Содержание
- 1 Характеристика материала сталь 20Х13.
- 2 Группы свариваемости
- 3 Процесс термообработки
- 4 12Х13 (1Х13) — классификация и применение марки
- 5 Среды для закалки
- 6 Основные характеристики
- 7 Химический состав
- 8 Коррозионностойкие нержавеющие стали
- 9 Методика проведения испытаний
- 10 Необходимое оборудование
- 11 Выбор параметров режима сварки
- 12 Технологические свойства стали 40Х13
- 13 Закалка и выполнение высокого отпуска (улучшение)
- 14 Механические свойства стали 20Х13
Характеристика материала сталь 20Х13.
Марка стали | сталь 20Х13 |
Заменитель стали | сталь 12Х13, сталь 14Х17Н2 |
Классификация стали | Сталь коррозионно-стойкая жаропрочная |
ГП «Стальмаш» поставляет сталь 20Х13 в следующих видах металлопроката: круг ст.20Х13 ГОСТ 2590-2006 круг стальной горячекатаный лист ст.20Х13 ГОСТ 19903-74 листовой горячекатаный пркоат | |
Применение стали 20Х13 | энергетическое машиностроение и печестроение; турбинные лопатки, болты, гайки, арматура крекинг-установок с длительным сроком службы при температурах до 500 град; сталь мартенситного класса |
Химический состав в % материала сталь 20Х13
C | Si | Mn | Ni | S | P | Cr |
0.16 — 0.25 | до 0.6 | до 0.6 | до 0.6 | до 0.025 | до 0.03 | 12 — 14 |
Температура критических точек материала сталь 20Х13
Ac1 = 820 , Ac3(Acm) = 950 , Ar1 = 780
Механические свойства при Т=20oС материала 20Х13 .
Сортамент | Размер | Напр. | sв | sT | d5 | y | KCU | Термообр. |
— | мм | — | МПа | МПа | % | % | кДж / м2 | — |
Лист | 1 — 4 | Поп. | 500 | 20 | Отпуск 740 — 800oC, | |||
Лист | 4 — 25 | Поп. | 500 | 20 | Отпуск 680 — 780oC, | |||
Поковки | до 100 | 630 | 400 | 17 | 45 | 600 | ||
Поковки | до 200 | 630 | 400 | 16 | 42 | 550 | ||
Поковки | до 400 | 630 | 400 | 14 | 40 | 500 |
Твердость материала сталь 20Х13 после отжига , | HB 10 -1 = 126 — 197 МПа |
Твердость материала сталь 20Х13 после закалки , | HB 10 -1 = 241 МПа |
Твердость материала сталь 20Х13 , Поковки | HB 10 -1 = 197 — 248 МПа |
Физические свойства материала сталь 20Х13
T | E 10- 5 | a 10 6 | l | r | C | R 10 9 |
Град | МПа | 1/Град | Вт/(м·град) | кг/м3 | Дж/(кг·град) | Ом·м |
20 | 2.18 | 23 | 7670 | 588 | ||
100 | 2.14 | 10.1 | 26 | 7660 | 461 | 653 |
200 | 2.08 | 11.2 | 26 | 7630 | 523 | 730 |
300 | 2 | 11.5 | 26 | 7600 | 565 | 800 |
400 | 1.89 | 11.9 | 26 | 7570 | 628 | 884 |
500 | 1.81 | 12.2 | 27 | 7540 | 691 | 952 |
600 | 1.69 | 12.8 | 26 | 7510 | 775 | 1022 |
700 | 12.8 | 26 | 7480 | 963 | 1102 | |
800 | 13 | 27 | 7450 | |||
900 | 28 | |||||
T | E 10- 5 | a 10 6 | l | r | C | R 10 9 |
Технологические свойства материала сталь 20Х13
Свариваемость: | ограниченно свариваемая. |
Флокеночувствительность: | не чувствительна. |
Склонность к отпускной хрупкости: | склонна. |
Зарубежные аналоги материала сталь 20Х13Внимание! Указаны как точные, так и ближайшие аналоги
США | Германия | Япония | Франция | Англия | Евросоюз | Италия | Испания | Китай | Швеция | Польша | Чехия |
— | DIN,WNr | JIS | AFNOR | BS | EN | UNI | UNE | GB | SS | PN | CSN |
Обозначения:
Механические свойства : | |
sв | — Предел кратковременной прочности , |
sT | — Предел пропорциональности (предел текучести для остаточной деформации), |
d5 | — Относительное удлинение при разрыве , |
y | — Относительное сужение , |
KCU | — Ударная вязкость , |
HB | — Твердость по Бринеллю , |
Физические свойства : | |
T | — Температура, при которой получены данные свойства , |
E | — Модуль упругости первого рода , |
a | — Коэффициент температурного (линейного) расширения (диапазон 20o — T ) , |
l | — Коэффициент теплопроводности (теплоемкость материала) , |
r | — Плотность материала , |
C | — Удельная теплоемкость материала (диапазон 20o — T ), |
R | — Удельное электросопротивление, |
Свариваемость : | |
без ограничений | — сварка производится без подогрева и без последующей термообработки |
ограниченно свариваемая | — сварка возможна при подогреве до 100-120 град. и последующей термообработке |
трудносвариваемая | — для получения качественных сварных соединений требуются дополнительные операции: подогрев до 200-300 град. при сварке, термообработка после сварки — отжиг |
Марочник стали и сплавов
Группы свариваемости
Все группы свариваемости сталей характеризуются своими определенными особенностями. Среди них можно отметить следующие моменты:
- Первая группа, которая характеризуется хорошей свариваемостью, может применяться при сварке без предварительного подогрева и последующей термической обработки шва. Отпуск выполняется для снижения напряжения в металле. Как правило, подобное свойство связано с низкой концентрацией углерода.
