Теплопроводность меди

Связь с коэффициентом теплопроводности

Удельная электропроводность меди — 59 500 000 См/м. Этот показатель, как уже упоминалось, верен, однако только при температуре +20 оС. Между коэффициентом теплопроводности любого металла и удельной проводимостью существует определенная связь. Устанавливает его закон Видемана — Франца. Выполняется он для металлов при высоких температурах и выражается в такой формуле: K/γ = π2 / 3 (k/e)2T, где y — удельная проводимость, k — постоянная Больцмана, e — элементарный заряд.

Разумеется, существует подобная связь и у такого металла, как медь. Теплопроводность и электропроводность у нее очень высокие. На втором месте после серебра она находится по обоим этим показателям.

Понятие теплопроводности

Она является интенсивной физической величиной, то есть величиной, которая описывает свойство материи, не зависящей от количества последней. Интенсивными величинами также являются температура, давление, электропроводность, то есть эти характеристики одинаковы в любой точке одного и того же вещества. Другой группой физических величин являются экстенсивные, которые определяются количеством вещества, например, масса, объем, энергия и другие.

Противоположной величиной для теплопроводности является теплосопротивляемость, которая отражает способность материала препятствовать переносу проходящего через него тепла. Для изотропного материала, то есть материала, свойства которого одинаковы во всех пространственных направлениях, теплопроводность является скалярной величиной и определяется, как отношение потока тепла через единичную площадь за единицу времени к градиенту температуры. Так, теплопроводность, равная одному ватту на метр-Кельвин, означает, что тепловая энергия в один Джоуль переносится через материал:

  • за одну секунду;
  • через площадь один метр квадратный;
  • на расстояние один метр;
  • когда разница температур на поверхностях, находящихся на расстоянии один метр друг от друга в материале, равна один Кельвин.

Понятно, что чем больше значение теплопроводности, тем лучше материал проводит тепло, и наоборот. Например, значение этой величины для меди равно 380 Вт/(м*К), и этот металл в 10 000 раз лучше переносит тепло, чем полиуретан, теплопроводность которого составляет 0,035 Вт/(м*К).

Теплопередача окна по ISO 10077-1

Самыми надежными методами для определения коэффициента теплопередачи рам окон и окон в целом являются численные методы (например, метод конечных элементов, метод конечных разностей или метод граничных элементов) в соответствии с указаниями стандарта ISO 10077-2. Кроме того применяют стандартизированные экспериментальные методы на основе измерения тепловых потоков через элементы окна и окно в целом.

Стандарт ISO 10077-1 предназначен для оценки коэффициентов теплопередачи окон различной конструкции при отсутствии данных численного расчета и экспериментальных данных.

Для простого глухого окна – окна с рамой без створок и импостов (горизонтальных и вертикальных перекладин) – формула для вычисления коэффициента теплопередачи окна согласно стандарту ISO 10077-1 упрощается до следующего вида:

где: Ag – площадь светопроникающей части окна; Af – площадь рамы (проекция на вертикальную плоскость); lg– длина периметра светопроникающей части окна; Ψg – линейная теплопередача (на стыке между рамой и светопроникающей частью окна).

Удельный вес

В связи с тем, что медь не является однокомпонентным металлом, расчет его удельного веса своими силами в бытовых условиях затруднен. Как правило, подсчеты осуществляются в соответствующих лабораториях. Но средний диапазон уже давно вычислен и составляет от 8,63 до 8,8 г/см3.

Для упрощения проведения самостоятельных расчетов далее приводим таблицу с данными об удельном весе в соответствии с единицами измерения.

Материал Удельный вес (г/см3) Вес 1 м3 (кг)
Медь От 8,63 до 8,8 От 8630 до 8800

Точные данные используются при подсчете веса необходимого при производстве металлопроката и металлоизделий.

Можно ли повысить теплопроводность меди

Не так давно, группа западных ученых провела ряд исследований по повышению теплопроводности меди и ее сплавов. Для работы они применяли пленки, выполненные из меди, с нанесенным на ее поверхность тонким слоем графена. Для его нанесения использовали технологию его осаждения из газа. При проведении исследований применялось множество приборов, которые были призваны подтвердить объективность полученных результатов.Результаты исследований показали то, что графен обладает одним из самых высоких показателей теплопроводности. После того, как его нанесли на медную подложку, теплопроводность несколько упала. Но, при проведении этого процесса происходит нагревание меди и в ней происходит увеличение зерен, и в результате повышается проходимость электронов.

