Реле времени: что это такое и где применяется

Характеристики таймеров света


Электронное реле времени для света

Это прибор, управляемый микропроцессором. Программируется кнопками, расположенными на лицевой панели.

Показания выводятся на жидкокристаллический дисплей. Питающий элемент – батарея либо аккумулятор.

Его преимущества:

  • возможность задания малых интервалов переключения (до 1 минуты);
  • высокая точность хода (отклонение < 1 сек/сут);
  • сохранение программы при отключении электроэнергии;
  • наглядность заданных показателей;
  • широкий выбор моделей, отвечающих любым требованиям по периодичности работы, способу монтажа (в электрощит и в розетку) и условиям эксплуатации.

Как недостаток можно отметить только более сложное программирование и потенциальные проблемы при исчерпании ресурса аккумулятора.

Любые задачи по управлению освещением решаются при помощи электронных реле.


Электромеханическое реле времени

Это устройство, в котором механизм отсчета времени работает посредством синхронного электродвигателя, питающегося от сети.

Используется с суточной и реже – с недельной периодичностью работы.

Его программируют при помощи расположенных на лицевой панели рычажков и градуированного колеса.

Существуют мобильные розеточные и стационарные, монтируемые на DIN рейку или в монтажную коробку, модели.

Преимущество электромеханических устройств – простота настройки, но по ряду параметров они уступают электронным:

  • ниже точность хода;
  • выше минимальный интервал переключения (10-15 минут);
  • после отключения электропитания у моделей, не оборудованных аккумулятором или батареей, происходит сбой в программе.

Характерная неисправность для этого вида реле – выход из строя вследствие износа шестерен регулировочного колеса.

Самостоятельному устранению поломка не подлежит – придется обращаться в сервис.

Как работает реле времени

Основной деталью реле времени является блок управления, выполненный в виде электронного таймера. Его настройка производится вручную на определенное время, по истечении которого на исполнительный механизм подается сигнал, размыкающий цепь.

Современные приборы выпускаются в электронном варианте, однако, до сих пор встречаются и старые механические образцы. Конструкция таймера выполнена в виде микросхемы, реагирующей на импульсы различной величины. Появление этих импульсов вызывается нажатием клавиш, расположенных на панели управления.
Механическое реле времени работает по такому же принципу. Здесь также имеются контакты, установленные в определенное положение. Они могут быть сомкнутыми или разомкнутыми. Когда регулятор механизма поворачивается, происходит смена положения контактов таймера. В результате, электрическая цепь замыкается или размыкается. Постепенно контакты возвращаются в исходное положение. Время возврата зависит от величины угла поворота регулятора.

Существуют так называемые интеллектуальные реле, подключаемые к компьютеру через специальный выход. В этом случае программирование временных режимов может производиться в более широком диапазоне.

Основные схемы подключения

Всего существует три схемы силовой коммутации, по которым выполняется подключение контакторов. Первая и простейшая — прямая коммутация фаз, которая подходит как для одностороннего запуска привода, так и для управления активной нагрузкой. В схеме нет ничего примечательного, контактор просто выполняет роль дистанционного выключателя.

Пример использования контакторов в схеме автозапуска генератора: 1 — вводной автомат; 2 — счётчик; 3 — УЗО основной сети; 4 — контактор основного ввода; 5 — блок автоматического запуска генератора; 6 — бензогенератор; 7 — УЗО резервной сети; 8 — реле времени; 9 — контактор резервного ввода

Чуть более сложная схема используется для управления прямым и обратным вращением трёхфазных асинхронных машин. Два контактора устанавливаются в паре, отходящие фазные провода присоединяются параллельным подключением. При этом присоединение со стороны подачи питания выполняется перекрёстной перемычкой, меняющей последовательность любых двух фаз из трёх

При сборке реверсивной схемы крайне важно обеспечивать двухстороннюю защиту от встречного включения: как с помощью механической блокировки, так и с использованием блокировочных контактов

