки возбуждения которых питаются постоянным током от постороннего источника электрической энергии, например от аккумуляторной батареи (генераторы с независимым возбуждением).
  • генераторы, обмотки возбуждения которых питаются от постороннего генератора постоянного тока малой мощности (возбудителя), сидящего на одном валу с обслуживаемым им генератором.
  • генераторы, обмотки возбуждения которых питаются выпрямленным током самих же генераторов (генераторы с самовозбуждением). См также бесщёточный синхронный генератор.
  • генераторы с возбуждением от постоянных магнитов.

Конструктивно можно выделить:

  • генераторы с явно выраженными полюсами;
  • генераторы с неявно выраженными полюсами.

По количеству фаз можно выделить:

  • Однофазные генераторы. См. также конденсаторный двигатель, однофазный двигатель.
  • Двухфазные генераторы. См. также двухфазная электрическая сеть, двухфазный двигатель.
  • Трёхфазные генераторы. См. также трёхфазная система электроснабжения, трёхфазный двигатель.

По соединению фазных обмоток трёхфазного генератора:

  • шестипроводная система Тесла (практического значения не имеет);
  • соединение «звездой»;
  • соединение «треугольником»;
  • соединение «Славянка», сочетающее шесть обмоток в виде одной «звезды» и одного «треугольника» на одном статоре.

Наиболее распространено соединение «звездой» с нейтральным проводом (четырёхпроводная схема), позволяющее легко компенсировать фазовые перекосы и исключающее появление постоянной составляющей и паразитных кольцевых токов в обмотках генератора, приводящих к потерям энергии и перегреву.

Так как на практике в электросетях с множеством мелких потребителей нагрузка на разные фазы не является симметричной (подключается разная электрическая мощность, или например, активная нагрузка на одной фазе, а на другой индуктивная или ёмкостная, то при соединении «треугольником» или «звездой» без нейтрального провода можно получить такое неприятное явление как «перекос фаз», например, лампы накаливания, подключенные к одной из фаз, слабо светятся, а на другие фазы подаётся чрезмерно большое электрическое напряжение и включенные приборы благополучно «сгорают».


К трёхфазному генератору (соединение «звездой») подключена активная нагрузка (соединение «звездой») с нейтральным проводом.


К трёхфазному генератору (соединение «треугольником») подключена активная нагрузка (соединение «треугольником»).

Лампы для теплицы: какие выбрать?

Принцип работы генератора переменного тока

Принцип работы генератора переменного тока, о котором пойдет речь в данном разделе применяется для обеспечения электрической энергией трактора. Генератор переменного тока один из основных элементов, которые снабжают трактор током. Это наиболее распространенная сфера использования данных генераторов, но не единственная. Такие устройства используются и на электростанциях.

Там для обеспечения оптимального действия генераторов переменного тока используют синхронные генераторы.
Принцип работы генератора переменного тока заключается в трансформации механической энергии, которую создает двигатель (к примеру, автомобиля) обрабатывая её в магнитную и передает в виде электрической в генератор постоянного тока. Опишем этот процесс подробнее.

Стандартный генератор трактора состоит из ротора, статора и ремней привода. Механическая энергия, которую создает двигатель проходит в свою очередь через ротор. Ротор, почти всегда являющийся обычным электрическим магнитом, вращается и создает магнитное поле. Иными словами, ротор с его элементами — это наш индуктор. Ротор состоит из коллекторных медных колец, которые вращаются и в процессе прижимают к себе щетки ротора, которые находятся в неподвижном состоянии, и дают энергию от неподвижных частей генератора.

После этого магнитная энергия проходит к статору. Деталями статора есть три катушки с проводами, которые установлены на ротор и при взаимодействии с роторными щетками превращают магнитную энергию ротора в электрическую. Энергия через диодный мост из 9-10 диодов передается аккумулятору.

В конструкции выделяют главные и вспомогательные диоды, так как одни занимаются выравниванием энергии для передачи аккумулятору, а другие питают регулятор напряжения и передают электроэнергию лампе, которая запускает генератор постоянного тока при оборотах двигателя и проверяет его работоспособность.

По производимой энергии ГПТ делят на маломощные и высоко мощные. Маломощные очень часто используют в домашних целях. Часто они выступают как источник резервного питания. С бензиновыми версиями нужно быть осторожным, потому что они имеют очень слабый моторесурс.