Графен с медной фольгой

При нагревании меди, но без нанесения этого материала, зерна сохранили свой размер.Одно из назначений меди это отведение лишнего тепла из электронных и электрических схем. Использование графенового напыления эта задача будет решаться значительно эффективнее.

Понятие термического сопротивления и коэффициента теплопроводности

Если теплопроводность характеризует способность металлов передавать температуру тел от одной поверхности к иной, то термическое сопротивление показывает обратную зависимость, т.е. возможность металлов препятствовать такой передаче, иначе выражаясь, – сопротивляться. Высоким термическим сопротивлением обладает воздух. Именно он, больше всего, препятствует передаче тепла между телами.

Количественную характеристику изменения температуры единицы площади за единицу времени на один градус (К), называют коэффициентом теплопроводности. Международной системой единиц принято измерять этот параметр в Вт/м*град. Эта характеристика очень важна при выборе металлических изделий, которые должны передавать тепло от одного тела к другому.

Коэффициент теплопроводности металлов при температура, °С

Что такое теплопроводность и для чего нужна

Процесс переноса энергии атомов и молекул от горячих предметов к изделиям с холодной температурой, осуществляется при хаотическом перемещении движущихся частиц. Такой обмен тепла зависит от агрегатного состояния металла, через который проходит передача. В зависимости от химического состава материала, теплопроводность будет иметь различные характеристики. Данный процесс называют теплопроводностью, он заключается в передаче атомами и молекулами кинетической энергии, определяющей нагрев металлического изделия при взаимодействии этих частиц, или передается от более теплой части – к той, которая меньше нагрета.

Способность передавать или сохранять тепловую энергию, позволяет использовать свойства металлов для достижения необходимых технических целей в работе различных узлов и агрегатов оборудования, используемого в народном хозяйстве. Примером такого применения может быть паяльник, нагревающийся в средней части и передающий тепло на край рабочего стержня, которым выполняют пайку необходимых элементов. Зная свойства теплопроводности, металлы применяют во всех отраслях промышленности, используя необходимый параметр по назначению.

Теплопроводность меди. Замечательное свойство

В истории человеческой цивилизации роль меди преувеличить невозможно. Именно с нее человек начинал осваивать металлургию, учился создавать инструменты, посуду, украшения, деньги. И все благодаря уникальным свойствам этого металла, проявляющимся при сплаве с другими веществами. То мягкий, то прочный, то тугоплавкий, то плавится без всяких усилий. Обладает множеством прекрасных характеристик, и одной из них является теплопроводность меди.

Если речь зашла об этой характеристике, то надо пояснить, о чем идет речь. Теплопроводностью называют способность вещества передавать тепло от нагретого участка к холодному. Так вот, теплопроводность меди одна из самых высоких среди металлов. Как можно оценить такое свойство, как хорошее или как плохое?

Если спросить кулинаров и поваров, они скажут, как хорошее, благодаря чему медная посуда наилучшим образом передает тепло от огня к готовящемуся продукту, да и нагрев равномерно распределяется по поверхности, контактирующей с пламенем.

Конечно, и другие металлы, и не только металлы, передают тепло, или, по-другому, обладают достаточной теплопроводностью, но у меди эта способность одна из лучших, так называемый коэффициент теплопроводности меди самый высокий, выше только у серебра.

Отмеченная способность обеспечивает широкие возможности использования металла в самых разных областях. В любых системах теплообмена медь является первым кандидатом на применение. Например, в электроотопительных приборах или в радиаторе автомобиля, где нагретая охлаждающая жидкость отдает лишнее тепло.

Теперь можно попытаться понять, чем обусловлен эффект передачи тепла. Происходящее объясняется достаточно просто. Происходит равномерное распределение энергии по объему материала. Можно провести аналогию с летучим газом. Попав в какой-то замкнутый сосуд, такой газ занимает все доступное ему место. Так и здесь, если металл нагреть в какой-то отдельной области, то полученная энергия равномерно распределяется по всему материалу.

