Как собрать самостоятельно блоки питания использующие lm317

Datasheet по lm317, lm350, lm338

Прежде чем перейти непосредственно к схемам, рассмотрим особенности и технические характеристики вышеприведенных линейных интегральных стабилизаторов (ЛИС).

Все три ИМ имеют схожую архитектуру и разработаны с целью построения на их основе не сложных схем стабилизаторов тока или напряжения, в том числе применяемых и со светодиодами. Различия между микросхемами кроются в технических параметрах, которые представлены в сравнительной таблице ниже.

LM317 LM350 LM338
Диапазон значений регулируемого выходного напряжения 1,2…37В 1,2…33В 1,2…33В
Максимальный показатель токовой нагрузки 1,5А
Максимальное допустимое входное напряжение 40В 35В 35В
Показатель возможной погрешности стабилизации

0,1%

Максимальная рассеиваемая мощность*
15-20 Вт
20-50 Вт
25-50 Вт

Диапазон рабочих температур
0° – 125°С
0° – 125°С
0° – 125°С

Datasheet
LM317.pdf

LM350.pdf
LM338.pdf

* — зависит от производителя ИМ.

Во всех трех микросхемах присутствует встроенная защита от перегрева, перегрузки и возможного короткого замыкания.

Выпускаются интегральные стабилизаторы (ИС) в монолитном корпусе нескольких вариантов, самым распространенным является TO-220. Микросхема имеет три вывода:

  1. ADJUST. Вывод для задания (регулировки) выходного напряжения. В режиме стабилизации тока соединяется с плюсом выходного контакта.
  2. OUTPUT. Вывод с низким внутренним сопротивлением для формирования выходного напряжения.
  3. INPUT. Вывод для подачи напряжения питания.

Применения регулируемого стабилизатора

При проектировании электронных устройств, содержащих стабилизаторы напряжения, более предпочтительно применять регулятор напряжения на LM317, особенно для ответственных узлов аппаратуры. Использование таких решений требует дополнительной установки двух резисторов, но обеспечивает лучшие параметры питания, чем традиционные микросхемы с фиксированными напряжениями стабилизации, обладают большей гибкостью для разных применений.

Напряжение на выходе рассчитывается по формуле:

UOUT = UREF (1+ R2/R1) + IADJ, где:

  • VREF = 1,25V, ток управляющего выхода;
  • IADJ весьма мал – около 100 мкА и определяет погрешность установки напряжения, в большинстве случаев не учитывается.

Входной конденсатор (керамический или танталовый 1мкФ) устанавливается при значительном удалении от микросхемы ёмкости фильтра источника питания – более 50 мм, конденсатор на выходе применяется для снижения влияния переходных процессов на высоких частотах, для многих применений необязателен. Схема включения использует только один элемент регулировки – переменный резистор, на практике применяется многооборотный или заменяется постоянным нужного номинала. Метод управления позволяет реализовать программируемый источник на несколько напряжений, переключаемый любым доступным способом: реле, транзистором и т. д. Подавление пульсаций можно улучшить, если зашунтировать вывод управления конденсатором ёмкостью 5-15 мкФ.

Диоды типа 1N4002 устанавливаются при наличии выходного фильтра с конденсаторами большой ёмкости, выходном напряжении более 25 вольт и шунтирующей ёмкости свыше 10 мкФ. Микросхема LM317 редко используется на предельных режимах эксплуатации, средний ток нагрузки для многих решений не превышает 1,5 А. Установка прибора на радиатор необходима в любом случае, при выходном токе более 1 ампера желательно использовать корпус ТО-3 или ТО-220 с металлической контактной площадкой LM317T.

К сведению.
Увеличить нагрузочную способность стабилизатора напряжения можно, применив мощный транзистор как регулирующий элемент для выходного тока.

Ток нагрузки устройства определяется параметрами VT1, подойдёт любой n-p-n транзистор с током коллектора 5-10 А: TIP120/132/140, BD911, КТ819 и др. Возможно параллельное включение двух-трёх штук. В качестве VT2 применяется любой кремниевый средней мощности, соответствующей структуры: BD138/140, КТ814/816.

Следует учитывать особенности подобных схем: допустимая разница между напряжениями на входе и выходе формируется из падений напряжений на транзисторе, около 2 вольт, и микросхеме, для которой минимальное значение – 3 вольта. Для устойчивой работы устройства рекомендуется не менее 8-10 вольт.

