Содержание
- 1 Изготовление самодельного фуговального станка
- 2 Зачем следить за воздухом
- 3 Принцип работы устройства
- 4 Принципы действия
- 5 Почему D9
- 6 Необходимые компоненты
- 7 Общественный мониторинг
- 8 На что обратить внимание при покупке?
- 9 Сейф под ружье своими руками
- 10 Прошивка
- 11 Сборка
- 12 Замеры и тесты
- 13 Семейство анализаторов от Xiaomi
- 14 По каким принципам работают датчики качества воздуха
- 15 Сервисы и приложения для контроля за воздухом
- 16 Высота и сечение – есть ли связь
- 17 Рейтинг профессиональных устройств
Изготовление самодельного фуговального станка
Боковая стенка
Прежде всего, изготовим боковую стенку, для этого используем фанеру толщиной 18-20мм размерами 150х480мм. Вырезав в заготовке место, в котором будет закреплён электрорубанок. Делать это следует при помощи электрического, или ручного лобзика, так как форма выборки имеет сложную конфигурацию.
На сверлильном станке в боковой панели следует сделать два паза на расстоянии 70 мм, с их помощью, в дальнейшем, будет крепиться основание переднего стола.
Основание станка
Изготавливаем основание. Это простой прямоугольник, который нужно вырезать на циркулярке или ином распиловочном станке из той же фанеры толщиной 18-20мм размерами 180х480мм. Тут все просто – соединяем основание и боковую стенку под углом 90 градусов саморезами в торец стенки.
В дальнейшем рубанок будет устанавливаться следующим образом.
Задний стол
Задний стол также изготавливается из фанеры 18-20мм размерами 150х600мм; выпиливается технологический проем, чтобы получилась вот такая форма.
Торцевую кромку проема нужно спилить под углом. Сделать это можно на циркулярной пиле или электролобзиком.
Далее, открутив 4 винта, снимаем неподвижную «подошву» с электрорубанка и размечаем стол будущего станка.
Просверлив необходимые технологические отверстия, их нужно их немножко раззенковать, чтобы штатные винты были утоплена «заподлицо» и не препятствовали движению заготовки.
Устанавливаем наш самодельный задний стол на место снятой подошвы электрорубанка штатными винтами. После этого нужно зафиксировать этот стол на боковой стенке саморезами в торец этой стенки.
Передний подвижный стол
Передний стол, который должен регулироваться по высоте, делается из двух прямоугольных деталей, скрепленных под углом 90 градусов. Для большей прочности конструкции нужно между ними сделать треугольные упоры. В данном примере все крепится на саморезы, тем не менее, рекомендуется для большей прочности еще места стыков промазать столярным клеем. В итоге должна получиться вот такая конструкция.
На расстоянии 70 мм друг от друга нужно сделать два сквозных отверстия диаметром 8-10 мм и в них забить мебельные забивные гайки. Лучше это сделать до сборки основания.
Установка подвижного стола делается с помощью двух винтов с обратной стороны боковой стенки. Для удобства можно использовать бинты с барашковой головкой или сделать самодельные крепления-держатели. Установка должно производиться так, чтобы плоскость подвижной части «подошвы» электрорубанка была в одной плоскости с подвижным столом фуговального станка.
Боковой упор
Боковой упор нужен, чтобы обеспечить ровное и параллельной движение заготовки, а также для выведения точного угла 90 градусов между рабочим столом и плоскостью упора. Изготавливается упор просто – из двух деталей, которые можно выполнить как из фанеры, так и из массива дерева. В данном случае использован массив.
Две прямоугольных заготовки скрепляются под углом 90 градусов, образуя «уголок». После чего его жестко крепят к неподвижной части стола.
Фуговальный станок своими руками из электрорубанка готов к работе.
Зачем следить за воздухом
Загрязнения воздуха часто не видны глазу. Вдыхая вредные вещества мы осознаем это, если видим задымленность, или чувствуем неприятный запах. Но обычно человек не ощущает, чем дышит.
Последствия вдыхания вредных веществ в виде, например, головной боли, легко списать на усталость или другие причины. Даже если мы знаем, что надышались чего-то вредного, потому что пахло «гарью» или «химией» или видели дым, доказать что-то трудно, ведь «виновник» улетучился.