Таким явлением можно объяснить теплопроводность меди. Не вдаваясь в квантовую физику, можно сказать, что за счет внешнего поступления энергии (нагрева) часть атомов получает дополнительную энергию и затем передает ее другим атомам. Энергия (нагрев) распространяется по всему объему предмета, вызывая его общий нагрев. Подобное происходит с любым веществом.

Разница только в том, что медь, теплопроводность которой очень высокая, хорошо передает тепло, а другие вещества делают то же самое значительно хуже. Но во многих случаях это может быть и нужным свойством. На свойстве веществ плохо проводить тепло основана теплоизоляция, за счет плохой передачи тепла не происходит его потерь. Теплоизоляция в домах позволяет сохранять комфортные условия проживания в самые суровые морозы.

Обмен энергией, или, как в нашем случае, передача тепла, может осуществляться и между разными материалами, если они находятся в физическом контакте. Именно это происходит, когда мы ставим чайник на огонь. Он нагревается, а затем от посуды нагревается вода. За счет свойств материала происходит передача тепла. Теплопередача зависит от многих факторов, в том числе от свойств самого материала, таких как его чистота. Так, если теплопроводность меди лучше, чем у других металлов, то уже ее сплавы, бронза и латунь обладают значительно худшей теплопроводностью.

Говоря об этих свойствах, нельзя не отметить, что теплопроводность зависит от температуры. Даже у самой чистой меди, с содержанием 99,8%, с ростом температуры коэффициент теплопроводности падает, а у других металлов, например, марганцевой латуни, с повышением температуры коэффициент растет.

В изложенном описании дано объяснение такого понятия, как теплопроводность, объяснена физическая суть явления, на примере меди и других веществ рассмотрены некоторые варианты применения этих свойств в повседневной жизни.

Сплавы

Разного рода добавки могут использоваться и специально для повышения прочности такого пластичного материала, как медь. Электропроводность ее они также снижают. Но зато их применение позволяет значительно продлить срок службы разного рода изделий.

Чаще всего в качестве повышающей прочность меди добавки используется Cd (0.9 %). В результате получается кадмиевая бронза. Ее проводимость составляет 90 % от проводимости меди. Иногда вместо кадмия в качестве добавки используют также алюминий. Проводимость этого металла составляет 65 % от этого же показателя меди. Для повышения прочности проводов в виде добавки могут применяться и другие материалы и вещества — олово, фосфор, хром, бериллий. В результате получается бронза определенной марки. Соединение меди с цинком называется латунью.

Что такое теплопроводность

Данный термин означает способность различных материалов к обмену энергией, которая в этом случае представлена теплом. При этом передача энергии проходит от более нагретой части к холодной и происходит за счет:

  1. Молекул.
  2. Атомов.
  3. Электронов и других частиц структуры металла.

Теплопроводность нержавеющей стали будет существенно отличаться от аналогичного показателя другого металла — например, коэффициент теплопроводности меди будет иным, нежели у стали.

Для обозначения этого показателя используется специальная величина, именуемая коэффициентом теплопроводности. Она характеризуется количеством теплоты, которое может пройти через материал за определенную единицу времени.

Показатели для стали

Теплопроводность может существенно отличаться в зависимости от химического состава металла. Коэффициент данной величины у стали и меди будет разным. Кроме этого, при повышении или уменьшении концентрации углерода изменяется и рассматриваемый показатель.

Существуют и другие особенности теплопроводности:

  1. Для стали, которая не имеет примесей, значение составляет 70 Вт/(м* К).
  2. У углеродистых и высоколегированных сталей проводимость намного ниже. За счет увеличения концентрации примесей она существенно снижается.
  3. Само термическое воздействие также может оказывать воздействие на структуру металла. Как правило, после нагрева структура меняет значение проводимости, что связано с изменением кристаллической решетки.

Коэффициент теплопроводности алюминия значительно выше, что связано с более низкой плотностью этого материала. Теплопроводность латуни также отличается от соответствующего показателя стали.