Свойства микросхем серии LM317 позволяют стабилизировать с высокой точностью ток нагрузки в широких пределах.

Фиксация тока обеспечивается подключением всего одного резистора, номинал которого рассчитывается по формуле:

I = UREF/R + IADJ = 1.25/R, где UREF = 1,25 V (сопротивление R в омах).

Схема может применяться для зарядки аккумуляторов стабильным током, питания светодиодов, для которых важно постоянство тока при изменении температуры. Также стабилизатор тока на LM317 может быть дополнен транзисторами, как и в случае стабилизации напряжения

Отечественная промышленность выпускает функциональные аналоги LM317 со сходными параметрами – микросхемы КР142ЕН12А/Б с токами нагрузки 1 и 1,5 ампера.

Выходной ток до 5 ампер обеспечивает стабилизатор LM338 при аналогичных других характеристиках, что позволяет использовать все преимущества интегрального прибора без внешних транзисторов. Полным аналогом LM317 по всем параметрам, кроме полярности, является регулятор отрицательного напряжения LM337, на базе этих двух микросхем легко строятся двухполярные блоки питания.

Схема линейного стабилизатора напряжения 12в

В линейных стабилизаторах используются микросхемы КРЕН, а также LM7805, LM1117 и LM350. Следует отметить, что символика КРЕН не является аббревиатурой. Это сокращение полного названия микросхемы стабилизатора, обозначаемой как КР142ЕН5А. Таким же образом обозначаются и другие микросхемы этого типа. После сокращения такое название выглядит по-другому – КРЕН142.

Линейные стабилизаторы или стабилизаторы напряжения постоянного тока схемы получили наибольшее распространение. Их единственным недостатком считается невозможность работы при напряжении, которое будет ниже заявленного выходного напряжения.

Например, если на выходе LM7805 нужно получить напряжение в 5 вольт, то входное напряжение должно быть, как минимум 6,5 вольт. При подаче на вход менее 6,5В, наступит так называемая просадка напряжения, и на выходе уже не будет заявленных 5-ти вольт. Кроме того, линейные стабилизаторы очень сильно нагреваются под нагрузкой. Это свойство лежит в основе принципа их работы. То есть, напряжение, выше стабилизируемого, преобразуется в тепло. Например, при подаче на вход микросхемы LM7805 напряжения 12В, то в этом случае 7 из них уйдут для нагрева корпуса, и лишь необходимые 5В поступят потребителю. В процессе трансформации происходит настолько сильный нагрев, что данная микросхема просто сгорит при отсутствии охлаждающего радиатора.

Подключение

Расчет стабилизатора тока LM317 базируется на нескольких способах подключения. Ниже приведены основные схемы:

  1. Если использовать мощный транзистор типа Q1, можно без радиатора микросборки получить на выходе ток 100 мА. Этого вполне хватает для управления транзистором. В качестве подстраховки от излишнего заряда используются защитные диоды D1 и D2, а параллельный электролитический конденсатор выполняет функцию по снижению посторонних шумов. При использовании транзистора Q1, предельная выходная мощность прибора составит 125 Вт.
  2. В другой схеме обеспечивается ограничение подачи тока и стабильная работа светодиода. Специальный драйвер позволяет запитать элементы мощностью от 0, 2 ватт до 25 вольт.
  3. В очередной конструкции применяется трансформатор понижения напряжения из переменной сети от 220 Вт до 25 Вт. При помощи диодного мостика переменное напряжение трансформируется в постоянный показатель. При этом все перебои сглаживаются за счет конденсатора типа С1, что обеспечивает поддержание стабильной работы регулятора напряжения.
  4. Следующая схема подключения считается одной из самых простых. Напряжение поступает с вторичной обмотки трансформатора на 24 вольта, выпрямляется при проходе через фильтр, и на выдаче получается постоянный показатель 80 вольт. Это позволяет избежать превышения максимального порога подачи напряжения.

Стоит отметить, что простое зарядное устройство также можно собрать на базе микросхемы рассматриваемого прибора. Получится стандартный линейный стабилизатор с регулируемым показателем выходного напряжения. В аналогичной роли может функционировать микросборка устройства.

Многофункциональный прибор

Ещё недавно высокой популярностью пользовался универсальный модуль XL4015. По своим характеристикам он подходит для подключения светодиодов с высокой мощностью (до 100 Ватт). Стандартный вариант его корпуса припаян к плате, выполняющей функции радиатора. Чтобы улучшить охлаждение XL4015, схема должна быть доработана с установкой радиатора на коробку устройства.