Загрязнения воздуха могут приводить к развитию сердечно-сосудистых, респираторных и онкологических заболеваний. Это не происходит за один вдох. Вредные вещества накапливается в организме совокупно с другими факторами, в частности с последствиями курения, что со временем приводит к хроническим заболеваниям. В этом «коварство» загрязнения воздуха.
Сейчас загрязнение воздуха убивает больше человек, чем СПИД, малярия и туберкулёз вместе взятые. Больше всего от грязного воздуха страдает население стран со средним и низким уровнем дохода.
По данным Всемирной Организации Здравоохранения, 92% населения планеты живут в зонах неудовлетворительного состояния воздуха, и это загрязнение способствует 1 из 8 смертей.
Источников загрязнений множество: промышленность, свалки, лесные пожары, транспорт. Именно на автотранспорт в большинстве крупных городов России приходится 80-90 % всего объёма загрязняющих веществ в воздухе. Поэтому даже если поблизости нет дымящих труб заводов или мусорного полигона, от выбросов автомобилей почти никому не укрыться.
Воздух один на всех, поэтому так важно знать, чем мы дышим. Эту задачу решает мониторинг воздуха
Принцип работы устройства
Каждое оборудование оснащается специальным инфракрасным датчиком, который работает с высокой точностью. Как не удивительно, но датчик измеряет свет, точнее его количество, проходящее через специальный фильтр, этот шаг прибору необходим для сравнения, так как большая часть углекислого газа сразу отсеивается. После получения первого значения (чистого воздуха), датчик начинает анализировать состояние помещения. Сравнивая два полученных значения, устройство определяет разницу и выводит показания на экран.
В качестве источника питания может выступать USB-провод, подключенный к электрической сети при помощи адаптера, но также некоторые устройства поддерживают автономную работу. Как только прибор запускается, ему необходимо пару минут, чтобы собрать информацию о количестве CO2 в помещении. По окончанию работы прибор подаст световой или звуковой сигнал, тогда пользователь сможет понять, нужно ли проветривать помещение или нет.
Большая часть продукции оснащается несколькими светодиодами, где зеленый означает, что климат в комнате хороший, желтый – слегка превышен уровень углекислого газа, однако ничего критичного нет. Когда загорается красный индикатор, это говорит о превышении допустимого значения в 1.5-2 раза, поэтому необходим срочно проветривать помещение.
После покупки монитора воздуха, человек сможет обеспечить себя:
- Хорошей работоспособностью;
- Зарядом энергии на весь день;
- Поднимется настроение;
- Поддержит правильный климат в квартире или офисе.
Продукт можно приобрести как в специализированном магазине, так и в интернете.
Принципы действия
Прибор сигнализирует об опасности изменением состояния. В прошлом качество условий в помещении шахты определяли, наблюдая за канарейкой. Смерть или болезненное состояние птицы указывали на опасное повышение концентрации нескольких соединений.
Современные датчики избирательны. Они делятся на:
- Излучающие. Считывают изменения инфракрасных или ультрафиолетовых волн. Так, в начале 2019-го ученые создали массив золотых нанодисков, в 100 раз активнее воспринимающих атмосферные изменения, в сравнении с существующими датчиками. Они реагировали на ИК-лазер УФ-излучением, интенсивность которого зависела от концентрации целевых примесей.
- Электрохимические. В основе лежит твердое проводящее вещество. При нагреве оно реагирует с поступающим воздухом в зависимости от его состава. Устройства улавливают углекислый газ.
- Биологические. Исследования, проведенные осенью 2018-го, показали, что мох чувствителен к диоксиду серы. Под действием вещества его листья сворачиваются. Другие растения также помогают следить за состоянием воздуха в реальном времени.
- Электроакустические. Оценивают изменения в частоте ультразвуковых колебаний. В основном применяется для определения уровня углекислого газа.
Сенсорные устройства сообщают пользователю об опасных изменениях специфическим поведением — цветом, звуком или цифрами на табло. Биоструктуры реагируют ухудшением состояния, вплоть до смерти (канарейки). Пользователи часто выбирают структуры, нацеленные на определенный загрязнитель. Устройства, определяющие несколько опасных веществ, не связанных химическим составом, характеризуются высокой ценой и сложностью.