Физические свойства[править | править код]

Таблица теплопроводности материалов на Пли-

Материал Плотность,
кг/м3
Теплопроводность,
Вт/(м·град)
Теплоемкость,
Дж/(кг·град)
Плита бумажная прессованая 600 0.07
Плита пробковая 80…500 0.043…0.055 1850
Плитка облицовочная, кафельная 2000 1.05
Плитка термоизоляционная ПМТБ-2 0.04
Плиты алебастровые 0.47 750
Плиты из гипса ГОСТ 6428 1000…1200 0.23…0.35 840
Плиты древесно-волокнистые и древесно-стружечные (ГОСТ 4598-74, ГОСТ 10632-77) 200…1000 0.06…0.15 2300
Плиты из керзмзито-бетона 400…600 0.23
Плиты из полистирол-бетона ГОСТ Р 51263-99 200…300 0.082
Плиты из резольноформальдегидного пенопласта (ГОСТ 20916-75) 40…100 0.038…0.047 1680
Плиты из стеклянного штапельного волокна на синтетическом связующем (ГОСТ 10499-78) 50 0.056 840
Плиты из ячеистого бетона ГОСТ 5742-76 350…400 0.093…0.104
Плиты камышитовые 200…300 0.06…0.07 2300
Плиты кремнезистые 0.07
Плиты льнокостричные изоляционные 250 0.054 2300
Плиты минераловатные на битумной связке марки 200 ГОСТ 10140-80 150…200 0.058
Плиты минераловатные на синтетическом связующем марки 200 ГОСТ 9573-96 225 0.054
Плиты минераловатные на синтетической связке фирмы «Партек» (Финляндия) 170…230 0.042…0.044
Плиты минераловатные повышенной жесткости ГОСТ 22950-95 200 0.052 840
Плиты минераловатные повышенной жесткости на органофосфатном связующем
(ТУ 21-РСФСР-3-72-76)
200 0.064 840
Плиты минераловатные полужесткие на крахмальном связующем 125…200 0.056…0.07 840
Плиты минераловатные на синтетическом и битумном связующих 0.048…0.091
Плиты мягкие, полужесткие и жесткие минераловатные на синтетическом
и битумном связующих (ГОСТ 9573-82, ГОСТ 10140-80, ГОСТ 12394-66)
50…350 0.048…0.091 840
Плиты пенопластовые на основе резольных фенолформальдегидных смол ГОСТ 20916-87 80…100 0.045
Плиты пенополистирольные ГОСТ 15588-86 безпрессовые 30…35 0.038
Плиты пенополистирольные (экструзионные) ТУ 2244-001-47547616-00 32 0.029
Плиты перлито-битумные ГОСТ 16136-80 300 0.087
Плиты перлито-волокнистые 150 0.05
Плиты перлито-фосфогелевые ГОСТ 21500-76 250 0.076
Плиты перлито-1 Пластбетонные ТУ 480-1-145-74 150 0.044
Плиты перлитоцементные 0.08
Плиты строительный из пористого бетона 500…800 0.22…0.29
Плиты термобитумные теплоизоляционные 200…300 0.065…0.075
Плиты торфяные теплоизоляционные (ГОСТ 4861-74) 200…300 0.052…0.064 2300
Плиты фибролитовые (ГОСТ 8928-81) и арболит (ГОСТ 19222-84) на портландцементе 300…800 0.07…0.16 2300

Медь – коротко про теплопроводность

Теплопроводностью называют процесс переноса энергии частиц (электронов, атомов, молекул) более нагретых участков тела к частицам менее нагретых его участков. Такой теплообмен приводит к выравниванию температуры. Вдоль тела переносится только энергия, вещество не перемещается. Характеристикой способности проводить тепло является коэффициент теплопроводности, численно равный количеству теплоты, которая проходит через материал площадью 1 м2, толщиной 1 м, за 1 секунду при единичном градиенте температуры.

Коэффициент теплопроводности меди при температуре 20–100 °С составляет 394 Вт/(м*К) – выше только у серебра. Стальной прокат уступает меди по этому показателю почти в 9 раз, а железо – в 6. Различные примеси по-разному влияют на физические свойства металлов. У меди скорость передачи тепла снижается при добавлении в материал или попадании в результате технологического процесса таких веществ, как:

  • алюминий;
  • железо;
  • кислород;
  • мышьяк;
  • сурьма;
  • сера;
  • селен;
  • фосфор.

Высокая теплопроводность характеризуется быстрым распространением энергии нагрева по всему объему предмета. Эта способность обеспечила меди широкое применение в любых системах теплообмена. Ее используют при изготовлении трубок и радиаторов холодильников, кондиционеров, вакуумных установок, автомашин для отвода избыточного тепла охлаждающей жидкости. В отопительных приборах подобные изделия из меди служат для обогрева.

Способность меди проводить тепло снижается при нагреве. Значения коэффициента теплопроводности меди в воздухе зависит от температуры последнего, которая влияет на теплоотдачу (охлаждение). Чем выше температура окружающей среды, тем медленнее остывает металл и ниже его теплопроводность. Поэтому во всех теплообменниках используют принудительный обдув вентилятором – это повышает эффективность работы устройств и одновременно поддерживает тепловую проводимость на оптимальном уровне.

Что такое теплопроводность

Данный термин означает способность различных материалов к обмену энергией, которая в этом случае представлена теплом. При этом передача энергии проходит от более нагретой части к холодной и происходит за счет:

  1. Молекул.
  2. Атомов.
  3. Электронов и других частиц структуры металла.


Теплопроводность нержавеющей стали будет существенно отличаться от аналогичного показателя другого металла — например, коэффициент теплопроводности меди будет иным, нежели у стали.

Для обозначения этого показателя используется специальная величина, именуемая коэффициентом теплопроводности. Она характеризуется количеством теплоты, которое может пройти через материал за определенную единицу времени.

Сфера использования

Высокая тепло- и электропроводность меди определяет ее широкое применение в самых разных отраслях промышленности. Конечно же, чаще всего этот металл используется в электротехнике. Однако это далеко не единственная сфера его применения. Помимо всего прочего, медь может использоваться:

  • в ювелирном деле;
  • в архитектуре;
  • при сборке водопроводных и отопительных систем;
  • в газопроводах.

Для изготовления разного рода ювелирных изделий используется в основном сплав меди с золотом. Это позволяет увеличить стойкость украшений к деформациям и истиранию. В архитектуре медь может использоваться при облицовке кровель и фасадов. Основным преимуществом такой отделки является долговечность. К примеру, листами именно этого металла обшита крыша широко известной архитектурной достопримечательности — католического собора в немецком городе Хильдесхайме. Медная кровля этого здания надежно защищает его внутреннее пространство вот уже почти 700 лет.

Методы измерения

Для измерения теплопроводности металлов используют два метода: стационарный и нестационарный. Первый характеризуется достижением постоянной величины изменившейся температуры на контролируемой поверхности, а второй – при частичном изменении таковой.

Стационарное измерение проводится опытным путем, требует большого количества времени, а также применения исследуемого металла в виде заготовок правильной формы, с плоскими поверхностями. Образец располагают между нагретой и охлажденной поверхностью, а после прикосновения плоскостей, измеряют время, за которое заготовка может увеличить температуру прохладной опоры на один градус по Кельвину. Когда рассчитывают теплопроводность, обязательно учитывают размеры исследуемого образца.

Нестационарную методику исследований используют в редких случаях из-за того, что результат, зачастую, бывает необъективным. В наши дни никто, кроме ученых, не занимается измерением коэффициента, все используют, давно выведенные опытным путем, значения для различных материалов. Это обусловлено постоянством данного параметра при сохранении химического состава изделия.

Таблица теплопроводности теплоизоляционных материалов

Чтобы в доме было проще сохранять тепло зимой и прохладу летом, теплопроводность стен, пола и кровли должна быть не менее определенной цифры, которая рассчитывается для каждого региона. Состав «пирога» стен, пола и потолка, толщина материалов берутся с таким учетом чтобы суммарная цифра была не меньше  (а лучше — хоть немного больше) рекомендованной для вашего региона.

Коэффициент теплопередачи материалов современных строительных материалов для ограждающих конструкций

При выборе материалов надо учесть, что некоторые из них (не все) в условиях повышенной влажности проводят тепло гораздо лучше. Если при эксплуатации возможно возникновение такой ситуации на продолжительный срок, в расчетах используют теплопроводность для этого состояния. Коэффициенты теплопроводности основных материалов, которые используются для утепления, приведены в таблице.

