Содержание
Arduino Mega 2560: схема портов, питание
Напряжение питания Ардуино Мега 2560 при подключении через USB равно 5 Вольт. При подключении питания через разъем от аккумулятора или блока питания, питание платы автоматически переключается на внешний источник. Рекомендуемое питание платы Arduino Mega, согласно описанию производителя от 7 до 16 Вольт. Распиновка портов платы (при клике откроется в новом окне) представлена на фото ниже.
Arduino Mega 2560: схема портов и монтажная схема платы
Arduino Mega 2560: питание, подключение
5V – на пин платы подается стабилизированное напряжение 5 В;
3.3V – на пин подается стабилизированное напряжение 3.3 В;
VIN – на пин подается внешнее напряжение;
IREF – информирования о напряжении платы Arduino Mega;
GND – общий вывод земли.
RobotDyn MEGA: память, программирование
Написание скетчей происходит в среде Arduino IDE 1.8, которую можно скачать на сайте разработчика www.arduino.cc. Для подключения устройств к Arduino MEGA ATmega2560 используются коннекторы, которые напрямую или через макетную плату подключаются к портам ввода — вывода. Чтобы научиться работать с платой и изучить язык программирования перейдите в раздел «Уроки по Ардуино для начинающих»
Оригинальная плата Arduino MEGA 2560 ATmega2560
Где скачать драйвера для RobonDyn Mega 2560
Плата RobotDyn осуществляет связь с ноутбуком или персональным компьютером через микроконтроллер на чипе CH340G. Скачать драйвер для CH340G (RobotDyn MEGA driver CH340G) можно по прямой ссылке здесь. Скачанный архив следует распаковать на компьютере и запустить установочный файл CH341SER.EXE. После чего можно запускать среду Arduino IDE и начинать создавать и прошивать скетчи.
MEGA 2560 поддерживает три типа памяти:
Flash – память, которая используется для скетчей в отличии от плат Arduino Uno и Nano имеет увеличенный объем — и составляет уже целых 256 кБ.
SRAM память — оперативная память объемом 8 кБ обеспечивает более стабильную работу программы при хранении больших объемов данных.
Плата Arduino Micro
Arduino Micro представляет собой устройство, основа которого построена на микроконтроллере ATmega 32u4, имеющем встроенный USB-контроллер. Это решение упрощает подключение платы к компьютеру, так как в системе устройство будет определяться как обычная клавиатура, мышь либо COM-порт. Состав устройства следующий:
- количество входов/выходов – 20 (имеется возможность 7 из них использовать как ШИМ-выходы, а 12 – в роли входов аналогового типа); резонатор кварцевый, настроенный на 16 МГц;
- micro-USB-разъём;
- ICSP-разъём, предназначенный для проведения внутреннего программирования;
- кнопка для сброса.
Все цифровые выводы изделия могут работать в качестве как входов, так и выходов благодаря наличию функций digital Read, pin Mode, digital Write. Напряжение на выводах составляет 5 вольт. Максимальная величина потребляемого или отдаваемого тока с одного вывода составляет 40 мА. Выводы сопрягаются с внутренними резисторами, которые по умолчанию находятся в отключенном состоянии. Они имеют номиналы в 20 кОм – 50 кОм. Отдельные выводы arduino micro, кроме основных, способны выполнять и ряд дополнительных функций:
- В последовательном интерфейсе выводы №0 (RX), №1 (TX) применяются для приёма (RX), а также передачи (TX) необходимых данных через встроенный аппаратный приёмопередатчик. Функция актуальна для arduino micro класса Serial. В других случаях связь осуществляется через соединение USB (CDC).
- Интерфейс TWI включает выводы микроконтроллера №2 (SDA) и №3 (SCL). Позволяют использовать данные библиотеки Wire.
- Выводы под номерами 0, 1, 2, 3 могут быть использованы в роли источников возникающих прерываний. К таковым относятся низкий уровень сигнала; прерывания по фронту, по спаду, при изменении уровня сигнала.
- Выводы под номерами 3, 5, 6, 9, 10, 11,13 при использовании функции analog Write способны выводить аналоговый ШИМ-сигнал в 8 бит.
- К SPI-интерфейсу относятся выводы на разъёме ICSP. Они не соединяются с цифровыми выводами на плате.
- Дополнительный вывод RX LED/SS, который соединён со светодиодом. Последний индицирует процесс по передаче данных с использованием USB. Этот вывод может быть использован при работе с интерфейсом SPI для вывода SS.
- Вывод №13 – светодиод, который включается при отправке данных HIGH и выключается при значениях LOW.
- Выводы A0 – A5 (отмечены на плате) и A6 – A11 (соответствуют цифровым выводам за номерами 4, 6, 8, 9, 10,12) являются аналоговыми.
- Вывод AREF позволяет изменять верхнее значение аналогового напряжения на вышеуказанных выводах. При этом используется функция analog Reference.
- С помощью вывода Reset формируется низкий уровень (LOW) и происходит перезагрузка микроконтроллера (кнопка сброса).