Почему D9
Главная причина: набор датчиков в данном анализаторе показался мне наиболее сбалансированным по соотношению цена/качество.
Али завален кучей разных приборов, и многие — откровенная ерунда, или рейтинг продавцов слишком низкий. Например, есть некий дешевый прибор JQ-300, который, как заявлено, умеет примерно всё то же самое, передает данные по Wi-Fi на смартфон, а стоит в три раза меньше. Но, отзывы покупателей там же на али быстро приводят к пониманию, что JQ-300 практически бесполезен, как и JQ-200.
Ещё важным отличием D9-H является наличие датчика CO2 SenseAir S8. То есть, измерение происходит непосредственно, и судя например вот по этому видео, относительно точно для бытового устройства.
Watch this video on YouTube
Жаль, что автор сравнил приборы только по этому показателю.
Кстати, у того же производителя D9 есть ещё и модель K6, чуть более дешевая, с аналогичным функционалом. Как удалось выяснить из чужих отзывов, помимо дизайна отличается более старыми версиями датчиков PM2.5, а именно 3-е поколение против 10-го. Но это не точно. Кроме того, насколько существенна разница между поколениями датчиков я тоже не выяснял, хотя и эта информация в сети есть.
Необходимые компоненты
-
Плата с микроконтроллером ESP8266, например Wemos D1, NodeMCU
-
Датчик пыли SDS011 (мне обошёлся в € 14 на AliExpress)
-
Датчик температуры, влажности, атмосферного давления: BME280, BMP280, DHT22
-
Куча проводов
-
Подходящий корпус
-
Пластиковая трубка с внутренним диаметром 6 мм
-
Плоский кабель USB A—Micro-B (рекомендуемая длина около 2 м)
-
Источник питания 5 В (мин. 500 мА) с разъёмом USB (например, зарядное устройство от телефона)
-
Может пригодиться паяльник
Пару слов о датчиках температуры и прочего. Первоначально проектом поддерживались датчики DHT22, измеряющие температуру и влажность, параметры, которые полезно знать при анализе собранных данных. DHT22 (а также его более ограниченный собрат DHT11) предоставляют разрешение 1°C (кроме этого, DHT11 не может измерять температуры ниже 0°C). Чтобы улучшить качество данных, можно использовать альтернативу, BME280 от фирмы Bosch. BME280 даёт более точные измерения температуры с разрешением 0.01°C, а также измеряет атмосферное давление, поэтому LuftDaten рекомендуют использовать именно его. Разница в качестве измерений хорошо видна на этом графике из статьи от Random Nerd Tutorials:
Сравнение датчиков температуры
К сожалению, в моём местном магазине радиодеталей BME280 не оказалось, потому мне пришлось купить BMP280, вариант без измерения влажности, и DHT22, чтобы влажность всё же измерить. Надо сказать, что DHT22 в таких магазинах продаётся в двух вариантах: датчик сам по себе либо на плате с pull-up-резистором:
Модуль DHT22 с pull-up-резистором
В моём магазине цена была одинаковая, но я по ошибке заказал именно эту версию. Как оказалось, их не было на складе, ждать пришлось бы долго, но на складе был и датчик без платы за ту же цену. Проверка исходного кода прошивки показала, что в ней используется встроенный pull-up микропроцессора, так что внешний резистор, на платке или нет, не нужен (но с десяток резисторов я с перепугу всё же купил, т. к. проверить их необходимость в магазине не было возможности).
Общественный мониторинг
Во многих европейских странах помимо мониторинга качества воздуха, осуществляемого государственными организациями, осуществляется и общественный мониторинг, производимый независимыми организациями и просто жителями городов и деревень. Один из таких проектов, LuftDaten, основан группой сотрудников Штутгартской высшей технической школы. В рамках этого проекта был разработан вебсайт для сбора данных, а также простые в сборе датчики, которые может разместить у себя дома каждый желающий. Как сайт, так и прошивка устройства являются свободным ПО.
Карта чистоты воздуха от LuftDaten. Картографические данные: Участники OpenStreetMap
Как видно из карты на их сайте, датчики установлены уже во всех странах Европы, хотя больше всего их, конечно же, в Германии.