- Вторая характеризуется тем, что склонна к образованию трещин и дефектов на швах. Именно поэтому рекомендуется проводить предварительный подогрев материала, а также последующую термическую обработку для снижения напряжений.
- При ограниченном показателе сталь склонна к образованию трещин. Для того чтобы исключить вероятность появления трещин следует материал предварительно разогреть, после сварки в обязательном порядке проводится термообработка.
- Последняя группа характеризуется тем, что в большинстве случаев на швах образуются трещины. При этом предварительный разогрев структуры не во многом решает проблему. После сварки обязательно проводится многоступенчатое улучшение.
Группы свариваемости
Каждый сплав и металл относится к определенной группе. Кроме этого, степень свариваемости меняется после улучшения материала, к примеру, путем азотирования или закалки.
Процесс термообработки
Процесс термообработки представлен основными видами, среди которых необходимо выделить:
- Отжиг, включая процедуру гомогенизации и нормализации, выполняется для получения металла, микроструктура которого отличается однородностью и зернистостью, с растворением включений. Следующее за этой операцией охлаждение выполняется в медленном режиме, что позволяет воспрепятствовать появлению мартенсита;
-
Закалку выполняют при соблюдении высокого уровня скорости охлаждения, что позволяет получить мартенситные структуры. При определении критичного уровня скорости охлаждения, требуемой для выполнения закалки, учитываются марки и разновидности материалов;
- Отпуск требуется для удаления напряжений, образовавшихся при закалке, обеспечивая более высокую степень пластичности при одновременном уменьшении прочностных показателей;
- Нормализацию проводят при нагревании изделия до состояния аустенита, то есть на 30…50 градусов выше АС3, с выполнением в дальнейшем охлаждения на воздухе;
- Выполнение дисперсионного затвердения (или старения) осуществляют, если после операции отжига выполняется нагревание детали до более низкого температурного уровня для получения частиц фазы упрочнения. В некоторых случаях старение выполняется ступенчато, используя несколько температурных режимов для выделения упрочняющих в нескольких видах;
- Обработка холодом.
12Х13 (1Х13) — классификация и применение марки
Марка: 12Х13 (другое обозначение 1Х13)
Классификация материала: Сталь коррозионно-стойкая жаропрочная
Применение: детали с повышенной пластичностью, подвергающиеся ударным нагрузкам- изделия, подвергающиеся действию слабоагрессивных сред при комнатной температуре, а также детали, работающие при 450-500 град- сталь мартенсито — ферритного класса
12Х13 (1Х13) — механические свойства при температуре 20°
Сортамент | Размер | Напр. | sв | sT | d5 | y | KCU | Термообр. |
— | мм | — | МПа | МПа | % | % | кДж / м2 | — |
Трубы горячедеформир., ГОСТ 9940-81 | 392 | 21 | ||||||
Трубы холоднодеформир., ГОСТ 9941-81 | 392 | 22 | ||||||
Пруток, ГОСТ 18968-73 | 620 | 440-610 | 20 | 60 | 780 | Нормализация и отпуск | ||
Пруток, заданой прочности , ГОСТ 18907-73 | 490-780 | 16 | ||||||
Пруток, ГОСТ 5949-75 | Прод. | 590 | 410 | 20 | 60 | 880 | Закалка 1000 — 1050oC, воздух, Отпуск 700 — 790oC, воздух, | |
Проволока, ГОСТ 18143-72 | 490-740 | 16-20 | ||||||
Поковки, ГОСТ 25054-81 | до 600 | Прод. | 617 | 392 | 15-18 | 40-50 | 490-740 | Закалка и отпуск |
Лист толстый, ГОСТ 7350-77 | 650 | 250 | 15 | Отжиг | ||||
Лист толстый, ГОСТ 7350-77 | 490 | 345 | 21 | Закалка и отпуск | ||||
Лист тонкий, ГОСТ 5582-75 | 440 | 21 |
12Х13 (1Х13) — технологические свойства
Свариваемость: | ограниченно свариваемая. |
Склонность к отпускной хрупкости: | склонна. |
12Х13 (1Х13) — зарубежные аналоги
В таблице указаны точные и сходные по составу аналоги.