Третий вид схемы — пусковая, она используется при управлении асинхронными двигателями высокой мощности. В общей сборке присутствует по два контактора для каждого из направлений вращения привода. В каждой паре один контактор является пусковым, через него двигатель подключается по схеме соединения обмоток в «звезду», за счёт чего существенно снижаются пусковые токи. По прошествии некоторого времени, необходимого для выхода на номинальные обороты, включается второй контактор, через который реализовано соединение обмоток в «треугольник». Для реализации такой схемы подключения требуется прокладка к двигателю шести жил питания и одного рабочего нулевого проводника, а также установка на основных контакторах реле задержки включения.

Мой пример применения реле времени RT-SD

Представьте себе такую ситуацию: У нас есть электропечь «камера для покраски порошковой краской» — согласитесь, что это довольно опасная зона, в которой не должен находиться работник, когда она работает.

Вопрос

Что можно придумать или лучше поставить вопрос немного по другому:

Как можно применить Реле времени RT-SD на практике и обезопасить работников или случайных людей находившихся рядом с электропечью от несчастного случая на производстве?

Ответ на вопрос

Я придумал вот что: можно установить две звуковых сирены (Одну громкую, а вторую сирену, тихую) и подключить их, через переключающийся контакт на реле, т.к. у реле времени RT-SD такая возможность присутствует и вот, как это будет работать…

Как это работает

Включение первого звукового оповещения:

При подаче напряжения на катушку реле времени RT-SD, контакт замыкается и включается сирена с громким и продолжительным сигналом, тем самым предупреждая работника о том, что автоматика покрасочной камеры включилась и работнику следует покинуть опасную зону.

Включение второго звукового оповещения:

После выдержки времени, установленной на реле, контакт реле переключается и включает второй тихий и прерывистый звуковой сигнал, сигнализируя тем самым, что электропечь находится в работе.

Звуковой сигнал продолжает работать до тех пор, пока не завершится весь рабочий цикл в камере для покраски порошковой краски.

Вот, как-то так можно применить это реле для сигнализации. Ладно, идем далее…

Технические характеристики

Номинальное напряжение 230В АС 50…60Гц
Номинальное импульсное напряжение АС400В
Потребляемая мощность При AC ≤1,5ВА
Диапазон задержек времени Стартовый — от 1 сек до 10 мин
Переходной – от 20 мс до 300 мс
Точность установки ≤5%
Точность повторения ≤0,2%
Прерывание подачи питания Не менее 200 мс
Коммутационная износостойкость 100000
Механическая износостойкость 1000000
Условный тепловой ток
Категория применения АС-15
Контакт 17 — 18 для подключения режима «звезды», 17 — 28 для подключения режима «треугольник»
Номинальный ток нагрузки 2х1,5А при 230В
Помехоустойчивость 3, в соответствии с МЭК 61000-4
Высота над уровнем моря Не более 2000 м
Степень защиты IP20
Степень загрязнения 3
Рабочая температура От -5 до +40С
Температура хранения От -25 до +75С
Подключение Винтовые клеммы, макс. сечение провода 2,5кв.мм
Момент затяжки 0,5Н*м
Монтаж На 35мм DIN-рейку

Устанавливается реле времени RT-SD также как и простой модульный автоматический выключатель на DIN-рейку.

Типовые схемы подключения реле времени RT-SD

Ну а теперь, давайте рассмотрим схемы подключения этого устройства для запуска электродвигателя в режиме «Звезда-треугольник».

В электрической схеме, реле времени RT-SD я обозначил как «KT1″ и связь между катушкой реле и ее исполнительным контактом я выделил « зеленой пунктирной линией » катушка КТ1 ——- исполнительный контакт КТ1 (28-17-18).

Пожалуйста, не пустайте реле временини RT-SD с обычным реле времени, т.к. у реле RT-SD — однин контакт!