Кроме LuftDaten, существуют и другие похожие проекты: OpenSenseMap (тоже немецкий), а также AirCMS (из Челябинска). Прошивка для датчиков от Luftdaten позволяет отправлять данные сразу в несколько проектов, а также на произвольные web API.
Конечно же, точность данных, полученных таким способом, ниже, чем у дорогих станций мониторинга, используемых государственными организациями, но у общественной сети есть потенциал лучше покрыть территорию более дешёвыми станциями, получая хоть какое-то представление о ситуации в местах, где нет официальных станций мониторинга. Кроме того, существует возможность математически «привязать» и откалибровать менее точные данные с помощью данных, полученных от более точных станций.
На что обратить внимание при покупке?
Большинство производителей стараются сэкономить на некоторых элементах, отчего точность продукта будет минимальной, а само устройство подойдет для украшения интерьера
Чтобы такого не случилось важно знать несколько пунктов, которые помогут подобрать правильную модель:
- Качество корпуса. Начинать необходимо именно с этого, оборудование не должно выделять резкий запах пластмассы и не трещать при легком нажатии.
- Поинтересоваться о внутренних элементах. Желательно, чтобы продукция обладала хорошим светофильтром и датчиком, так как от этого зависит точность проведения замеров.
- Способ крепления. Продаются настенные устройства и настольные. Здесь выбор зависит от личных предпочтений.
- Наличие подсветки дисплея. Приборы в дешевом сегменте могут не оснащаться подсветкой, или она может быстро выйти из строя. Это создаст только дискомфорт при использовании.
- Бренд. Лучше купить продукцию от известного производителя с большим количеством положительных отзывов.
- Цена. Продаются изделия от 1 500 до 200 000 рублей, все зависит от назначения устройства и качественных материалов.
Сейф под ружье своими руками
Прошивка
Рекомендуется прошить процессор перед сборкой. Сделать можно это совсем вручную с помощью утилиты , но лучше это сделать специальным скриптом. Можно скачать сборки под разные операционные системы на сайте проекта, либо же поставить из исходников с GitHub.
После прошивки и перезапуска процессора должна появиться новая Wi-Fi сеть, как правило, начинающаяся на (в зависимости от языка и версии прошивки). Подключившись к этой сети, надо зайти на http://192.168.4.1/ и настроить подключение к домашней Wi-Fi сети. Надо сказать, что на этом шагу я на какое-то время зациклился: датчик упорно не хотел подключаться к сети, создавая свою собственную. Я подключил отладку через USB-serial (если будете пробовать, скорость нужно задать 9600 бод, эта скорость отличается от скорости загрузчика прошивки), где было видно, что датчик к сети подключается, но ошибок нет. Я уже было отчаялся, как вдруг сеть пропала и датчик появился в домашней сети: оказывается, в настройках есть параметр Duration router mode, в течение которого датчик будет в некоторых случаях держать собственную сеть, чтобы дать возможность поменять настройки.
Сборка
Как я уже упоминал выше, можно использовать как NodeMCU, как и более компактную плату Wemos D1. Функционально они идентичны, но NodeMCU несколько крупнее и имеет больше выводов. В моём распоряжении было несколько плат Wemos D1, так что я использовал именно их, но именно это решение привело к некоторым усложнениям в процессе сборки.
Схема подключения SDS011 и BME280
Как видно из схемы, датчик SDS011 подключается через UART, в то время как BME280 — через I²C. В моём случае вместо BME280 был BMP280, подключаемый на те же контакты, а также ещё и DHT22, который подключается на D7 (см. схему подключения). Всё бы хорошо, но у Wemos D1, в отличие от NodeMCU, лишь один контакт 3V3 и всего один GND! Пришлось паять разветвитель GND и удлинитель 3V3.