США | Германия | Япония | Франция | Англия | Евросоюз | Италия | Испания | Китай | Швеция | Польша | Чехия | |||||||||||||||||||||||||||||||||||||||||||
— | DIN,WNr | JIS | AFNOR | BS | EN | UNI | UNE | GB | SS | PN | CSN | |||||||||||||||||||||||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
12Х13 (1Х13) — pасшифровка обозначений, сокращений, параметров материала
Механические свойства : | |
sв | — Предел кратковременной прочности , |
sT | — Предел пропорциональности (предел текучести для остаточной деформации), |
d5 | — Относительное удлинение при разрыве , |
y | — Относительное сужение , |
KCU | — Ударная вязкость , [ кДж / м2] |
HB | — Твердость по Бринеллю , |
Физические свойства : | |
T | — Температура, при которой получены данные свойства , |
E | — Модуль упругости первого рода , |
a | — Коэффициент температурного (линейного) расширения (диапазон 20o- T ) , [1/Град] |
l | — Коэффициент теплопроводности (теплоемкость материала) , [Вт/(м·град)] |
r | — Плотность материала , [кг/м3] |
C | — Удельная теплоемкость материала (диапазон 20o- T ), [Дж/(кг·град)] |
R | — Удельное электросопротивление, |
Свариваемость : | |
без ограничений | — сварка производится без подогрева и без последующей термообработки |
ограниченно свариваемая | — сварка возможна при подогреве до 100-120 град. и последующей термообработке |
трудносвариваемая | — для получения качественных сварных соединений требуются дополнительные операции: подогрев до 200-300 град. при сварке, термообработка после сварки — отжиг |
Внимание! Вся приведённая информация о 12Х13 (1Х13) носит ознакомительный характер. Все интересующие Вас характеристики необходимо уточнять у специалистов
Среды для закалки
При выполнении закаливания для получения эффекта переохлаждения аустенита до мартенситного превращения требуется провести ускоренную процедуру охолаживания. Причем это надо выполнить в промежутке 650…400 0C, где аустенит имеет свойства меньшей устойчивости и осуществляется ускоренное преобразование в смесь ферритно-цементитного состава. При температуре свыше 650 0C наблюдается невысокая скорость преобразования аустенита, что позволяет проводить процесс остывания в размеренном режиме при условии постоянного контроля за его ходом.
Сырьем для образования закалочных сред может быть использована вода, масло, водополимерные среды (Термат), солевые растворы, обладающие следующим механизмом воздействия. При опускании в среду закалки вокруг поверхности изделия из перекаленного пара происходит образование плёнки. Процедура охлаждения осуществляется посредством паровой рубашки и продолжается относительно долго. При достижении определенной температуры, задаваемой исходя из компонентов жидкости, происходит разрыв паровой рубашки, начинается кипение жидкости, проходящее на поверхности изделия, и достигается быстрое остывание.
Процесс медленного кипения происходит в несколько этапов:
- плёночное;
- пузырьковое;
- конвективный теплообмен. При этом наблюдается явление более низкого уровня температуры на поверхности металла в сравнении с температурными показателями кипения жидкости. Учитывая невозможность кипения жидкости, происходит замедление охлаждения.
Основные характеристики
Сталь 40Х13, иногда её обозначают как 4Х13, относят к коррозионно-стойким, жаропрочным маркам. Отечественным заменителем является сталь 30Х13. В химический состав этого материала входят:
- углерод до 0,45%;
- хром до 14%;
- остальные материалы (кремний, марганец и пр.) до 0,8%.
Такой состав позволяет изготавливать из этой стали следующую продукцию:
- режущий и мерительный инструмент;
- медицинский, в том числе и хирургический инструмент;
- элементы конструкций, работающих в слабых агрессивных средах.