Многие пользователи просто ставят его сверху, однако, эффективность такой установки довольно низкая. Систему охлаждения желательно располагать внизу платы, напротив пайки микросхемы. Для оптимального качества её можно отпаять и установить на полноценный радиатор, используя термопасту. Провода потребуется удлинить. Дополнительное охлаждение можно монтировать и для диодов, что значительно повысит эффективность работы всей схемы.

Среди драйверов наиболее универсальным считается регулируемый. Обязательно устанавливается переменный резистор, который задаёт количество ампер. Эти характеристики обычно указываются в следующих документах:

  • В сопроводительной документации к микросхеме.
  • В datasheet.
  • В стандартной схеме включения.

Без добавочного охлаждения микросхемы такие устройства выдерживают 1—3 А (в соответствии с моделью контроллера широтно-импульсной модуляции). Главный недостаток этих драйверов — чрезмерный нагрев диода и дросселя. Выше 3 А потребуется охлаждение мощного диода и контроллера. Дроссель заменяют более подходящим либо перематывают толстым проводом.

Характеристика регулятора

По своему виду приспособления могут изготавливаться в портативном или стационарном исполнении. Устанавливаются они в любом положении: вертикальном, потолочном, горизонтальном.

К основным характеристикам устройств относят следующие параметры:

  1. Плавность регулировки. Обозначает минимальный шаг, с которым происходит изменение величины разности потенциалов на выходе. Чем он плавнее, тем точнее можно выставить значение напряжения на выходе.
  2. Рабочая мощность. Характеризуется значением силы тока, которое может пропускать через себя прибор продолжительное время без повреждения своих электронных связей.
  3. Максимальная мощность. Пиковая величина, которую кратковременно выдерживает устройство с сохранением своей работоспособности.
  4. Диапазон входного напряжения. Это значения входного сигнала, с которым устройство может работать.
  5. Диапазон изменяемого сигнала на выходе устройства. Обозначает значения разности потенциалов, которое может обеспечить устройство на выходе.
  6. Тип регулируемого сигнала. На вход устройства может подаваться как переменное, так и постоянное напряжение.
  7. Условия эксплуатации. Обозначает условия, при которых характеристики регулятора не изменяются.
  8. Способ управления. Выставление выходного уровня сигнала может осуществляться пользователем вручную или без его вмешательства.

Мощные аналоги LM317T — LM350 и LM338

Правда, это честно показано на диаграмме Ripple Rejection. Теперь — о самом неприятном, а именно о несоответствии реальных электрических характеристик заявленным.
Это типовая схема стабилизатора напряжения с выходным напряжением 12 В.
Рекомендации по применению защитных диодов для LM носят обще-теоретический характер и рассматривают ситуации, которых не бывает на практике. Самым эффективный способ, это собрать простой стенд используя макетную плату для проверки и запитать все от батарейки,. Для этого в управляющую цепь включаем цепочки из транзисторов и резисторов, как показано на рисунке ниже.
Микросхема LM в корпусе ТО способна стабильно работать при максимальном токе нагрузки до 1,5 ампер. А схемы и данные в его datasheet все те же … Итак, недостатки LM, как микросхемы и ошибки в рекомендациях по ее использованию.
Также легко сделать на этой микросхеме источник с несколькими фиксированными напряжениями, которые можно переключать программно, с помощью микроконтроллера. Конфигурация выводов Типовая схема включения LM Схема регулируемого блока питания на LM будет выглядеть так: Мощность трансформатора Вт, напряжение вторичной обмотки вольт. Следовательно, на вход Vin надо подать больше чем 5 вольт.

Технические характеристики:


Это максимальные значения, которые могут привести к повреждению устройства или повлиять на стабильность его работы. Что увеличивает уровень пульсаций на нагрузке с повышением частоты. А для LM она фактически означает степень собственной ущербности и показывает, как же хорошо LM борется с пульсациями, которые сама же берет с выхода и опять загоняет внутрь самой себя. Тогда схема нашего регулируемого двуполярного источника может выглядеть например так: Здесь дополнительные мощные транзисторы VT1 и VT2 позволяют увеличить выходной ток стабилизаторов. Кроме отечественной интегральной схемы КРЕН12, выпускаются более мощные импортные аналоги, выходные токи которых в раза больше.