В итоге мой Франкенштейнов монстр выглядел примерно так:
Вся электроника в сборе
К процессорной платке я прикрепил изолентой кусок пористого пенопласта, чтобы в случае попадения влаги внутрь корпуса, хотя бы часть её задержать. Всё устройство было помещено в ведёрко от йогурта
Важно в корпусе сделать не только отверстие для гибкой трубки, ведущей к SDS011, но и дополнительные отверстия, обеспечивающие циркуляцию воздуха, в том числе и для того, чтобы показания датчиков температуры, влажности и давления имели какой-то смысл
Плохо себя зарекомендовала упаковка от маргарина: после чуть менее, чем года на улице, коробочка начала рассыпаться, в конце концов во время ливня вода попала внутрь и каким-то образом повредила датчик пыли:
Рама не совсем хари
Как видно из фотографий выше, свои датчики я размещаю на подоконнике (например, приклеив двусторонним скотчем). С размещением я советую внимательно подумать, приняв к вниманию как метеоусловия (ветер, солнце), так и наличие источников загрязнения. Например, один из моих датчиков находится на солнечной стороне, потому показания температуры у него очень часто завышены. Расстояние до источников загрязнения может влиять на показания, занижая и завышая их, либо же вообще делая их бесполезными. Например, возле нашего дома находится крупная стройка, которая уже продолжается три года, и данные насчёт того, сколько пыли она производит, весьма интересны. С другой стороны, концентрация пыли прямо на стройке несколько другая, чем возле домов, где живут люди, поэтому если датчик размещён слишком близко, польза от данных будет сомнительная. Также необходимо учитывать расстояние от дороги (покрышки автомобилей также создают массы взвешенных частиц).
После установки и проверки датчика его можно подключить к API разных проектов. Данные со своих датчиков я посылкаю на sensor.community (LuftDaten), агрегатор Madavi, OpenSenseMap, AirCMS и ещё пару проектов:
Настройки API датчика
Вот так выглядит карта PM2.5 от LuftDaten (два датчика на ней мои):
Словакия на карте LuftDaten. Картографические данные: Участники OpenStreetMap
На AirCMS датчиков в наших краях гораздо меньше:
Словакия на AirCMS. Картографические данные: Яндекс
Замеры и тесты
Офис
Первые майские выходные длились с субботы по понедельник включительно. Эти три дня офис был необитаемый, окна плотно закрыты.
Придя во вторник, я увидел 610 ppm, 23,0 °C, 31%
В помещении начинает трудиться 1 человек.
Спустя 30 минут: 715 ppm 24,6 °C 35%
Спустя еще 1 час: 1050 ppm 25,3 °C 38%
Выводы:
- В помещении с закрытыми окнами концентрация CO2 не опускает до фонового уровня (около 400 ppm) даже за 3 дня. Значит герметичность вполне хорошая, свежему воздуху поступать особо неоткуда.
- Хоть значение в 610 ppm хоть и не фоновое, но вполне допустимое и благоприятное. Однако оно перестаёт быть таковым уже через 1,5 часа
Офис после ночи.
Продолжаем эксперименты. Оставляем форточку на микропроветривании.
Такой щёлки вполне достаточно
Чудеса — утром прибор показывает уровень углекислого газа 405 ppm. Ровно такой же уровень нас ждал если бы офис не имел окон вовсе.
В машине
Измерение качества воздуха в машине
Жалко, что зима прошла и печку в машине включать больше не нужно. А хотелось проверить уровень относительной влажности. Лично у меня — в этот период страшно сохнут глаза, очень неприятно ездить с печкой. Без отопления холодно. Поэтому стараюсь направлять потоки воздуха в любую сторону кроме себя.
Симптомы повышенной концентрации углекислого газа — утомление и сонливость — плохие друзья водителя. Было решено проверить как с этим дела в моей машине.
Замерял три ситуации.
- Кондиционер в режиме охлаждения
- Тот же режим, но с кнопкой «рециркуляция»
- Приоткрытые щёлки в окнах (окна закрыты дефлекторами)
В режиме кондиционера воздух в салон поступает извне и охлаждается. Проблем с концентрацией углекислого газа нет, однако показатели держатся около верхней «зеленой» планки — 710-800 ppm.
Режимом рециркуляция обычно пользуются, чтобы быстрее прогреть\охладить салон или избежать неприятного запаха дымящего грузовика. Я нажимаю кнопку, и концентрация CO2 очень быстро поднимается до 840-910 ppm и уже медленнее ползёт вверх. Понятно, без особых причин не стоит долго ездить в таком режиме.