Наименование материала Коэффициент теплопроводности Вт/(м·°C)
В сухом состоянии При нормальной влажности При повышенной влажности
Войлок шерстяной 0,036-0,041 0,038-0,044 0,044-0,050
Каменная минеральная вата 25-50 кг/м3 0,036 0,042 0,,045
Каменная минеральная вата 40-60 кг/м3 0,035 0,041 0,044
Каменная минеральная вата 80-125 кг/м3 0,036 0,042 0,045
Каменная минеральная вата 140-175 кг/м3 0,037 0,043 0,0456
Каменная минеральная вата 180 кг/м3 0,038 0,045 0,048
Стекловата 15 кг/м3 0,046 0,049 0,055
Стекловата 17 кг/м3 0,044 0,047 0,053
Стекловата 20 кг/м3 0,04 0,043 0,048
Стекловата 30 кг/м3 0,04 0,042 0,046
Стекловата 35 кг/м3 0,039 0,041 0,046
Стекловата 45 кг/м3 0,039 0,041 0,045
Стекловата 60 кг/м3 0,038 0,040 0,045
Стекловата 75 кг/м3 0,04 0,042 0,047
Стекловата 85 кг/м3 0,044 0,046 0,050
Пенополистирол (пенопласт, ППС) 0,036-0,041 0,038-0,044 0,044-0,050
Экструдированный пенополистирол (ЭППС, XPS) 0,029 0,030 0,031
Пенобетон, газобетон на цементном растворе, 600 кг/м3 0,14 0,22 0,26
Пенобетон, газобетон на цементном растворе, 400 кг/м3 0,11 0,14 0,15
Пенобетон, газобетон на известковом растворе, 600 кг/м3 0,15 0,28 0,34
Пенобетон, газобетон на известковом растворе, 400 кг/м3 0,13 0,22 0,28
Пеностекло, крошка, 100 — 150 кг/м3 0,043-0,06
Пеностекло, крошка, 151 — 200 кг/м3 0,06-0,063
Пеностекло, крошка, 201 — 250 кг/м3 0,066-0,073
Пеностекло, крошка, 251 — 400 кг/м3 0,085-0,1
Пеноблок 100 — 120 кг/м3 0,043-0,045
Пеноблок 121- 170 кг/м3 0,05-0,062
Пеноблок 171 — 220 кг/м3 0,057-0,063
Пеноблок 221 — 270 кг/м3 0,073
Эковата 0,037-0,042
Пенополиуретан (ППУ) 40 кг/м3 0,029 0,031 0,05
Пенополиуретан (ППУ) 60 кг/м3 0,035 0,036 0,041
Пенополиуретан (ППУ) 80 кг/м3 0,041 0,042 0,04
Пенополиэтилен сшитый 0,031-0,038
Вакуум
Воздух +27°C. 1 атм 0,026
Ксенон 0,0057
Аргон 0,0177
Аэрогель (Aspen aerogels) 0,014-0,021
Шлаковата 0,05
Вермикулит 0,064-0,074
Вспененный каучук 0,033
Пробка листы 220 кг/м3 0,035
Пробка листы 260 кг/м3 0,05
Базальтовые маты, холсты 0,03-0,04
Пакля 0,05
Перлит, 200 кг/м3 0,05
Перлит вспученный, 100 кг/м3 0,06
Плиты льняные изоляционные, 250 кг/м3 0,054
Полистиролбетон, 150-500 кг/м3 0,052-0,145
Пробка гранулированная, 45 кг/м3 0,038
Пробка минеральная на битумной основе, 270-350 кг/м3 0,076-0,096
Пробковое покрытие для пола, 540 кг/м3 0,078
Пробка техническая, 50 кг/м3 0,037

Часть информации взята нормативов, которые прописывают характеристики определенных материалов (СНиП 23-02-2003, СП 50.13330.2012, СНиП II-3-79* (приложение 2)). Те материал, которые не прописаны в стандартах, найдены на сайтах производителей

Так как стандартов нет, у разных производителей они могут значительно отличаться, потому при покупке обращайте внимание на характеристики каждого покупаемого материала

Оцените статью
Рейтинг автора
5
Материал подготовил
Андрей Измаилов
Наш эксперт
Написано статей
116
Добавить комментарий