Стабилизация осуществляется путём изменения сопротивления одного из плеч делителя: сопротивление постоянно поддерживается таким, чтобы напряжение на выходе стабилизатора находилось в установленных пределах. Схема стабилизатора тока на lm Плюс данного стабилизатора в том, что он является линейным и не вносит высокочастотные помехи, например как некоторые импульсные стабилизаторы. Стабилизация и защита схемы Емкость С2 и диод D1 не обязательны. Аналоги lm Иногда найти конкретно требуемую микросхему на рынке не удается возможным, тогда можно воспользоваться подобными ей. Поскольку мы хотим 5 вольт на выходе, мы подадим к регулятору 7 вольт.

Что довольно часто наблюдается при изготовлении мощного светильника на светодиодах. Можно упростить себе жизнь, если использовать микросхему LM — аналог микросхемы LM, но на отрицательное напряжение. Что увеличивает уровень пульсаций на нагрузке с повышением частоты. Схема стабилизатора тока на lm Плюс данного стабилизатора в том, что он является линейным и не вносит высокочастотные помехи, например как некоторые импульсные стабилизаторы. Поэтому вам даже не придется переделывать схему готового устройства с целью подгонки параметров регулятора напряжения или неизменяемого стабилизатора.
Блок питания на LM338T part 1

Плюсы и минусы

Как показывает практика, мощность резистора при эксплуатации лучше увеличить по площади рассеивания на 30 %, а в отсеке низкой конвекции – на 50 %. Кроме ряда преимуществ, стабилизатор тока светодиода LM317 имеет несколько минусов. Среди них:

  • Небольшой коэффициент полезного действия.
  • Необходимость отвода тепла от системы.
  • Стабилизация тока свыше 20 % от предельного значения.

Избежать проблем в эксплуатации прибора поможет применение импульсных стабилизаторов.

Стоит отметить, что если нужно подключить мощный светодиодный элемент мощностью 700 миллиампер, потребуется рассчитать значения по формуле: R = 1, 25/0, 7 = 1.78 Ом. Рассеиваемая мощность соответственно составит 0, 88 Ватт.

Дополнительные возможности

С применением микросборки LM317T схема блока питания становится более функциональной. Конечно, в процессе эксплуатации блока питания, вам потребуется проводить контроль основных параметров. Например, потребляемого тока либо выходного напряжения (особенно это актуально для схемы с регулировкой). Поэтому на лицевой панели нужно смонтировать индикаторы. Кроме того, вам нужно знать, включен ли в сеть блок питания. Обязанность оповещать вас о включении в электросеть лучше возложить на светодиод. Данная конструкция вполне надежная, только питание для него нужно брать с выхода выпрямителя, а не микросборки.

Для контроля тока и напряжения можно использовать стрелочные индикаторы с градуированной шкалой. Но в случае, если хочется сделать блок питания, который не будет уступать лабораторным, можно воспользоваться и ЖК-дисплеями. Правда, для измерения тока и напряжения на LM317T схема блока питания усложняется, так как необходимо использование микроконтроллера и специального драйвера – буферного элемента. Он позволяет подключать к портам ввода-вывода контроллера ЖК-дисплей.

Регулируемый стабилизатор напряжения схема

Нередко возникают ситуации, когда напряжение, выдаваемое стабилизатором, необходимо отрегулировать. На рисунке представлена простая схема регулируемого стабилизатора напряжения и тока, позволяющая не только стабилизировать, но и регулировать напряжение. Ее можно легко собрать даже при наличии лишь первоначальных познаний в электронике. Например, входное напряжение составляет 50В, а на выходе получается любое значение, в пределах 27 вольт.

В качестве основной детали стабилизатора используется полевой транзистор IRLZ24/32/44 и другие аналогичные модели. Данные транзисторы оборудуются тремя выводами – стоком, истоком и затвором. Структура каждого из них состоит из металла-диэлектрика (диоксида кремния) – полупроводника. В корпусе расположена микросхема-стабилизатор TL431, с помощью которой и настраивается выходное электрическое напряжение. Сам транзистор может оставаться на радиаторе и соединяться с платой проводниками.

Данная схема может работать с входным напряжением в диапазоне от 6 до 50В. Выходное напряжение получается в пределах от 3 до 27В и может быть отрегулировано с помощью подстрочного резистора. В зависимости от конструкции радиатора, выходной ток достигает 10А. Емкость сглаживающих конденсаторов С1 и С2 составляет 10-22 мкФ, а С3 – 4,7 мкФ. Схема сможет работать и без них, однако качество стабилизации будет снижено. Электролитические конденсаторы на входе и выходе рассчитываются примерно на 50В. Мощность, рассеиваемая таким стабилизатором, не превышает 50 Вт.

Метка: LM317T

Предлагаемый несложный стабилизатор с регулируемым в широких пределах выходным напряжением и токовой защитой может быть использован как в одноканальных, так и в многока­нальных лабораторных источниках питания.

Выходное напряжение стабилизатора можно регулировать от 3 до 27 В, Наибольший ток нагрузки — 3А. Его прототипом послужил стабилизатор, описанный в статье А.

Уварова “Лабо­раторный источник питания” (“Радио­конструктор”, 2001, …

Читать далее

Постоянная ссылка на это сообщение: https://meandr.org/archives/35226

В радиолюбительской практике в быту и на работе иногда возникает необходимость в резервировании питания различных устройств.

Речь не идет об источниках бесперебойного питания (НРБ), а об аварийном освещении, устройствах охранной сигнализации, любительских метеостанциях, рекламных щитах, радиолюбительских репитерах, туристических палатках, т.е.

в устройствах и системах, где в качестве резервного или основного питания применяется аккумулятор без преобразования …

Читать далее

Постоянная ссылка на это сообщение: https://meandr.org/archives/23888

Здесь представлена схема регулируемого источника питания 1.2 – 36В, 5А (Рис.1). Рис.1. Принципиальная схема Основные элементы – транзистор Дарлингтона TIP147 PNP (Рис.2 ) и линейный регулируемый стабилизатор положительного напряжения LM317 (Характеристики LM317 представлены в таблице 1). Рис.2. Цоколевка транзистор Дарлингтона TIP147

Читать далее

Постоянная ссылка на это сообщение: https://meandr.org/archives/12584

Для управления напряжением используется потенциометр, который подключается к соответствующему разъему на плате. Напряжения поступает на диодный мост выпрямителя (напр.

4 шт 1N4007), конденсатор (1000 мкФ) и так далее, достаточно только подключить выход трансформатора источника переменного тока

Важно, входное напряжение не должно …. Читать далее

Читать далее

Постоянная ссылка на это сообщение: https://meandr.org/archives/10314

Один из важных узлов радиоэлектронной аппаратуры – стабилизатор напряжения в блоке питания. Еще совсем недавно такие узлы строили на стабилитронах и транзисторах.

Общее число элементов стабилизатора было довольно значительным, особенно если от него требовались функции регулирования выходного напряжения, защиты от перегрузки и замыкания выхода, ограничения выходного тока на заданном уровне. С появлением специализированных микросхем ситуация …

Читать далее

Регулируемый стабилизатор тока

Меня как радиолюбителя со стажем 20 лет радует ассортимент продаваемых готовых блоков и модулей. Сейчас  из готовых блоков можно собрать любое устройство за минимальное время.

Цена начинается от 35руб. за DC-DC преобразователь напряжения, драйвер подороже и отличается двумя тремя подстроечными резисторами, вместо одного.

Для более универсального использования лучше подходит регулируемый драйвер. Основное отличие, это установка переменного резистора в цепи, задающей амперы на выходе. Эти характеристики могут быть указаны в типовых схемах включения в спецификациях на микросхему, даташит, datasheet.

Слабые места таких драйверов, это нагрев дросселя и диода Шотки. В зависимости от модели ШИМ контроллера, они выдерживают то 1А до 3А без дополнительного охлаждения микросхемы. Если выше 3А, то требуется охлаждение ШИМ и мощного диода Шотки. Дроссель перематывают более толстым проводом или заменяют на подходящий.

КПД зависит от режима работы, разницы напряжения между входом и выходом. Чем выше коэффициент полезного действия, тем ниже нагрев стабилизатора.

Принцип действия

Чтобы в результате прибор грамотно регулировал напряжение и мог правильно измерять мощность тока, исходящего от электросети, нужно понимать его принцип функционирования.

Преобразователь lm317t характеризуется такими действиями, как нормализация интенсивности потока тока к выходному напряжению, что способствует снижению мощности электричества. Уменьшение силы электротока происходит в самом резисторе, обладающем показателем в 1.25V.

Рабочий блок питания

Очень важно, чтобы области спаивания имели литую форму. В случае если соединение было произведено неправильно, возникает вероятность образования короткого замыкания

Также следует применять качественные составляющие только от известных производителей.