- пружины, крепёжные изделия, валы подшипники, способные работать в агрессивных средах, в том числе и при температурах до 450 ºC.
Этот материал получают в открытых печах. Чаще всего применяют индукционные печи. Плавку стали производят при температурах от 850 до 110 градусов цельсия. Такой режим обеспечивает её полную деформацию. Для предотвращения образования трещин и других дефектов применяют различные температурные режимы, применяемые попеременно. Кстати, для применения деталей из марки 40Х13 в агрессивных средах, в целях повышения её стойкость к коррозионному воздействию, рекомендуется шлифовать их поверхность.
Среди импортных аналогов стали марки 40х13 можно назвать следующие:
- США — 420;
- Германия — 1.4031;
- КНР — 4С13.
ГОСТ
Металлургическая промышленность выпускает следующий сортамент — лист (ГОСТ 5582-75), пруток ГОСТ 18907-73, проволоку (ГОСТ 18143-72).
Химический состав
Во многом сталь 20х13 напоминает аналоги, в состав которых также добавляется большое количество хрома. Химический состав представлен сочетанием следующих веществ:
- Углерод во многом определяет твердость и прочность материала, а также степень свариваемости. В рассматриваемом случае концентрация углерода может варьировать в пределе от 0,16 до 0,25%.
- Хром считается основным легирующим элементом. В состав сплава добавляется около 12-14% этого химического вещества. Именно хром определяет жаропрочность и коррозионную стойкость.
- Марганец и никель не являются основными элементами рассматриваемого сплава, их концентрация не более 0,6%.
Практически все металлы имеют в своем составе фосфор и серу. Эти химические элементы находятся в составе при концентрации не более 0,03%.
Лист нержавейка 20Х13
Зарубежные производители также выпускают сплавы со схожим химическим составом. К примеру, японский аналог стали 20х13 получил название SUS420J1, французские сплавы z20c13 и X20Cr13.
Коррозионностойкие нержавеющие стали
СНГ (ГОСТ) | Евронормы (EN) | Германия (DIN) | США (AISI) |
---|---|---|---|
03 Х17 Н13 М2 | 1.4404 | X2 CrNiMo 17-12-2 | 316 L |
03 Х17 Н14 М3 | 1.4435 | X2 CrNiMo 18-4-3 | — |
03 Х18 Н11 | 1.4306 | X2 CrNi 19-11 | 304 L |
03 Х18 Н10 Т-У | 1.4541-MOD | — | — |
06 ХН28 МДТ | 1.4503 | X3 NiCrCuMoTi 27-23 | — |
06 Х18 Н11 | 1.4303 | X4 CrNi 18-11 | 305 L |
08 Х12 Т1 | 1.4512 | X6 CrTi 12 | 409 |
08 Х13 | 1.4000 | Х6 Cr 13 | 410S |
08 Х17 Н13 М2 | 1.4436 | X5CrNiMo 17-13-3 | 316 |
08 Х17 Н13 М2 Т | 1.4571 | Х6 CrNiMoTi 17-12-2 | 316Ti |
08 Х17 Т | 1.4510 | Х6 СrTi 17 | 430Ti |
08 Х18 Н10 | 1.4301 | X5 CrNi 18-10 | 304 |
08 Х18 Н12 Т | 1.4541 | Х6 CrNiTi 18-10 | 321 |
10 Х23 Н18 | 1.4842 | X12 CrNi 25-20 | 310S |
10X13 | 1.4006 | X10 Cr13 | 410 |
12 Х18 Н10 Т | 1.4878 | X12 CrNiTi 18-9 | — |
12 Х18 Н9 | — | — | 302 |
15 Х5 М | 1.7362 | Х12 СrMo 5 | 501 |
15 Х25 Т | 1.4746 | Х8 CrTi 25 | — |
20X13 | 1.4021 | Х20 Cr 13 | 420 |
20 Х17 Н2 | 1.4057 | X20 CrNi 17-2 | 431 |
20 Х23 Н13 | 1.4833 | X7 CrNi 23-14 | 309 |
20 Х23 Н18 | 1.4843 | X16 CrNi 25-20 | 310 |
20 Х25 Н20 С2 | 1.4841 | X56 CrNiSi 25-20 | 314 |
03 Х18 АН11 | 1.4311 | X2 CrNiN 18-10 | 304LN |
03 Х19 Н13 М3 | 1.4438 | X2 18-5-4 | 317L |
03 Х23 Н6 | 1.4362 | X2 CrNiN 23-4 | — |
02 Х18 М2 БТ | 1.4521 | X2 CrMoTi 18-2 | 444 |
02 Х28 Н30 МДБ | 1.4563 | X1 NiCrMoCu 31-27-4 | — |
03 Х17 Н13 АМ3 | 1.4429 | X2 CrNiMoN 17-13-3 | 316LN |
03 Х22 Н5 АМ2 | 1.4462 | X2 CrNiMoN 22-5-3 | — |
03 Х24 Н13 Г2 С | 1.4332 | Х2 CrNi 24-12 | 309L |
08 Х16 Н13 М2 Б | 1.4580 | X1 CrNiMoNb 17-12-2 | 316 Сd |
08 Х18 Н12 Б | 1.4550 | X6 CrNiNb 18-10 | 347 |
08 Х18 Н14 М2 Б | 1.4583 | Х10 CrNiMoNb 18-12 | 318 |
08X19AH9 | — | — | 304N |
08X19H13M3 | 1.4449 | X5 CrNiMo 17-13 | 317 |
08X20H11 | 1.4331 | X2 CrNi 21-10 | 308 |
08X20H20TЮ | 1.4847 | X8 СrNiAlTi 20-20 | 334 |
08X25H4M2 | 1.4460 | X3 CrnImOn 27-5-2 | 329 |
08X23H13 | — | — | 309S |
09X17H7 Ю | 1.4568 | X7 CrNiAl 17-7 | 631 |
1X16H13M2 Б | 1.4580 | Х6 CrNiMoNb 17-12-2 | 316Cd |
10X13 СЮ | 1.4724 | Х10 CrAlSi 13 | 405 |
12X15 | 1.4001 | X7 Cr 14 | 429 |
12X17 | 1.4016 | X6 Cr17 | 430 |
12X17M | 1.4113 | X6 CrMo 17-1 | 434 |
12X17MБ | 1.4522 | Х2 СrMoNb | 436 |
12X18H12 | 1.3955 | GX12 CrNi 18-11 | 305 |
12X17 Г9 АН4 | 1.4373 | Х12 CrMnNiN 18-9-5 | 202 |
15X9M | 1.7386 | X12 CrMo 9-1 | 504 |
15X12 | — | — | 403 |
15X13H2 | — | — | 414 |
15X17H7 | 1.4310 | X12 CrNi 17-7 | 301 |
Методика проведения испытаний
Для хромистых сталей типа 20Х13 условия испытаний на МКК в ГОСТ 6032 не установлены. В ASTM А 262 есть примечание о возможности испытания стали AISI 410 (аналога стали 12Х13), по method C (кипячение в течение 240 ч в 65%-ном растворе HNO3 c оценкой скорости коррозии через каждые 48 ч). Однако структуры сталей 12Х13 и 20Х13 отличаются, и использовать данную методику невозможно.
Согласно работе , для хромистых сталей с содержанием хрома 13–17% испытания на МКК проводят следующим образом: выдержка 24 ч при температуре 80°С в растворе CuSO4, H2SO4 и HNO3. Раствор готовится в следующих пропорциях: 38 мл концентрированной H2SO4 + + 22 мл концентрированной HNO3 + + 220 г СuSO4*5H2O + 1000 мл H2O.
Однако при этом не указывается структура хромистых сталей (ферритные или мартенситные). В связи с этим было решено провести испытания по методу, приведенному в работе , но по 48 ч, 2 цикла.
Перед испытаниями образцы шлифовали, взвешивали и измеряли.
После испытаний проводили оценку под микроскопом ЗТВ и переходной зоны основной металл–наплавка на наличие микротрещин и рассчитывали скорость коррозии.
Необходимое оборудование
То, какое именно оборудование будет использоваться, зависит от выбранной технологии сварки.
Для газовой сварки потребуются:
- баллоны с горючим газом;
- комплекты шлангов для подачи газов в газовую горелку;
- редукторы;
- газовая горелка;
- присадка (проволока);
- сварочный молоток;
- щетка для зачистки сварных соединений;
- резервуар с водой для охлаждения газовой горелки.
Если речь идет об электрической сварке, то здесь перечень оборудования также будет варьироваться в зависимости от того, какой технологией будет пользоваться сварщик, однако, общий перечень является стандартным:
- источник сварочного тока;
- комплект кабелей для направления тока к месту сварки;
- комплект шлангов (рукавов) для подачи защитного газа (в случае использования данного способа);
- механизм для подачи сварочной проволоки (если используется данная технология);
- присадки (электроды или сварочная проволока, подобранные в соответствии с выбранной технологией, а также в соответствии с физико-химическими параметрами свариваемой стали).