ПРОИЗВОДИТЕЛИ САЙДИНГА

Как работает микросхема 555

Перед тем, как перейти к примеру устройства реле, рассмотрим структуру микросхемы. Все дальнейшие описания будут делаться для микросхемы серии NE555 производства Texas Instruments.

Как видно из рисунка, основа — это RS-триггер с инверсным выходом, управляемый выходами с компараторов. Положительный вход верхнего компаратора называется THRESHOLD, отрицательный вход нижнего — TRIGGER. Другие входы компараторов подключены к делителю напряжения питания из трех резисторов по 5 кОм.

Как вы скорее всего знаете, RS-триггер может находиться в устойчивом состоянии (обладает эффектом памяти, объемом 1 бит) либо в логическом «0», либо в логической «1». Как он функционирует:

  • Приход положительного импульса на вход R (RESET) устанавливает выход в логическую «1» (именно «1», а не «0», так как триггер инверсный — об это говорит кружок на выходе триггера);
  • Приход положительного импульса на вход S (SET) устанавливает выход в логический «0».

Резисторы по 5 кОм в количестве 3-х штук делят напряжение питания на 3, что приводит к тому, что опорное напряжение верхнего компаратора (вход «–» компаратора, он же, вход CONTROL VOLTAGE микросхемы) составляет 2/3 Vcc. Опорное напряжение нижнего — 1/3 Vcc.

С учетом сказанного, можно составить таблицы состояний микросхемы относительно входов TRIGGER, THRESHOLD и выхода OUT

Обратите внимание, что выход OUT — это инвертированный сигнал с RS-триггера

TRIGGER < 1/3 Vcc OUT = лог «1» неопределенное состояние OUT
TRIGGER > 1/3 Vcc OUT остается без изменений OUT = лог «0»

В нашем случае, для создания реле времени применяется такая хитрость: входы TRIGGER и THRESHOLD объединяются вместе и к ним подается сигнал с RC-цепочки. Таблица состояний в таком случае будет выглядеть так:

THRESHOLD, TRIGGER < 1/3 Vcc OUT = лог «1»
1/3 Vcc  < THRESHOLD, TRIGGER  < 2/3 Vcc OUT остается без изменений
THRESHOLD, TRIGGER  > 2/3 Vcc OUT = лог «0»

Схема включения NE555 для такого случая следующая:

После подачи питания конденсатор начинает заряжаться, что приводит к постепенному увеличению напряжения на конденсаторе с 0В и далее. В свою очередь, напряжение на входах TRIGGER и THRESHOLD будет наоборот, убывать, начиная с Vcc+. Как видно из таблицы состояний, на выходе OUT присутствует логический «0» после подачи питания Vcc+, а переключение выхода OUT в логическую «1» произойдет, когда на указанных входах TRIGGER и THRESHOLD напряжение опустится ниже 1/3 Vcc.

Важен тот факт, что время задержки реле, то есть промежуток времени между подачей питания и зарядкой конденсатора до момента переключения выхода OUT в логическую «1»,  можно рассчитать по очень простой формуле:

T = 1.1 * R * C И как видите, это время не зависит от напряжения питания. Следовательно, при проектировании схемы реле времени можно не заботиться о стабильности питания, что значительно позволяет упростить схемотехнику.

Далее приведем рисунок варианта исполнения микросхемы в DIP-корпусе и покажем расположения выводов чипа:

Также стоит упомянуть, что кроме 555 серии производится серия 556 в корпусе с 14-ю выводами. Серия 556 содержит два таймера 555.

Для чего нужна замена пробок на автоматы

В домах старой постройки можно найти счетчики, в которых устройством защиты являются электрические пробки. Задачу защитного элемента в них выполняет плавкая вставка, которая расплавляется при определенных значениях тока. Промышленностью данные вставки не изготавливаются. Соответственно, для их замены, владельцам приходится использовать различные кустарные элементы, которые не отвечают требованиям электробезопасности.

Достоинства и недостатки подобной автоматики

Несмотря на то, что такие устройства облегчают управление электроприборами, у них есть недостатки, о которых нельзя не упомянуть. Если говорить о цифровых реле времени, то их стоимость достаточно высока. К тому же они требуют максимально точной настройки. Однако минимизация вероятности ошибки в циклах перекрывает недочеты. Иногда просто не остается иного выбора, как установить подобную автоматику.

Еще одним недостатком некоторые считают то, что довольно сложно разобраться, как подключить реле времени к магнитному пускателю. Однако здесь стоит не согласиться. По ходу сегодняшней статьи уважаемый читатель поймет, что на самом деле работа проста, нужно только уловить суть.

Задержка отключения и включения реле с помощью конденсатора и резистора 12В

Не обязательно прибегать к использованию интегральных таймеров по типу NE555 если требуется всего лишь задержка перед старт/стоп. Использование конденсатора в паре с резистором и транзистором решит задачу без сложных ИС. Воспользуйтесь схемой ниже

Это классическая схема с использованием конденсатора, резистора, диода и биполярного транзистора. В схеме используется транзистор n-p-n типа. Работает она так: после подачи напряжение на резистор N сопротивления, начинает заряжаться конденсатор N емкости. При достижении напряжение смещения диоды открываются, а затем открывается управляющий эмиттерный p-n переход транзистора, который «открывает» транзистор и ток начинает течь в направлении коллектор-эмиттер.

Работает наш полупроводник в активном режиме. Пока управляющая базой величина тока не выйдет из этого режима, коэффициент усиления не приобретет нисходящую форму. Так продолжается пока величина тока вовсе не переступит порога отсечения — переход коллектор-эмиттер закроется. При включении происходит все да наоборот.

Для сборки рекомендуется использовать транзистор КТ827 с n-p-n переходом. Диод подойдет КД105Б или аналогичный по параметрам. Конденсатор и резистор подбирается в каждом случае индивидуально, об этом ниже.

Характеристики дамасской стали

Микроконтроллеры

Современные электронные микроконтроллеры могут совершать в одну секунду несколько миллионов операций. И это большое достижение науки. Если есть необходимость задержать время до бесконечности, то всего лишь необходимо зациклить операцию. Но есть у этой стороны дела и отрицательная сторона. То есть, получается так, что микроконтроллер кроме этой операции больше ничего делать не будет. А если появляется необходимость сделать выдержку времени не на одну секунду, а на одну минуту. Как же тогда? Ведь процессор будет простаивать, приборы греться, будут выполняться команды, которые никому не нужны.

Чтобы добиться этого, необходимо в микроконтроллер установить таймер, а лучше несколько. Что же собой представляет это реле времени в микроконтроллерах? Если не вдаваться глубоко в конструкцию и принцип работы, то это, по сути, обычный счетчик двоичного типа, который считает импульсы. Последние вырабатывает специальная схема, установленная в микроконтроллер. Кстати, в семействе серии 8051 импульс выходит при выполнении каждой отдельной команды. Поэтому реле просто считает количество выполненных команд. А вот процессор в это время занимается выполнением всей программы.


Схема реле времени с задержкой выключения света

Чтобы было понятно:

  • Производится запуск счетчика от нулевого уровня. Реле начинает считать команды.
  • Один импульс – одна единица¸ которая увеличивает содержание счетчика.
  • Как только счетчик заполнится полностью, происходит его обнуление. Это и есть время задержки.

Но, как сделать выдержку короче? И здесь все достаточно просто. Для примера возьмем восьмиразрядный таймер, у которого переполнение счетчика будет происходить через 256 импульсов с любой периодичностью. Чтобы укоротить выдержку времени, необходимо начать считать импульсы не с нулевой отметки, а с промежуточной, например, с 150. Здесь главное правильно провести настройку.

Но и тут есть один нюанс. Одна операция будет производиться за 255 микросекунд. А ведь наша задача увеличить выдержку до минуты. Все дело в том, что переполнение счетчика – это своеобразное большое событие. Оно способствует прерыванию всего процесса, то есть, работы всей программы. Процессор на это реагирует мгновенно, он тут же переходит на подпрограмму. Последняя из всех выдержек может сложить большое количество разных вариантов, и в этом плане временной показатель ничем не ограничен.

Сама же подпрограмма – это буквально несколько команд. Поэтому она действует непродолжительно. После чего процессор заново переходит на основную программу.

С этим читают

Примеры схем подключения

В зависимости от конкретной модели реле времени или поставленных задач, которое оно должно решать, схема подключения может коренным образом отличаться.

Рис. 7: пример схемы подключения

Посмотрите на рисунок 7, в данном примере приведен один из простейших вариантов управления осветительными приборами при помощи реле времени. Подача управляющего сигнала осуществляется на выводы 1 и 2, а к нагрузке от вывода 3 и нулевого провода. Клемма 4 получает питание от сети 220В. Данная схема широко используется для бытовых нужд и практически не применяется для промышленных целей, так как обеспечивает работу только с одним потребителем (прибором освещения, линией, сигнализацией и т.д.).

Рис. 8: Еще одна схема подключения реле времени

На рисунке 8 приведена схема включения реле времени, здесь способ питания аналогичен предыдущей схеме.  Но на выходе устройства реализовано подключение двух независимых групп потребителей от контактов 3 и 5, которые могут иметь индивидуальную логику работы. Такой способ подключения предоставляет куда больший функционал, за счет чего он применяется в местах, где требуется управление сразу несколькими приборами.

Рис. 9: схема включения реле через контактор

Как видите на рисунке 9, при подключении мощного оборудования, для которого реле времени не может осуществлять его электроснабжение из-за недостаточной проводимости собственных цепей, применяется подключение логического элемента через силовой контактор.  В данной схеме рабочим органом выступает контактор, управляющий сигнал на который подается с контактов реле времени. Основным преимуществом такой схемы подключения является возможность запитать потребитель любой мощности и принципа действия.

Виды и классы контакторов

Контакторы предназначены для удалённой или автоматической коммутации линий питания электроприборов повышенной мощности. В разряд этих электротехнических изделий входят устройства панельного монтажа, мощность которых практически не ограничена, а также модульные устройства для установки на DIN-рейку. В последнем случае допустимый ток, как правило, составляет не более 63 ампер. Малогабаритные (не модульные) контакторы для монтажа на DIN-рейку рассчитаны на токи до 100 А и в действительности являются изделиями панельного монтажа по довольно простой причине: их габариты не позволяют корректно установить на место лицевую панель щитка.

Слева: модульный контактор на DIN-рейку 63 А. Справа: контактор панельного монтажа

Общепринятая классификация магнитных контакторов подразумевает их разделение на величины, соответствующие типоразмеру и допустимой токовой нагрузке. Так, модульные устройства ограничиваются 4-й величиной, всего же величин имеется 7, при максимальных габаритах контактная группа рассчитана на силу тока до 250 А. За рамками общей классификации находятся контакторы, способные коммутировать цепи при силе тока в 1000 А и выше, но такие устройства имеют узкое отраслевое применение и их мы рассматривать не будем.

Отдельные модели контакторов могут иметь отличия по классу электроизоляции и допустимому коммутируемому напряжению. Есть разница и в рабочем напряжении, на которое рассчитана катушка втягивающего электромагнита. Дополнительные отличия заключаются в:

  • количестве коммутируемых полюсов силовой группы контактов (от 1 до 4);
  • времени срабатывания (от 0,01 до 1 с);
  • типе и эффективности устройств дугогашения для разных степеней индуктивности нагрузки;
  • допустимом числе циклов переключения в час;
  • уровне шума и вибрации;
  • наличии и количестве дополнительных слаботочных контактов.