Характеристики параллельной цепи

Основные характеристики параллельной цепи перечислены ниже:

Сила тока в параллельной цепи

Согласно закону Ома, I = U / R. Это подразумевает, что каждый резистор в этой цепи будет потреблять ток от источника. Следовательно, общий ток, потребляемый от источника, равен сумме токов ветвления, и ток, протекающий в каждом тракте, зависит от сопротивления ветви. Тем не менее, напряжение остается неизменным и создает разность потенциалов на его клеммах.

Общий ток (It) может быть рассчитан с использованием уравнения,

Давайте рассмотрим, что параллельная цепь построена с двумя резисторами (R1 и R2) с разными значениями (10 Ом и 5 Ом) соответственно. Напряжение 10V подается через резисторы , в результате тока 1А , проведенной от батареи через R1 и R2, который получен из уравнения I = U / R.

Следовательно, два тока ветвления в цепи составляют 1А и 2А, которые суммируют до 3А.

Сопротивления в параллельной цепи

Общее сопротивление любого количества резисторов рассчитывается по уравнению,

Взаимное значение R1 = 1/R1 = 1/10 = 0,1

Взаимное от R2 = 1/R2 = 1/5 = 0,2

Сумма обратных выше = 0,3

R t = 1 / 0,3 = 3,33 Ом

Мощность в параллельной цепи

Как только общий ток и приложенные значения напряжения известны, мощность может быть рассчитана с использованием уравнения P = UI . В приведенном выше примере, приложенное напряжение U = 10В и I = 3A, P = 10×3 = 30 Вт

Схемы включения

Безусловно, наипростейшим способом токового ограничения для светодиодных ламп станет последовательное включение добавочного резистора. Но данное средство подходит лишь только для маломощных LED.

Простейший стабилизированный блок питания

Чтобы сделать стабилизатор тока потребуется:

  • микросхемка LM317;
  • резистор;
  • монтажные средства.

Собираем модель по нижеприведенной схеме:

Модуль можно применять в схемах разных зарядных устройств либо регулируемых ИБ.

Блок питания на интегральном стабилизаторе

Этот вариант более практичный. LM317 ограничивает потребляемый ток, который задается резистором R.

Помните, что максимально допустимое значение тока, которое нужно для управления LM317, составляет 1,5 А с хорошим радиатором.

Схема стабилизатора с регулируемым блоком питания

Ниже изображена схема с регулируемым выходным напряжением 1.2–30 В/1,5 А.

Переменный ток преобразуется в постоянный с помощью моста-выпрямителя (BR1). Конденсатор С1 фильтрует пульсирующий ток, С3 улучшает переходную характеристику. Это означает, что стабилизатор напряжения может отлично работать при постоянном токе на низких частотах. Выходное напряжение регулируется ползунком Р1 от 1.2 вольта до 30 В. Выходной ток составляет около 1,5 А.

Подбор резисторов по номиналу для стабилизатора должен осуществляться по точному расчету с допустимым отклонением (небольшим). Однако разрешается произвольное размещение резисторов на монтажном плате, но желательно для лучшей стабильности размещать их подальше от радиатора LM317.

Стабилизированный регулируемый блок питания с защитой от перегрузок

Множество радиолюбительских блоков питания (БП) выполнено на микросхемах КР142ЕН12, КР142ЕН22А, КР142ЕН24 и т.п. Нижний предел регулировки этих микросхем составляет 1,2…1,3 В, но иногда необходимо напряжение 0,5…1 В. Автор предлагает несколько технических решений БП на базе данных микросхем.

Интегральная микросхема (ИМС) КР142ЕН12А (рис.1) представляет собой регулируемый стабилизатор напряжения компенсационного типа в корпусе КТ-28-2, который позволяет питать устройства током до 1,5 А в диапазоне напряжений 1,2…37 В. Этот интегральный стабилизатор имеет термостабильную защиту по току и защиту выхода от короткого замыкания.

Рис.1. ИМС КР142ЕН12А

На основе ИМС КР142ЕН12А можно построить регулируемый блок питания, схема которого (без трансформатора и диодного моста) показана на рис.2. Выпрямленное входное напряжение подается с диодного моста на конденсатор С1. Транзистор VT2 и микросхема DA1 должны располагаться на радиаторе. Теплоотводящий фланец DA1 электрически соединен с выводом 2, поэтому если DA1 и транзистор VD2 расположены на одном радиаторе, то их нужно изолировать друг от друга. В авторском варианте DA1 установлена на отдельном небольшом радиаторе, который гальванически не связан с радиатором и транзистором VT2.

Виды стабилизирующих устройств

По способу ограничения силы тока выделяются устройства линейного и импульсного типа.

Так как напряжение на светодиоде – неизменная величина, то стабилизаторы тока часто считают стабилизаторами мощности LED. Фактически последняя прямо пропорциональна изменению напряжения, что характерно для линейной зависимости.

Линейный стабилизатор нагревается тем больше, чем больше прилагается к нему напряжения. Это его главный недочёт. Преимущества данной конструкции обусловлены:

  • отсутствием электромагнитных помех;
  • простотой;
  • низкой стоимостью.

Более экономичными устройствами являются стабилизаторы на основе импульсного преобразователя. В этом случае мощность прокачивается порционно – по мере необходимости для потребителя.

Состав разделов проектной документации РФ

Схемы и расчеты

Наибольшее применение ИС нашли в источниках питания светодиодов. Рассмотрим простейшую схему стабилизатора тока (драйвера), состоящую всего из двух компонентов: микросхемы и резистора.


На вход ИМ подается напряжение источника питания, управляющий контакт соединяется с выходным через резистор (R), а выходной контакт микросхемы подключается к аноду светодиода.

Если рассматривать самую популярную ИМ, Lm317t, то сопротивление резистора рассчитывают по формуле: R=1,25/I (1), где I – выходной ток стабилизатора, значение которого регламентируется паспортными данными на LM317 и должно быть в диапазоне 0,01-1,5 А. Отсюда следует, что сопротивление резистора может быть в диапазоне 0,8-120 Ом. Мощность, рассеиваемая на резисторе, рассчитывается по формуле: PR=I 2 ×R (2). Включение и расчеты ИМ lm350, lm338 полностью аналогичны.

Постоянные резисторы производятся с небольшим разбросом значения сопротивления, поэтому получить нужное значение выходного тока не всегда возможно. Для этой цели в схему устанавливается дополнительный подстроечный резистор соответствующей мощности.


Это немного увеличивает цену сборки стабилизатора, но гарантирует получение необходимого тока для питания светодиода. При стабилизации выходного тока более 20% от максимального значения, на микросхеме выделяется много тепла, поэтому ее необходимо снабдить радиатором.

Читать также: Нарезание прямоугольной резьбы на токарном станке

Пример расчётов и сборки

Изготавливают стабилизатор напряжения для светодиодов в авто своими руками, используя схему подключения LM317 с установкой в неё одного резистора R1.

Схема включения LM317

При изготовлении стабилизатора с током до 1 А мощность резистора должна быть не менее 2-х ватт. В таблице приведены уточнённые значения тока для резисторов стандартного ряда. Необходимое сопротивление R1 можно выбрать из этой таблицы.

Таблица резисторов

Важно! Чтобы собрать стабилизатор для авто, нужно помнить, что бортовое напряжение меняется в интервалах от 11,6 В до 14,2 В (при работе от аккумулятора или генератора). При таком Uпит в схему можно включить 3 led-диода, соединив их последовательно

Падение напряжения в цепи составит:

При таком Uпит в схему можно включить 3 led-диода, соединив их последовательно. Падение напряжения в цепи составит:

  • 9,6 В – на диодах (3,2 * 3 = 9,6);
  • 1,25 В – падение на стабилизаторе;
  • 0,6 В – на диоде, включенном в цепь для защиты от обратных напряжений.

Дополнительный диод включать рекомендуется, для того чтобы защитить схему от обратного потенциала, который может возникнуть при работе автомобиля. Если сложить все падения U на элементах, получится 9,6 + 1,25 + 0,6 = 11,45 В. Как видно, даже самое низкое Uпит от бортовой сети не повлияет на ток собранной схемы.

Схема включения с использованием дополнительного диода D1 и супрессора DZ1 (24V)

Включение супрессора защитит схему от всплесков положительной полярности.

Внимание! Чтобы уменьшить мощность рассеивания на LM317, число led-диодов подбирается таким, чтобы U на самом стабилизаторе было 1,3 вольта, не меньше. При больших токах стабилизатор устанавливают на теплоотвод

Использование ИМС LM317 в качестве регулируемого стабилизатора напряжения от 0 до 3 В

Схемы Питание · Силовая электроника

13-10-2015

Fairchild » LM317

Журнал РАДИОЛОЦМАН, январь 2015

Vladimir Rentyuk

EDN

Большинству разработчиков известно, что недорогой трехвыводной регулируемый стабилизатор напряжения, такой, например, как LM317, выпускаемый Fairchild Semiconductor, они могут использовать, как правило, только в диапазоне напряжений от 36 В до 3 В.

Без специальных решений сделать минимальное выходное напряжение такой ИМС менее 1.25 В невозможно. Это связано с тем, что напряжение внутреннего опорного источника таких стабилизаторов равно именно 1.

25 В, и без дополнительного потенциального смещения их выходное напряжение не может быть меньше этой величины .

Одним из способов решения этой проблемы является смещение потенциала вывода установки выходного напряжения (обозначаемого в спецификациях как Adj или VADJ) с помощью дополнительного источника опорного напряжения на основе двух диодов .

Рисунок 1. Схема недорогого простого регулируемого стабилизатора напряженияс диапазоном от 0 до 3 В.

Хотя для диапазона выходных напряжений от 1.2 до 15 В или для стабилизаторов более высокого напряжения такой подход вполне приемлем, для получения сверхнизких напряжений, как фиксированных, так и регулируемых, он не подходит. Используемые в два диода 1N4001 не обеспечивают необходимое смещение потенциала в 1.

2 В и, к тому же, вносят дополнительную температурную нестабильность порядка 2.5 мВ/К . Таким образом, при изменении окружающей температуры в диапазоне 20 °С (это типичная ситуации для помещения), дополнительный температурный дрейф выходного напряжения составит примерно 100 мВ. А это более 6% для выходного напряжения 1.

5 В, и уже 10% для напряжения 1 В.

Проблему можно решить, например, с помощью ИМС источников опорного напряжения, таких как LM185 компании Fairchild или AD589 от Analog Devices.

Однако, помимо того, что эти устройства дороги, они требуют не только дополнительной регулировки нуля, но еще и согласования. Это связано с разбросом опорных напряжений, которые могут лежать в диапазоне от 1.215 В до 1.255 В для LM185 и от 1.2 В до 1.

Важно

25 В для AD589. Заметим, что опорное напряжение ИМС LM317 может находиться в пределах от 1.2 В до 1.3 В.

На Рисунке 1 представлен вариант недорогого регулируемого стабилизатора напряжения с диапазоном выходных напряжений от 0 до 3 В. Необходимый потенциал смещения формируется при помощи простого термостабильного источника постоянного тока . Вычислить этот ток можно при помощи следующего выражения:

где:

VF – прямое падение напряжения на светодиоде D1, равное примерно 2 В;VEBO – напряжение эмиттер-база транзистора Q1, приблизительно равное 0.68 В.

Используя эти значения, ток можно считать приблизительно равным

Этот источник постоянного тока и создает на резисторе R3 нужное нам напряжение смещения равное, примерно, –1.25 В. Установка нуля выполняется подстроечным резистором R6, который управляет током источника.

Резистор R5 защищает транзистор Q1. Светодиод D1 можно использовать в качестве индикатора включения. Выходное напряжение устанавливается потенциометром R2.

Рассчитать выходное напряжение можно с помощью следующего выражения:

где:

VREF – опорное напряжение IC1,VR3 – заданное компенсирующее напряжение на резисторе R3.

Вы должны установить это напряжение равным опорному напряжению ИМС для его компенсации. В этом случае

С резистором R2, настроенным на сопротивление 1.2 кОм, эта схема нашла применение в качестве эквивалента типичной щелочной батареи с выходным напряжением 1.56 В и использовалась в исследовательских работах в ряде проектов.

Ссылки

  1. «LM317 3-Terminal Positive Adjustable Regulator,» Fairchild Semiconductor Corp, June 2005.
  2. «LM350 3-Terminal 3A Positive Adjustable Voltage Regulator,» Fairchild Semiconductor Corp, 2001.
  3. Schenk, C, and Ulrich Tietze, Halbleiter-Schaltungstechik, Springer-Verlag Berlin Heidelberg, 2002, ISBN: 3540428496.
  4. Rentyuk, Vladimir, «The Simple Temperature-Stabilized Constant-Current Source,» Electronics World, November 2006.
Оцените статью
Рейтинг автора
5
Материал подготовил
Андрей Измаилов
Наш эксперт
Написано статей
116
Добавить комментарий