Когда воздух свежее: кондиционер или открытые окна? С точки зрения углекислого газа тут всё однозначно. Окна открытое на пару сантиметров спереди и сзади в мгновение устанавливают концентрацию углекислого газа в 610 ppm. При этом я не устраивал очень сильный сквозняк — на окнах стоят дефлекторы (это такие козырьки). Но не стоит забывать, что при использовании вентиляции воздух проходит через фильтры, которые задерживают пыль и копоть.
Как по мне — вполне достаточно свежего воздуха в режиме кондиционера.
Впечатления
Как человек технического склада ума — люблю знать конкретные величины и не основываться на субъективных ощущениях. Раньше я контролировал только уровень влажности. Теперь точно могу знать о «свежести» воздуха.
Монитор качества воздуха от Даджет со всеми своими функциями справляется хорошо. Измеряет, предупреждает. Приведу ниже некоторые плюсы и минусы («хотелки»)
Плюсы
- помимо СО2 измеряет влажность и температуру
- крупные цифры на дисплее
- возможность звукового оповещения, если значение выходит за норму (и возможность это отключить)
Минусы
- нет возможности синхронизации с ПК
- подсветка дисплея не отключается
Для читателей блога действует скидка 10% на покупку монитора качества воздуха в течение 14 дней по промокоду GT-MKV.
Семейство анализаторов от Xiaomi
Xiaomi mi Clear Grass Intelligent Air Detector — красивый прибор с retina дисплеем, и основной конкурент D9, если верить многочисленным их сравнениям. Насколько мне удалось выяснить, помимо того, что он стоит на пару тысяч рублей дороже топовой версии D9-H, явных преимуществ именно в точности измерений он не имеет, скорее наоборот.
Из однозначных плюсов ClearGrass, кроме дизайна, надо упомянуть возможность беспроводного подключения из приложения Xiaomi и интеграции в систему умный дом. Возможно, я плохо изучил вопрос, но мне это показалось не слишком полезным, да и работает например умное управление вытяжкой у людей как-то неоднозначно.
А вот в минусы ClearGrass многие относят сложность его разборки. Дело в том, что датчики PM2.5 имеют ограниченный срок службы, по одной из ссылок (ниже) приведена информация от производителя Plantower, что служит он 3 года. Я так понимаю, что факторов влияющих на его срок службы, два.
Во-первых, датчик основан на работе лазерного диода, который как любой светодиод, деградирует. Причем, с повышением температуры диода, деградирует он быстрее. Во-вторых, датчик прокачивает через себя воздух при помощи вентилятора. А значит, неизбежен износ механической части.
D9 же очень легко разбираются, а датчик PM для них, как уже было сказано выше, продается отдельно. Что делает измеритель более ремонтопригодным.
Ещё, внешне мне очень понравился Xiaomi Mija Smart PM2.5 с OLED экранчиком. Очень компактный и красивый прибор в карманном исполнении, умеющий работать автономно (всего пару часов).
Коннектится к смартфону, что большой плюс. Но, ограниченная функциональность и даже более высокая чем у D9-B цена заставили от него отказаться.
Ну и ещё один компактный прибор от них: Xiaomi Smart mi PM 2.5 (нет, это не тот же анализатор, что и предыдущий, и да, в продукции ксяоми очень легко запутаться).
Умеет измерять он только PM2.5, соединяться с телефоном для передачи данных. Встроенный дисплей простенький, расширенную статистику не предоставляет, но цена в районе 70 долларов делает его вполне интересным. Встроенный датчик как заявлено, измеряет одновременно PM2.5, T∨OC, COa (как пишут, отличие COa от CO2 заключается в том, что вычисляется косвенно, а не измеряется непосредственно).
К сожалению, не нашел по нему ни одного нормального обзора с разборкой, и отзывов тоже практически нет. А единственный полезный отзыв на али сообщил только, что «устройство вне экосистемы mi Home». Подтвердить или опровергнуть это заявление я не могу.
Вообще, плюсы приборов от Xiaomi — внешний вид, и возможность интегрировать в собственную экосистему ксяоми (если у вас, конечно, такая имеется. У меня — нет для меня не так существенны. Минусы — цена, и всё-таки не очень понятная начинка. Поэтому, в итоге и выбрал более понятный и изученный общественностью D9.