Опубликовал: Константин Александров / 14.08.2017
Плата Arduino Uno – центр большой империи Arduino, самое популярное и самое доступное устройство. В ее основе лежит чип ATmega – в последней ревизии Ардуино Уно R3 – это ATmega328 (хотя на рынке можно еще встретить варианты платы UNO с ATmega168). Большинство ардуинщиков начинают именно с платы UNO. В этой статье мы рассмотрим основные особенности, характеристики и устройство платы Arduino Uno ревизии R3, требования к питанию, возможности подключения внешних устройств, отличия от других плат (Mega, Nano).
Плата Arduino Uno
Контроллер Uno является самым подходящим вариантом для начала работы с платформой: она имеет удобный размер (не слишком большой, как у Mega и не такой маленький, как у Nano), достаточно доступна из-за массового выпуска всевозможных клонов, под нее написано огромное количество бесплатных уроков и скетчей.
Характеристики Arduino Uno
Микроконтроллер | ATmega328 |
Рабочее напряжение | 5В |
Напряжение питания (рекомендуемое) | 7-12В |
Напряжение питания (предельное) | 6-20В |
Цифровые входы/выходы | 14 (из них 6 могут использоваться в качестве ШИМ-выходов) |
Аналоговые входы | 6 |
Максимальный ток одного вывода | 40 мА |
Максимальный выходной ток вывода 3.3V | 50 мА |
Flash-память | 32 КБ (ATmega328) из которых 0.5 КБ используются загрузчиком |
SRAM | 2 КБ (ATmega328) |
EEPROM | 1 КБ (ATmega328) |
Тактовая частота | 16 МГц |
Изображения плат Ардуино Уно
Оригинальная плата выглядит следующим образом:
Оригинальный и официальный Arduino Uno
Многочисленные китайские варианты выглядят вот так:
Плата – клон Arduino Uno
Еще примеры плат:
КАК ПРОВЕРИТЬ ТИРИСТОР И СИМИСТОР
Иногда радиокомпоненты вызывают сомнение в работоспособности, особенно, когда мы ремонтируем какой-то аппарат, а также, когда мы пытаемся впаять деталь из коробки в новую схему. И если с проверкой транзисторов и диодов проблем не возникает — обычным омметром мультиметра, то с такими полупроводниковыми приборами, как симисторы и тиристоры дело обстоит посложнее. Проблема в том, что с мультиметра мы можем проверить только пробой. А для испытаний на работоспособность надо иметь реальную схему. Её мы сейчас и спроектируем. Как известно, тиристоры являются односторонними ключами для коммутации постоянного тока (DC), а симисторы двунаправленными (AC), и они предназначены для работы от сети переменного тока. Так что нужно собрать несложный специальный тестер, который и проверит тиристор, так сказать «в бою».
Список деталей тестера
D2 — 1N4002;
D3 — LED 5мм зелёный;
D4 — LED 5 мм красный;
R1 — 470 1/4W;
R2 — 470 1/4W;
R3 — 470 1/4W;
R4 — 470 1/4W;
R5 — 100 1w;
Tr1 — трансформатор на 230V — 12V 0.6A.
В этих деталях расположение контактов — это почти стандарт, поэтому при разработке устройства их проверки контакты гнезда распаяны в соответствии с порядком большинства контактов тиристоров, но это не означает, что некоторые экземпляры не имеют другой порядок — всё зависит от производителя и модели компонента.
Готовую схему размещают в корпусе сетевого адаптера на 10-15 вольт (уверены, их у каждого найдётся по несколько штук). А для того, чтобы проверять не только импортные (серии BT-138) тиристоры, но и отечественные, можно вывести три разноцветных провода с крокодилами на конце.
RobotDyn MEGA 2560: распиновка платы
Плата изготовлена с использованием высококачественных радиоэлементов и компонентов, для того чтобы обеспечить стабильную работу микроконтроллера. При этом стоимость платы от компании RobotDyn ниже оригинальной Arduino MEGA 2560 в разы. Схема и распиновка портов на плате MEGA 2560 взята с официального сайта и представлена на картинке (чтобы увеличить — кликните мышкой на фото).
Плата RobotDyn MEGA 2560 R3: распиновка, порты входа-выхода
Подключение RobotDyn MEGA 2560 к компьютеру осуществляется через разъем microUSB, который используется большинством современных телефонов, включая смартфоны Android. Все порты на плате обозначены: порты, подключенные к АЦП начинаются с буквы «А» — всего их 16. Пины ввода-вывода общего назначения пронумерованы с 0 по 54. Порты с ШИМ сигналом обозначены значком тильд.
Arduino Mega 2560: распиновка платы
Схема портов на плате Arduino Mega R3 представлена на следующем фото. Главной отличительной особенностью микроконтроллера является увеличенное количество цифровых и аналоговых портов входа/выхода и портов UART для коммуникации с периферийными модулями. В отличии от Arduino Uno и Arduino Nano, на данной плате порты для работы по интерфейсу I2C расположены на 20(SDA) и 21(SCL) пинах.
Схема распиновки платы Arduino Mega 2560 на русском
Прошивка микроконтроллера производится с помощью языка программирования Arduino, который основан на C++ и использует стандартные и собственные библиотеки для Ардуино. Для подключения устройств и сборки электрических схем используются коннекторы, которые подключаются к пинам платы. Данный микроконтроллер подходит для серьезных проектов, требующих большую производительность.