Ранее мы упоминали что генераторы переменного тока вырабатывают электроэнергию в тракторах и на электростанциях. Также ими пользуются владельцы загородных домов для обеспечения себя автономным электричеством. В таких случаях устанавливают дизельный генератор. Их достоинства: работают экономнее, изнашиваются реже, действуют на протяжении нескольких лет без ремонта благодаря их уникальному строению.

Схемы подключения

По числу использующихся фаз все генераторные агрегаты делятся на две группы:

  • однофазные;
  • трехфазные.

Однофазный генератор


Схема подключения оборудования с одной фазой

Этот тип устройств используется для работы с любыми потребителями электроэнергии, главное — чтобы они были однофазными.

Самые простые конструкции состоят из:

  • магнитного поля;
  • прокручивающейся рамки;
  • коллекторного устройства, предназначенного для отвода тока.

Благодаря наличию последнего в результате рамочного прокручивания через щетки образуется постоянный контакт с рамкой. Параметры тока, который меняется с учетом закона гармоники, будут разными и передаются на щеточный узел, а также в схему потребителей напряжения. На сегодняшний день однофазные агрегаты являются наиболее популярным типом автономного источника питания. Они могут использоваться для подключения практически всех бытовых электроприборов.

Трехфазный генератор

Такой тип устройств относится к классу универсальных, но более дорогих агрегатов. Отличительная особенность трехфазных генераторов заключается в необходимости постоянного и дорогостоящего технического обслуживания. Несмотря на это, данный тип установок получил наибольшее распространение.

Это обусловлено следующими преимуществами:

  1. В основе агрегата используется вращающееся круговое магнитное поле. Это обеспечивает возможность хорошей экономии при разработке оборудования.
  2. Трехфазные генераторы состоят из уравновешенной системы. Это обеспечивает ресурс эксплуатации агрегата в целом.
  3. В работе трехфазного устройства одновременно используется два напряжения — линейное и фазовое. Оба применяются в единой системе.
  4. Одно из основных преимуществ — повышенные экономические показатели. Это обеспечивает снижение материалоемкости силовых проводов, а также трансформаторных агрегатов. Благодаря данной особенности упрощается процедура передачи электричества на большие расстояния.

Схема соединения «звездой»

Данный тип подключения подразумевает электросоединение концов обмоток в определенной точке, которая именуется «нулем». При выполнении такого подсоединения нагрузку к генераторному узлу можно подать посредством трех или четырех кабелей. Проводники от начала обмоток считаются линейными. А основной кабель, который идет от нулевой точки, является нулем. Параметр напряжения между проводниками считается линейным (эта величина выше в 1,73 раза по сравнению с фазной).

Схема типа «звезда» для подключения трехфазного оборудования

Одной из основных особенностей данного варианта является равенство токов. Четырехпроводной тип «звезды» с нейтральным кабелем считается самым распространенным. Его использование позволяет предотвратить перекос фаз при подсоединении несимметричной нагрузки. К примеру, если на одном контакте она активная, а на другом — реактивная или емкостная. При использовании такого варианта обеспечивается максимальная защищенность включенного электрооборудования.

Схемы соединения «треугольником»

Данный метод подключения представляет собой последовательное подсоединение обмоток трехфазного агрегата. Конец первой намотки должен быть соединен с началом второй, а ее контакт — с третьей. Затем проводник от обмотки под номером 3 подсоединяется к началу первого элемента.

При такой схеме линейные кабели отводятся от точек подключения обмоток. Параметр линейного напряжения по величине соответствует фазному. А значение первого тока выше второго в 1,73 раза. Описанные свойства актуальны исключительно в случае равномерной нагрузки фаз. Если она будет неравномерной, то параметры необходимо пересчитать графическим или аналитическим способом.

Электросхемы соединений агрегата «треугольником»

Привод генераторов переменного тока

Бензиновый генератор Green-Field GF4500E

В бытовых условиях ротор генератора приводят в действие при помощи двигателей внутреннего сгорания (ДВС), работающих на таких видах топлива, как бензин или дизельное топливо. При этом эксплуатационный ресурс бензиновых генераторов, оснащенных двухтактными ДВС составляет порядка 500 часов в год (не более 4 часов в сутки); четырехтактными ДВС достигает 5000 часов в год.

Использовать бензиновые электрогенераторы целесообразно при непродолжительных отключениях электричества и/или для выезда на природу.

Генераторы, работающие на дизельном топливе, отличаются большой мощностью и значительно долговечнее бензиновых. Среди них встречаются модели с воздушным и жидкостным охлаждением. Агрегаты с воздушным охлаждением рекомендуется применять в тех местах, где электричество отключают часто и надолго.

Дизельный генератор ONIS VISA P 14 FOX

Пользоваться такими бытовыми устройствами предельно просто – нужно залить топливо в бак, поворотом ключа запустить двигатель и подключить нагрузку. Их панель управления снабжена всеми необходимыми и интуитивно понятными надписями и обозначениями.

Дизельные электрогенераторы с жидкостным охлаждением – это устройства совсем другой категории. Они способны работать сутками и используются в основном на предприятиях в качестве источников резервного питания.

Промышленные генераторы, предназначенные для выработки переменного тока и подачи его потребителям на большие расстояния с помощью высоковольтных линий электропередач (ЛЭП), работают за счет активации гидравлических или паровых турбин. В таких агрегатах роторный механизм соединяется непосредственно с колесом турбины.

Турбинные электрогенераторы отличаются большой мощностью (до 100000 кВт) и способны генерировать переменный ток напряжением до 16 кВ. При этом длина и диаметр их ротора может достигать 6,5 и 15 метров соответственно, а скорость вращения последнего находится в диапазоне 1500…3000 об/мин. Устанавливают такие агрегаты в отдельных помещениях на специально подготовленных бетонных основаниях.

Видеообзор:

Технические параметры

Работа генератора определяется зависимостью между основными величинами, которые являются его главными характеристиками:

  • отношения между величинами на холостом ходу;
  • внешние параметры;
  • регулировочные значения.

Внешняя характеристика генератора постоянного тока крайне важна, так как раскрывает взаимосвязь напряжения и нагрузки. Она отображена на графике. Согласно последнего наблюдается незначительное уменьшение напряжения, но оно почти не зависит от нагрузочного тока (если сохраняется скорость оборотов двигателя).


Внешняя характеристика ГПТ

В устройствах с параллельным возбуждением больше выражено влияние нагрузки на напряжение. Это объясняется уменьшением тока в обмотках. Чем выше ток нагрузки, тем быстрее будет уменьшаться напряжение на зажимах агрегата.


Свойства ГПТ с параллельным возбуждением

Если увеличить величину тока при последовательном возбуждении, то вырастет ЭДС. Но напряжение не достигнет высокого значения электродвижущей силы, так как часть энергии уйдет на потери от вихревых токов.


Свойства ГПТ с последовательным возбуждением

При достижении напряжением максимального значения и одновременным увеличением нагрузки, первое начинает стремительно снижаться в то время, как кривая электродвижущей силы продолжает подниматься. Это считается большим недостатком, ограничивающим использование генератора такого типа.

В устройствах со смешанным возбуждением предвиденные встречные подключения обеих катушек. Конечная сила при однонаправленном подключении равняется сумме векторов намагничивающих сил, при встречном — их разнице.

Вам это будет интересно Особенности балласта 4х18

При равномерном увеличении нагрузки напряжение на зажимах почти не меняется. Оно будет расти лишь тогда, если число проводов последовательной обмотки превышает число витков, которое соответствует номинальному возбуждению якоря.


Свойства ГПТ со смешанным возбуждением

Генераторы со встречным включением применяются в том случае, если нужно ограничить токи короткого замыкания. К примеру, при подсоединении аппаратов для сварки.

КПД

Важной характеристикой генератора считается его КПД — соотношение полезной и полной мощности: η = P 2 / P1. При холостом ходе такое отношение равно нулю (η=0)

При номинальных нагрузках КПД достигнет максимального значения. Мощные агрегаты имеют коэффициент полезного действия около 90 %.


КПД

ЭДС

Электродвижущая сила (ее значение) пропорциональна магнитному потоку, числу проводников (активных) в обмотках, частоте вращения якоря. Если менять последние параметры, то можно легко управлять значением ЭДС. Последнее относится и к напряжению. Нужный результат достигается методом изменения частоты вращения якоря.

Мощность

Выделяют полезную и полную мощности устройства. При постоянной электродвижущей силе полная мощность находится в прямо пропорциональной зависимости от тока: P=EIa. Полезная, которая отдается в цепь, Р1=UI.

Реакция якоря

Если к альтернатору подключить внешнюю нагрузку, то электротоки его обмотки создадут магнитное поле. Тогда возникнет сопротивление полей якоря и статора. Поле будет самым сильным в тех местах, где ротор приближается к магнитным полюсам, очень слабым — в точках максимального удаления. Ротор чувствует магнитное насыщение стальных катушечных сердечников. Сила реакции напрямую зависит от насыщенности в проводах. В результате на пластинках коллекторов будет происходить искрение щеток.


Реакция ротора

Уменьшение реакции достигается при использовании восполняющих магнитных полюсов или передвижением щеток с линии оси.

Крепление и привод

За работу генератора отвечает шкив двигателя посредством работы ременной передачи. Количество оборотов агрегата зависит от диаметров различных шкивов, входящих в состав конструкции основного устройства.

В современных моделях транспортных средств встречается поликлиновый ремень, обладающий большой гибкостью. С его помощью удается привести в действие шкивы минимального диаметра, благодаря чему увеличиваются обороты автогенератора. Существует несколько способов натяжения такого ремня, что очень удобно. Выбор способа зависит от модели транспортного средства, а также от конструкции натяжителя. Обычно предпочитают натягивать ремень специальными шариковыми роликами.

Параллельная работа синхронных генераторов

На электростанциях синхронные генераторы соединяются друг с другом параллельно для совместной работы на общую электрическую сеть. Когда нагрузка на электрическую сеть мала, работает только часть генераторов, при повышенном энергопотреблении («час пик») включаются резервные генераторы. Этот способ выгоден, так как каждый генератор работает на полную мощность, следовательно, с наиболее высоким коэффициентом полезного действия.

Синхронизация генератора с электрической сетью

В момент подключения резервного генератора к электрическим шинам его электродвижущая сила должна быть численно равна напряжению на этих шинах, иметь одинаковую с ним частоту, и фазовый сдвиг равный нулю. Процесс выведения резервного генератора на режим, при котором обеспечивается указанное условие, называется синхронизацией генератора.

Если это условие не будет выполнено (подключаемый генератор не выведен на синхронный режим), то из сети в генератор может пойти большой ток, генератор заработает в режиме электродвигателя, что может привести к аварии.

Для выполнения синхронизации подключаемого генератора с электрической сетью применяются специальные устройства, в простейшем виде — синхроноско́п.

Синхроноскоп представляет собой лампу накаливания и «нулевой» вольтметр, включенные параллельно контактам рубильника, отключающего генератор от шин сети (соответственно сколько фаз, столько ламп накаливания и вольтметров).

При разомкнутом состоянии рубильника параллельная сборка «лампа накаливания — „нулевой“ вольтметр» оказывается включенной последовательно цепи «фаза генератора — фаза электросети».

После запуска генератора (при разомкнутом рубильнике) его выводят на номинальные обороты, и регулируя ток возбуждения, добиваются того, чтобы электрическое напряжение на клеммах генератора и на шинах сети было приблизительно одинаковым.

Когда генератор приближается к режиму синхронизации, лампы накаливания начинают мигать, и в момент почти полной синхронизации они гаснут. Однако лампы гаснут при напряжении, не равном нулю, для индикации полного нуля служат вольтметры («нулевые» вольтметры). Как только и «нулевые» вольтметры покажут 0 вольт — генератор и электрическая сеть синхронизированы, можно замыкать рубильник. Если две лампы накаливания (на двух фазах) погасли, а третья — нет, это означает, что одна из фаз генератора подключена неправильно к шине электрической сети.

Меры предосторожности

Составные части и узлы генератора

Основной функцией генератора переменного тока является преобразование механической энергии вращения в электрическое напряжение. Эти устройства могут достигать огромных размеров и использоваться для производства энергии на электростанциях. Маленькие агрегаты применяются не только в промышленности, но и в быту, например, в автомобилях или в качестве резервного источника питания.

Конструкция стандартного генератора состоит из двух основных частей: неподвижного элемента – статора и вращающейся части – ротора. Статор, изготовленный в виде полого цилиндра, содержит магнитную систему. Она представляет собой стальные листы, смонтированные в пакет. Внутри пластин имеются пазы с изоляцией из фторопластовой пленки или другого диэлектрика. Каждый паз содержит обмотку в виде катушки из медного провода, исполняющей роль одной фазы с параллельным или последовательным соединением витков.
Определенная часть катушки выступает из пазов и носит название лобового соединения. В каждой обмотке имеется вывод, соединяющийся в общей точке. На данном месте соединения выполняется изоляция, исключающая соприкосновение с корпусом и другими деталями. Подобное соединение известно, как «звезда», а снятие напряжения осуществляется со всех трех концов.

Вторая основная деталь – ротор, изготавливается в виде массивного стального сердечника и обмотки возбуждения. В большинстве конструкций вал находится в горизонтальном положении, однако на гидроэлектростанциях применяется вертикальное расположение. Охлаждение работающего генератора может быть водяным, воздушным, масляным или водородным.

Устройство автомобильного генератора

Автогенератор включает в себя несколько составляющих:

  • Ротор.
  • Статор.
  • Блок щеток.
  • Регулятор напряжения.
  • Выпрямительный блок (диодный мост).

1 — задний подшипник; 2 — выпрямительный блок; 3 — контактные кольца; 4 — щетка; 5 — щеткодержатель; 6 — кожух; 7 — диод; 8 — втулка подшипника; 9 — винт; 10 — задняя крышка; 11 — крыльчатка; 12 — винт; 13 — ротор; 14 — обмотка ротора; 15 — передняя крышка; 16 — вал ротора; 17 — шайба; 18 — гайка; 19 — шкив; 20 — передний подшипник; 21 — обмотка ротора; 22 — статор.

Ротор

Ротором (от англ. rotation — вращение) называется подвижная часть автогенератора. Она представляет собой вал с расположенной на ней обмоткой возбуждения, находящейся между двумя полюсными половинками. Последние изготавливаются штамповкой, на каждой из них имеется шесть выступов в форме клюва, расположенных сверху обмотки. Эти половинки образуют систему полюсов и контактные кольца. Задача колец заключается в подаче электротока на обмотку через ее выводы.

Обмотка возбуждения предназначена для создания магнитного поля. Для решения этой задачи на нее должен быть подан слабый электроток. До запуска силового агрегата подачу тока для образования магнитного поля осуществляет АКБ. Когда ДВС заработает, и число оборотов достигнет нужной величины, подача тока на обмотку возбуждения будет производиться генератором

На роторе, кроме того, размещены:

  • Приводной шкив.
  • Подшипники качения.
  • Охлаждающее устройство (вентилятор).

Ротор располагается внутри статора, зажатого между крышками корпусной части. Крышки снабжены посадочными местами, в которых помещаются роторные подшипники. Кроме того, в крышке, расположенной со стороны приводного шкива, имеются отверстия для вентиляции.

Схема вентиляции генераторов

Статор

Этот элемент, в отличие от вышеописанного, неподвижен (статичен), из-за чего и получил свое название. Его задача заключается в получении электротока переменной величины, возникающего под влиянием магнитного поля ротора. Статор состоит из обмоток и сердечника. Последний изготавливается из листовой стали и имеет пазы для укладки трех обмоток (по количеству фаз). Обмотки могут укладываться одним из двух способов: петлевым или волновым. Схема их соединения также может быть разной – в форме звезды или треугольника.

1 — сердечник; 2 — обмотка; 3 — пазовый клин; 4 — паз; 5 — вывод для соединения с выпрямителем.

При подключении по схеме «звезда» все обмотки соединяются вместе одним из концов в общей точке. Их вторые концы выполняют роль выводов. Схема «треугольник» предусматривает соединение обмоток по другому принципу: 1-я со 2-й, 2-я – с 3-ей, а 3-я, в свою очередь – с 1-й. В этом случае функцию выводов выполняют точки соединения. Наглядно обе схемы показаны на рисунке.

Схема «звезда» и «треугольник»

Блок щеток

Задача этой составляющей генератора заключается в передаче электричества на обмотку возбуждения. Конструктивно блок представляет собой корпус с расположенной в нем парой подпружиненных графитных щеток. Последние прижимаются с помощью пружин к контактным кольцам, но жестко с ними не скреплены.

Регулятор напряжения

Регулятор нужен для того, чтобы поддерживать величину напряжения на выходе в установленных пределах. Это необходимо, поскольку количество тока, как и его параметры, зависит от числа оборотов двигателя, а долговечность аккумулятора напрямую связана с подаваемой разностью потенциалов. Недостаточное напряжение приведет к «хроническому» недозаряду АКБ, а избыточное – к перезаряду. Как в первом, так и во втором случае срок службы батареи заметно снизится. Современные автомобили комплектуются электронными полупроводниковыми регуляторами.

Регулятор напряжения

Диодный мост (выпрямительный блок)

Задача этого элемента заключается в том, чтобы преобразовывать переменный ток, поступающий на него, в постоянный, необходимый для питания бортовой сети. Конструктивно он состоит из теплоотводящих пластин, в которые вмонтированы диоды в количестве 6 штук – по 2 на каждую статорную обмотку (на «+» и на «-») .

Оцените статью
Рейтинг автора
5
Материал подготовил
Андрей Измаилов
Наш эксперт
Написано статей
116
Добавить комментарий