Впрочем, и у D9 есть недостатки — например, невозможность снять с него данные в компьютер или смартфон. Несмотря на наличие на плате слота под Wi-Fi, самого адаптера там нет. Соответственно, сложно использовать его как логгер, чтобы например (или) транслировать её на сайт или в какой-либо публичный агрегатор мониторинга подобных данных и удобно отслеживать динамику качества воздуха.
Кроме того, есть претензии к точности измерения температуры и влажности, и к неотключаемой подсветке экрана.
По каким принципам работают датчики качества воздуха
Анализатор воздуха – специальный прибор, с помощью которого можно определить, насколько загрязнён воздух в помещении. Он способен распознавать наличие растворённых в нём примесей – СО2 и прочих летучих соединений, – определять их концентрацию и процентное соотношение между собой. Приборы рекомендуются для использования как в общественных местах (учебных и административных заведениях, офисах, торгово-развлекательных центрах), так и в жилых помещениях.
Обычные аварийные газоанализаторы способны определять утечку пропана/метана/бутана из газовой магистрали, или опасное превышение концентрации угарного газа. У детектора углекислого газа несколько иные функции: он определяет качество воздуха, соотношение кислорода и СО2 в нём. Его процентное содержание в атмосфере помещения и является основным показателем качества воздуха. Поэтому анализаторы концентрации углекислого газа относятся не к аварийным детекторам, а к климатическому оборудованию. В «умном доме» эти устройства могут интегрироваться с автоматическими системами управления вентиляцией самостоятельно при необходимости, включая и отключая её.
Существует несколько типов бытовых газоанализаторов, различаемых в зависимости от технического устройства и принципа работы:
- Инфракрасный датчик, или как его принято обозначать у западных производителей NDIR-детектор. Суть их работы сводится к регулярным замерам интенсивности инфракрасных волн в воздухе помещения. С нарастанием концентрации углекислого газа ИК-излучение ослабляется, что и фиксируется детектором. Электроника, сравнивая полученные данные с заложенными эталонными показателями, определяет концентрацию СО2 в воздухе помещения в конкретный момент времени.
- Электрохимические датчики. Конструктивно они состоят из ячеек, заполненных электролитом, находящимся в твёрдом состоянии. Определение концентрации углекислого газа производится в них методом нагрева электродов электрохимической ячейки. В результате на их поверхности начинает происходить реакция, сопровождающаяся потреблением кислорода и возникновением электродвижущей силы. Путём замеров величины этой силы определяется и соотношение концентраций углекислого газа и кислорода в атмосфере помещения.
- Электроакустические. Принцип работы данной группы датчиков углекислого газа состоит в оценке частоты колебаний ультразвука в воздушной среде. В основе конструкции прибора лежит особое устройство – резонатор. Из-за более высокой плотности СО2 частота колебаний, испускаемых прибором волн в насыщенном им воздухе, будет ниже. Соответственно, чем чище атмосфера в комнате, тем больше скорость колебаний ультразвука. На этом и основывается работа электроакустического газоанализатора.
Сервисы и приложения для контроля за воздухом
Спутниковые снимки позволяют также один из инструментов контроля состояния воздуха. На них можно увидеть содержание взвешенных частиц PM 2.5 в воздухе. Загрязнение атмосферы через космоснимки обнаруживает и показывает проект .
Сайт Air Visual объединяет данные спутниковых измерений, официальных станций мониторинга и прогнозы погоды с помощью моделирования и отображает в режиме настоящего времени.
Помимо онлайн-карт и сайтов существуют приложения для контроля состояния атмосферы в конкретной точке. Самое крупное из них — AirVisual — собирает данные по всему миру как из государственных источников, так и общественных, а также данные о состоянии воздуха на основе космоснимков.
Интерфейс приложения AirVisual. Фото: AirVisual
В приложении можно увидеть рейтинг загрязненности городов, планируя поездку, или оценить уровень загрязнения в текущем местоположении.
Но важно понимать, что системы мониторинга пока несовершенны и сильно отличаются в разных странах. Поэтому ни одно приложение ещё не является гарантией чистоты воздуха за окном
Однако с установкой каждого нового датчика качество данных повышается.