Устройство трёхполюсного контактора с нормально разомкнутыми контактами: 1 — катушка; 2 — неподвижный магнитопровод (сердечник); 3 — подвижный сердечник; 4 — неподвижные контакты; 5 — диэлектрический держатель подвижных контактов; 6 — подвижные контакты

Понятия контактор и пускатель отражают разную суть. Так, название контактор подразумевает прибор в моноблочном исполнении только с тем набором функций, которые предусмотрены конструкцией. Пускатель же — комплекс приборов, объединённых в рамках одной управляющей сборки. В него могут входить несколько контакторов, а также дополнительные приставки, защитные устройства, элементы управления и корпус с определённой степенью пыле- и влагозащиты. Пускатели, как правило, предназначены для управления работой асинхронных электродвигателей.

Комбинированный пускатель электродвигателя

Устройство с функцией задержки включения

Перейдем непосредственно к реле времени. В этой статье мы разберем с одной стороны схему максимально простую, но с другой стороны не имеющую гальванической развязки.

Такое устройство в своей конструкции имеет 15 элементов и делится на две части:

  1. Узел формирования питающего напряжения или блок питания;
  2. Узел с временным контроллером.

Блок питания работает по бестрансформаторному принципу. В его конструкцию входят компоненты R1, C1, VD1, VD2, C3 и VD3. Само напряжение питания 12 В формируется на стабилитроне VD3 и сглаживается конденсатором C3.

Во вторую часть схемы включены интегральный таймер с обвеской. Роль конденсатора C4 и резистора R2 мы описали выше, и теперь по указанной ранее формуле мы можем вычислить значение времени задержки реле:

T = 1.1 * R2 * C4 = 1.1 * 680000 * 0.0001 = 75 секунд ≈ 1.5 минутыИзменив номиналы R2-C4, вы можете самостоятельно определить необходимое вам время задержки и своими руками переделать схему на любой временной интервал.

Принцип работы схемы следующий. После включения устройства в сеть и появления напряжения питания на стабилитроне VD3, а, следовательно, и на микросхеме NE555, конденсатор начинает заряжаться до тех пор, пока напряжение на входах 2 и 6 чипа NE555 не опустится ниже 1/3 от питающего, то есть, примерно до 4 В. После наступления этого события на выходе OUT появится управляющее напряжение, которое запустит (включит) реле K1. Реле, в свою очередь, замкнет нагрузку HL1.

Диод VD4 ускоряет разрядку конденсатора C4 после отключения питания для того, чтобы после быстрого повторного включения в сеть устройства время сработки не сократилось. Диод VD5 гасит индуктивный выброс от K1, чем защищает схему. C2 служит для фильтрации помех по питанию NE555.

Если правильно подобраны детали и без ошибок выполнен монтаж элементов, то устройство в проведении настройки не нуждается.

При испытании схемы, чтобы не выжидать полторы минуты, необходимо сопротивление R1 снизить до значения 68–100 кОм.

Вы, наверное, обратили внимание, что в схеме нет транзистора, который бы включал реле K1. Сделано это не из экономии, а по причине достаточной надежности выхода 3 (OUT) микросхемы DD1

Микросхема NE555 выдерживает на выходе OUT максимальную нагрузку до ±225 мА.

Такая схема идеально подходит для контроля времени работы вентиляционных приборов, установленных в санузлах и других подсобных помещениях. За счет ее наличия вентиляторы включаются только при условии присутствия в помещении в течение длительного времени. Такой режим значительно снижает расход электрической энергии, и продлевает срок службы вентиляторов за счет меньшего износа трущихся деталей.

Схемы подключения

Импульсное реле может быть использовано для управления светом. Для обеспечения работоспособности электрических систем с установленными коммутационными элементами этого типа, необходимо правильно выполнить работы по подключению проводников.

Прежде всего, следует иметь в виду, что реле импульсного типа не оснащается какими-либо элементами защиты, поэтому при возникновении в электропроводке осветительных приборов короткого замыкания, может произойти не только подгорание контактов реле, но и воспламенение любых легковозгораемых предметов, находящихся в непосредственной близости от медного проводника. Чтобы минимизировать возможные последствия установка импульсных реле должна осуществляться только после автомата (или плавких предохранителей (пробок)).

Для переключений режимов реле используются кнопочные выключатели. Такие элементы электрической арматуры оснащаются пружинными элементами, которые возвращают кнопку в исходное положение сразу после прекращение механического давления на ее поверхность. Это очень важный момент, ведь если контакт будет замкнут слишком долго, то может произойти перегрев обмотки катушки и изделие (электромеханическое) выйдет из строя.

Многие производители импульсных выключателей указывают в документации на товар о невозможности длительной подачи электрического тока на катушку (обычно не более 1 с).

Количество выключателей, с помощью которых подается сигнал к импульсному реле ничем не ограничено, но, во многих случаях, в схеме подключения устройства находятся 3–4 кнопки. Этого достаточно для управления светом из нескольких мест.

Все кнопочные выключатели подключаются параллельно друг другу. Эта особенность управления импульсным устройством позволяет использовать значительно меньшее количество проводов, в сравнении с другими способами монтажа системы управления одним световым прибором из разных мест. Один провод контактной системы выключателей соединяется с фазой электропроводки, другой — подключается к импульсному реле (контакт А1).

Кроме подведения фазного провода от выключателей, фаза подключается на контакт «2» импульсного устройства. Таким образом, обеспечивается передача сигнала о включении (выключении), а также обеспечение устройства электрическим током для подачи напряжения к потребителям (приборам освещения).

К контакту «2» подключается «ноль». Приборы же освещения соединяются с «землей» не через коммутационное устройство. Нулевой провод подключается к осветительному прибору от нулевой шины.

Физическое размещение импульсного реле возможно как в электрических щитках, так и непосредственной близости от осветительного прибора (установка осуществляется в распределительной коробке).

Что такое багет в системе натяжных потолков

Виды

По своему конструктивному исполнению реле времени подразделяют на:

Моноблок — полностью независимое устройство, с собственным корпусом, встроенным питанием и специальными гнездами для подключения какой-либо техники. Хорошо знакомы с этим типом реле те, кто занимается фотопечатью.

Встраиваемые— это упрощенный вариант моноблочных реле. У них нет собственного корпуса и питания, поскольку они нужны для того, чтобы создавать более сложные устройства. Они используются как дополнительные элементы и поэтому их помещают в один корпус с другими элементами изготовляемого прибора. Классический пример — таймер в стиральной машинке, микроволновой печи, духовке и пр.

Модульные (с управляющим контактом) — этот тип имеет стандартные размеры и устанавливается на DIN-рейку в распределительный щиток.

Помимо этого, реле времени также классифицируют в зависимости от принципа работы (как именно создается временной интервал):

  • Реле времени с часовым механизмом. Этот вид был изготовлен первым и до сих пор считается одним из самых надежных, так как по своим свойствам не уступает пневматическим приборам. Их работа практически не зависит ни от мощности напряжения, ни от того как часто оно подается, ни от изменения температуры. В быту такой тип реле встречается в механических будильниках, кухонных таймерах, в некоторых стиральных машинах также встречается механическое реле программ.
  • С электромагнитным замедлением. Используется в цепях, ориентированных на постоянное напряжение. Задержка осуществляется за счет создания вспомогательного магнитного потока, регулируемая изменением величины натяжения возвратной пружины. Регулируемое значение составляет до пяти секунд. Существенный минус этого типа реле в том, что задержка времени зависит от изменения температуры.

  • Вакуумное (электромеханическое). Этот вид используется там, где требуется электрический или пневматический сигнал, контролирующий достижение уровня вакуума.
  • Моторные. Включает в себя двигатель с редуктором и электрическим контактом. Способность задержки времени составляет от 10 секунд и до десятков часов.
  • Реле с гидравлическим или с пневматическим замедлением. Временные интервалы здесь регулируются за счет увеличения или уменьшения подачи жидкости, воздуха в рабочий процесс. Из плюсов можно также выделить то, что замедление не зависит от величины напряжения, частоты питания и изменения температуры. Также регулировка задержки не составляет особого труда.
  • Электронное реле. Самый широко используемый вид реле времени, постепенно вытесняющий механические аналоги. Достоинствами такого вида считаются его небольшие размеры, вес, высокая точность работы, надежность и широкий выбор программ функционирования.

Между собой электронные реле подразделяют исходя из технологии отсчета срабатывания времени:

  • Цифровые— напряжение оказывается на блок питания, из-за чего запускается задающий генератор, который затем подает импульсы на счетчик. Последний, в свою очередь, высчитывает эти импульсы до тех пор, пока они не сравнятся с нужным числом импульсов, которое задано в системе. Затем, на контролирующий реле выходной усилитель, посылается сигнал и счетчик перестает подсчитывать импульсы. Как только с блока питания снимется напряжение, реле вернется в свое изначальное состояние. Такие РВ способны задерживать время на десятки часов при минимальной погрешности. Главный минус в высокой стоимости.
  • Аналоговые — для задержки времени используется конденсатор, на который при замыкании контактов подается напряжение. Следит за этим напряжением специальное устройство, которое сравнивает его и ранее указанное. В случае их совпадения, устройство подает сигнал, чтобы реле переключилось. Максимальная выдержка здесь равна 10 секунд. Этот тип превосходит цифровое в том, что он не требует точного программирования и проще в использовании.

Джамшутим и отдыхаем

Здравствуйте дорогие друзья! Сегодня я хочу показать Вам свой пример электрической схемы подключения реле времени RT-SD и небольшое видео о том, как работает реле времени серии RT-SD для запуска электродвигателя «Звезда-Треугольник» от компании EKFelectrotechnica.

Но для начала о самом реле…

Назначение

Реле времени RT-SD предназначено для запуска электродвигателей по схеме «Звезда-Треугольник» с использованием независимой выдержки временипри старте с режима «Звезда» и последующим переходе электродвигателя в режим «Треугольник».

Внешний вид

* На рисунке я забыл указать еще два индикатора (светодиодную индикацию),индикация показывает, в каком состоянии сейчас находиться реле:

  • «Р» — Реле включено (индикатор светится постоянно);
  • «R/T» — Отсчет времени до отключения режима «Звезда» (индикатор моргает).

Внимание! Есть еще одно состояние у реле времени RT-SD, оно почему-то не описано в паспорте?

Если моргают оба индикатора «P» и «R/T», это означает, что реле не настроено должным образом. Т.е. регулировки на лицевой панели реле, выставлены некорректно «учтите этот момент», т.к. я сначала подумал, что реле неисправно ))).

Преимущества

Отличительной особенностью реле RT-SD от обычных реле времени или от пневматических реле с задержкой времени, является дополнительная возможность регулировки интервала времени от 1 секунды до 10 минут на задержку выключения режима «Звезда» и возможность регулировки времениот 20мс до 300мс для переключения электродвигателя с режима «Звезда» в режим «Треугольник».

Но и это еще не все! Есть еще одна особенность, которую я хотел бы отметить отдельно: это возможность настроить регулировку времени от 10 до 100% от предустановленного значения установленных настроек при выключении режима «Звезда» и переключения электродвигателя в режим«Треугольник».

Применение

Реле времени RT-SD можно применять не только для запуска электродвигателей по схеме «Звезда-Треугольник», еще его можно с легкостью применять в системе промышленной и бытовой автоматики:

  • Вентиляционные системы;
  • Отопительные системы;
  • Осветительные системы.

Наш Рейтинг

Оцените статью
Рейтинг автора
5
Материал подготовил
Андрей Измаилов
Наш эксперт
Написано статей
116
Добавить комментарий