Также потребуются средства для очистки сварного шва от шлаков, образуемых в процессе сварки (молоток, щетка и при необходимости химические средства очистки).
Также при осуществлении сварки потребуется использование защитного оборудования для сварщика:
- костюм из плотной ткани, прошедшей пропитку огнезащитными составами;
- сварочная маска с затемненным стеклом или очки;
- перчатки (краги).
Если выполняются работы высотного типа, то потребуется также и специальный пояс для выполнения высотных работ.
Фиксация всех деталей осуществляется на сварочном столе, что позволит минимизировать риск смещения деталей при выполнении сварочных швов.
Выбор параметров режима сварки
Сварка производится на постоянном токе обратной полярности.
Диаметр электродной проволоки выбирают в зависимости от типа сварного соединения, толщины свариваемого металла и положения шва в пространстве.
Зависимость диаметра проволоки от типа соединения и толщины металла
Диаметр проволоки, мм | Толщина металла (мм) для соединений | Положение шва в пространстве | ||
угловых
тавровых нахлесточных |
стыковых без скоса кромок | стыковых со скосом кромок | ||
0,8 | 1 | 1 | — | Н, Г, В, П |
1 | 1,5-2,5 | 1,5-2 | ||
1-1,2 | 3 | 2,5-3 | ||
1,2-1,4 | 4 | 4-5 | Н, Г, В | |
1,4-1,6 | 5 | 6 | 5-6 | |
1,6-2 | 6-8 | 8 | 8-12 | Н |
2-2,5 | 10 и более | 10 | 14 и более |
Режимы сварки в углекислом газе низкоуглеродистых и низколегированных сталей
Соединение | Размеры, мм | Сварочный ток, А | Напряжение на дуге, В | Скорость сварки, м/ч | Диаметр проволоки, мм | Вылет электрода, мм | Расход газа, л/мин | Число проходов | |
S | b | ||||||||
0,8-1 1,5-2 3 | 0-0,3 0-0,8 0-1 | 50-80 90-200 200-380 | 17-18 18-22 23-25 | 25-50 25-55 25-110 | 0,7-0,8 0,8-1,2 1,2-1,4 | 8-10 8-13 12-15 | 6-7 6-7 8-11 | 1 | |
4 6 8 10 14 | 0-1,2 0-1,5 0-1,5 0-1,5 0-1,5 | 200-350 250-420 300-450 320-470 380-500 | 23-32 25-36 28-38 29-38 33-40 | 25-50 25-55 25-110 | 0,7-0,8 0,8-1,2 1,2-1,4 | 8-10 8-13 12-15 | 6-7 6-7 8-11 | 1 | |
16 18 | 0-1,5 0-1,5 | 380-500 380-500 | 33-40 33-40 | 16-25 12-25 | 1,4-2,5 1,6-2,5 | 15-25 18-25 | 12-16 12-18 | 2 | |
20 | 0-1,5 | 380-420 450-500 | 32-36 36-40 | 14-16 18-20 | 1,6-2,5 | 18-25 | 12-18 | 2 | |
380-420 450-500 350-400 | 32-36 36-40 33-36 | 18-20 | 1,6-2,5 | 18-25 | 12-18 | 3 | |||
24 | 0-1,5 | 380-420 450-500 350-400 | 32-36 36-40 33-36 | 18-20 | 1,6-2,5 | 18-25 | 12-18 | 3 | |
380-420 350-400 480-500 350-400 | 32-36 33-36 38-40 33-36 | 16-18 | 1,6-2,5 | 18-25 | 12-18 | 4 | |||
32 | 0-1,5 | 380-420 350-400 480-500 350-400 | 32-36 33-36 38-40 33-36 | 14-16 | 1,6-2,5 | 18-25 | 12-18 | 4 |
Технологические свойства стали 40Х13
Марка 40Х13 обладает хорошей технологичностью при проведении пластической деформации в горячем состоянии. Ее проводят при температуре от 850 до 1100 ºC. Но надо помнить что при резком нагреве, сталь может потерять ряд своих уникальных свойств, например, твердость. Именно поэтому процедуру нагрева необходимо проводить с небольшой скоростью. По достижении температуры 830 ºC можно выполнять прокат или ковку. Охлаждение стали необходимо также проводить медленно.
Ряд характеристик коррозионно-стойкой и углеродистой стали во многом схожи, в частности, в твёрдости. Но они имеют различную микроструктуру и это приводит к появлению определённых сложностей в процессе механической обработки.
Основные сложности, возникающие при точении и фрезеровании стали марки 40Х13 это:
- упрочнение, возникающие в процессе резания;
- удаление отходов обработки;
- ускоренный износ режущего инструмента.
Дело в том, что при обработке 40х13 резанием, стружка не ломается как у большинства углеродистых сталей, а завивается в виде длинной стружки. Для решения этой проблемы на режущий инструмент устанавливают специальные приспособления — стружколомы.
Низкая теплопроводность хороша при использовании 40Х13 на практике, но создаёт определённые сложности при точении. То есть в месте обработки резко поднимается температура, вследствие чего происходит образование наклёпа и неравномерное упрочнение поверхности. Такое свойство стали приводит к снижению ресурса режущего инструмента и увеличению обработки детали.
Еще одно свойство 40Х13 — это наличие в ее составе карбидных и других соединений, имеющих микроскопический размер. Их наличие делает сталь неким подобием абразива, который выводит режущий инструмент из строя и это приводит к замедлению обработки.
Для эффективной обработки нержавейки применяют режущий инструмент, на поверхность которого наносят карбид вольфрама и другие упрочняющие покрытия.
Закалка и выполнение высокого отпуска (улучшение)
Для сталей используют процесс упрочнения при закалке методом быстрого охлаждения, производимого на воздухе, в масле или воде. Такая процедура способствует созданию неравновесного строения мартенсита. Операция закалки позволяет стали получить такие характеристики, как высокая твёрдость, низкий уровень пластичности и вязкости. Например, у стали 40ХНМА (SAE 4340) после того, как проведена процедура закалки, показатель твёрдости составляет более 50 HRC, поэтому материал не может быть использован по причине хрупкости и предрасположенности к разрушению. Проведение следующего отпуска, заключающегося в таких операциях, как нагрев до 450 C… 500 0C и выдерживание при этом температурном режиме, позволяет уменьшить внутренние напряжения, учитывая такие явления как распад мартенсита, изменение расстояний решётки. При этом незначительно снижается уровень твёрдости допоказателя 45…48 HRC. Процедура корригирования выполняется для стали, имеющей в своем составе 0,3…0,6 % углерода. Отжиг представляет собой разновидность термообработки и состоит в проведении нагрева до установленного температурного режима, выдержки и охлаждения. При этом происходит возобновление, рекристаллизирование и гомогенизирование металла. Целью операции является требование снизить уровень твердости, что позволяет повысить обрабатываемость металла, улучшить структурный состав и достичь большей степени гомогенности металла, снять напряжения внутри решетки.
Механические свойства стали 20Х13
Прокат | Размер | Направление | Временное сопротивление разрыву, σв, МПа | Предел кратковременной прочности, ST, МПа | Относительное удлинение при разрыве, δ5, % | Относительное сужение, ψ, % | Ударная вязкость KCU при 20°С, Дж/см2 |
Лист | 1 — 4 | Поперечный | 500 | — | 20 | — | — |
Лист | 4 — 25 | Поперечный | 500 | — | 20 | — | — |
Поковки | До 100 | — | 630 | 400 | 17 | 45 | 600 |
Поковки | До 200 | — | 630 | 400 | 16 | 42 | 550 |
Поковкт | До 400 | — | 630 | 400 | 14 | 40 | 500 |
Коррозийная стойкость стали
Среда | Температура, °С | Длительность испытания, час | Глубина коррозии, мм/год |
Вода дистиллированная или пар | 100 | — | 0,1 |
Вода почвенная | 20 | — | 1,0 |
Морская вода | 20 | 720 |
Механические свойства стали при повышенных температурах
Температура испытаний, °С | Предел текучести, σ0,2, МПа | Временное сопротивление разрыву, σв, МПа | Относительное удлинение при разрыве, δ5, % | Относительное сужение, ψ, % | Ударная вязкость KCU при 20°С, Дж/см2 |
Нормализация при 1000 — 1020 °С. Отпуск при 730 — 750 °С. При 20 °С HB 187 — 217 | |||||
20 | 510 | 710 | 21 | 66 | 64 — 171 |
300 | 390 | 540 | 18 | 66 | 196 |
400 | 390 | 520 | 17 | 59 | 196 |
450 | 370 | 480 | 18 | 57 | 235 |
500 | 350 | 430 | 33 | 75 | 245 |
550 | 275 | 340 | 37 | 83 | 216 |
Образец диаметром 6 мм и длиной 30 мм. Прокатанный Скорость деформирования 16 мм/мин, скорость деформации 0,009 с-1 |
|||||
800 | 59 | 70 | 51 | 98 | — |
850 | — | — | 43 | — | — |
900 | — | — | 56 | — | — |
1000 | 29 | 61 | 59 | — | — |
1150 | 21 | 31 | 84 | 10 | — |
Механические свойства стали при отрицательных температурах
Температура испытаний, °С | Предел текучести, σ0,2, МПа | Временное сопротивление разрыву, σв, МПа | Относительное удлинение при разрыве, δ5, % | Относительное сужение, ψ, % | Ударная вязкость KCU при 20°С, Дж/см2 |
Сечение 25 мм. Нормализация при 1000 °С, воздух. Отпуск при 680 — 750 °С | |||||
+20 | 540 | 700 | 21 | 62 | 76 |
-20 | 560 | 730 | 22 | 59 | 54 |
-40 | 580 | 770 | 23 | 57 | 49 |
-60 | 570 | 810 | 24 | 57 | 41 |
Сечение 14 мм. Закалка при 1050 °С, воздух. Отпуск при 600 °С | |||||
+20 | — | — | — | — | 71 |
-20 | — | — | — | — | 81 |
-60 | — | — | — | — | 64 |
Механические свойства стали в зависимости от температуры отпуска
Температура отпуска, °С | Предел текучести, σ0,2, МПа | Временное сопротивление разрыву, σв, МПа | Относительное удлинение при разрыве, δ5, % | Относительное сужение, ψ, % | Ударная вязкость KCU при 20°С, Дж/см2 | Твердость, НВ |
Закалка при 1050 °С, воздух | ||||||
200 | 1300 | 1600 | 13 | 50 | 81 | 46 |
300 | 1270 | 1460 | 14 | 57 | 98 | 42 |
450 | 1330 | 1510 | 15 | 57 | 71 | 45 |
500 | 1300 | 1510 | 19 | 54 | 75 | 46 |
600 | 920 | 1020 | 14 | 60 | 71 | 29 |
700 | 650 | 78 | 18 | 64 | 102 | 20 |
Свойства по стандарту
ГОСТ 4986-79
Термообработка | Сечение, мм | Предел текучести, σ0,2, МПа | Временное сопротивление разрыву, σв, МПа | Относительное удлинение при разрыве, δ5, % | Относительное сужение, ψ, % | Ударная вязкость, KCU, Дж / см2 | Твердость, НВ |
Лента холоднокатаная. Отжиг или отпуск при 740-800 °С | До 0,2 | — | 500 | 8 | — | — | — |
Лента холоднокатаная. Отжиг или отпуск при 740-800 °С | 0,2 — 2,0 | — | 500 | 16 | — | — | — |
Свойства по стандарту ГОСТ 5949-75
Термообработка | Сечение, мм | Предел текучести, σ0,2, МПа | Временное сопротивление разрыву, σв, МПа | Относительное удлинение при разрыве, δ5, % | Относительное сужение, ψ, % | Ударная вязкость, KCU, Дж / см2 | Твердость, НВ |
Прутки. Закалка при 1000-1050 °С, воздух или масло. Отпуск при 600-700 °С, воздух или масло. | 60 | 635 | 830 | 10 | 50 | 59 | — |
Свойства по стандарту
ГОСТ 7350-77
Термообработка | Сечение, мм | Предел текучести, σ0,2, МПа | Временное сопротивление разрыву, σв, МПа | Относительное удлинение при разрыве, δ5, % | Относительное сужение, ψ, % | Ударная вязкость, KCU, Дж / см2 | Твердость, НВ |
Прутки шлифованные, обработанные на заданную прочность | 1 — 30 | — | 510 — 780 | 14 | — | — | — |
Свойства по стандарту
ГОСТ 18143-72
Термообработка | Сечение, мм | Предел текучести, σ0,2, МПа | Временное сопротивление разрыву, σв, МПа | Относительное удлинение при разрыве, δ5, % | Относительное сужение, ψ, % | Ударная вязкость, KCU, Дж / см2 | Твердость, НВ |
Проволока термообработанная | 1,0 — 6,0 | — | 490 — 780 | 14 | — | — | — |
Свойства по стандарту
ГОСТ 18907-73
Термообработка | Сечение, мм | Предел текучести, σ0,2, МПа | Временное сопротивление разрыву, σв, МПа | Относительное удлинение при разрыве, δ5, % | Относительное сужение, ψ, % | Ударная вязкость, KCU, Дж / см2 | Твердость, НВ |
Прутки. Закалка при 1000-1050 °С, воздух или масло. Отпуск при 660-770 °С, воздух, масло или вода | 60 | 440 | 650 | 16 | 55 | 78 | — |
Свойства по стандарту
ГОСТ 25054-81