Высота и сечение – есть ли связь
Длина канала и его диаметр связаны напрямую. Именно их правильное соотношение позволяет создать достаточную тягу для вывода газовых отходов. Дымоход меньшего размера способствует снижению температуры воздуха, а значит тяговая сила уменьшается. С другой стороны, слишком широкая труба тоже способствует быстрому охлаждению воздушного потока.
Результатом неправильного определения параметров может стать пониженная тяга, конденсат на поверхности и невозможность нормального отопления помещения, одновременно с выводом вредных веществ. Следовательно, на отопительный процесс будет уходить гораздо больше топлива, расходы существенно возрастут.
Рейтинг профессиональных устройств
Fluke 975V
Уникальное устройство, способное повысить качество контроля и выдавать достоверные сведения. Часто этот прибор используется учеными для обнаружения углекислого и угарного газа. Также оборудование анализирует уровень влажности, температуру и скорость ветреного потока.
Благодаря ему становится легче проводить эксперименты, а также организовывать правильную вентиляционную систему. В изделии имеются все полезные функции: начиная от автоматической подсветки дисплея и заканчивая самопроверкой. Для безопасности производитель создал клавиатуру с режимом блокировки. Регистрируемая информация сохраняется в памяти, после чего может передаваться на компьютер.
Средняя стоимость: от 178 000 рублей.
Fluke 975V
Достоинства:
- Возможность калибровки;
- Расчет процентного соотношения;
- Удобное отображение информации;
- Блокировка клавиатуры;
- Измерение скорости воздуха;
- Многоязычный интерфейс;
- Автономность.
Недостатки:
Testo 435-4
Качественное оборудование, способное функционировать практически во всех условиях. Прибор сочетает в себе функции нескольких устройств, что дает возможность полноценно следить за климатом в помещении или на крупном предприятии.
Для удобства оснащается тремя портами, к которым можно подключить измерительные изделия, что положительно скажется на точности проводимых исследований. Вся информация, поступающая в датчик, автоматически сохраняется в памяти и при желании может повторно выводиться или передаваться на ПК.
Главным источником питания являются 3 батареи АА, которых хватает на длительное время при умеренном использовании. Рабочая температура -20…+50 градусов.
Средняя цена – 80 000 рублей.
Testo 435-4
Достоинства:
- Эффективность;
- Хороший корпус;
- Точность измерений;
- Оптимальная цена;
- Компактность;
- Надежность;
- Можно подключить вспомогательное оборудование.
Недостатки:
CEM DT-9881
Небольшой датчик, который обладает хорошей точностью и ярким цветным дисплеем. Поддерживается возможность установки карты памяти размером до 8 Гб. Изделие способно провести анализ за короткое время, при этом вся информация сохранится в системе.
Кроме качества воздуха, прибор может указать текущее состояние температуры, влажность, скорость ветра и т.п. По сути, оборудование является мини лабораторией, благодаря которой проводить измерения станет легче. При длительном бездействии датчик автоматически выключается, что позволяет сохранить заряд батареи.
Средняя цена – 67 100 рублей.
CEM DT-9881
Достоинства:
- Широкий диапазон измерений;
- Удобство;
- Быстрый анализ;
- Эффективность;
- Простая конструкция;
- Производительность.
Недостатки:
AERasgard KFTM-LQ-CO2-W
Эффективная модель, которая не нуждается в постоянном техническом обслуживании и может размещаться в любом офисе или предприятии. Благодаря этому продукту следить за микроклиматом станет проще. Вся информация отображается на ярком синим дисплее, который отчетливо видно в темноте.
Диапазон измеряемых температур составляет -30…+80 градусов, а влажности 0…100%. Изделие обладает прочным корпусом, который монтируется в стену. Дисплей защищен пластиковым стеклом, которое крепится на небольшие шурупы.
Средняя стоимость: от 38 600 рублей.
AERasgard KFTM-LQ-CO2-W
Достоинства:
- Хорошее измерение качества воздуха;
- Прочный корпус;
- Защитное стекло;
- Яркий дисплей;
- Низкая цена.
Недостатки: