3 способа передачи энергии без проводов

Магнитная индукция

Если проводящий контур подключен к источнику питания переменного тока, он будет генерировать колебательное магнитное поле внутри и вокруг петли. Если второй проводящий контур расположен достаточно близко, он захватит часть этого колеблющегося магнитного поля, которое в свою очередь порождает или индуцирует электрический ток во второй катушке.

Видео: как происходит беспроводная передача электричества

Таким образом, происходит электрическая передача мощности от одного цикла или катушки к другой, что известно как магнитная индукция. Примеры такого явления используются в электрических трансформаторах и генератора. Это понятие основано на законах электромагнитной индукции Фарадея. Там, он утверждает, что, когда есть изменение магнитного потока, соединяющегося с катушкой ЭДС, индуцированного в катушке, то величина равна произведению числа витков катушки и скорости изменения потока.

Электрический трансформатор

Возможные проблемы, которые необходимо учитывать при разработке резонансного преобразователя

На практике, если вы остановили свой выбор на предлагаемой топологии схемы, основа которой, несомненно, удобный для использования генератор Ройера, вам обязательно необходимо рассмотреть два момента, связанных с тем, чтобы исключить защелкивание МОП-транзисторов.

  1. Требования кисточнику питания передатчика в момент включения системы беспроводной передачи мощности

Если источник питания не в состоянии обеспечить достаточный пусковой ток во время переходного процесса при включении, произойдет просадка напряжения и может случиться так, что один из двух МОП-транзисторов начнет зависать в режиме линейного усиления, а через напряжение питания постоянно закорачиваться на «землю», что способно привести к перегреву МОП-транзистора и, как следствие, к его выходу из строя

Следует также обратить внимание на то, чтобы конденсатор входного фильтра не имел чрезмерного номинала, поскольку это может еще больше усугубить эффект «защелкивания», ведь блок питания, кроме пускового тока для генератора, должен будет зарядить и этот конденсатор

На практике подобного негативного эффекта удается избежать, подключив конденсаторы и резонансный контур к рабочему напряжению еще до остальной части схемы. Затем затворы МОП-транзисторов можно переключать с помощью оптопар или транзисторов. Затворами также управляют и через отдельный источник питающего напряжения, например уже упомянутый модуль серии MagI3C, его включение от основного источника питания выполняется с некоторой задержкой.

  1. Импеданс, отраженный отстороны приемника к передатчику

С учетом больших скачков нагрузки на стороне приемника и вполне реальных внезапных изменений коэффициентов связи катушек может случиться так, что частично отраженный импеданс накоротко замыкает индуктивность намагничивания со стороны передатчика. Это, в свою очередь, приводит к срыву колебаний, а схема «защелкивается».

Коэффициент связи можно определить как:

где Usec — напряжение на вторичной обмотке; Upri — напряжение на первичной обмотке; Npri — число витков первичной обмотки; Nsec — число витков вторичной обмотки; Lpri — индуктивность первичной обмотки; Lsec — индуктивность вторичной обмотки.

M — коэффициент взаимоиндукции определяется как:

Для противодействия этому негативному эффекту полезно слегка отстроить частоту резонансного контура приемника при помощи подключения дополнительного параллельного конденсатора так, чтобы резонансная частота самого контура приемника была на 10–20% выше частоты контура передатчика. Альтернативно, параллельно катушке передатчика, может быть подсоединена дополнительная индуктивность (дроссель), причем так, чтобы не возникло магнитной связи с каналом передачи энергии. Эта параллельная индуктивность должна быть равна или меньше индуктивности намагничивания катушки передатчика. Дроссель сохраняет энергию во время ZVS-процесса и помогает поддерживать колебания в случае неблагоприятных переходных процессов, связанных с изменением нагрузки.

Отраженный импеданс с параллельной компенсацией:

где f — частота; Rload — сопротивление нагрузки.

Резонансный конденсаторный приемник:

Дополнительная компенсирующая емкость приемника:

На первом этапе, еще при создании прототипа, важно насколько это возможно проверить все ситуации, связанные с изменением нагрузки, что критично для обеспечения надежной конструкции с надлежащей функциональностью

Беспроводная передача через систему солнечной энергии

Традиционные проводные конфигурации реализации энергии обычно требуют наличия проводов между распределенными устройствами и потребительскими единицами. Это создает множество ограничений как стоимость системных затрат на кабели. Потери, понесенные в передаче. А также растраты в распределении. Только сопротивление линии передачи приводит к потере около 20-30% генерируемой энергии.

Одна из самых современных беспроводных систем передачи энергии основана на передаче солнечной энергии с использованием микроволновой печи или луча лазера. Спутник размещен на геостационарной орбите и состоит из фотоэлектрических элементов. Они преобразуют солнечный свет в электрический ток, который используется для питания микроволнового генератора. И, соответственно, реализует мощность микроволн. Это напряжение передается с использованием радиосвязи и принимается на базовой станции. Она представляет собой комбинацию антенны и выпрямителя. И преобразуется обратно в электричество. Требует питания переменного или постоянного тока. Спутник может передавать до 10 МВт мощности радиочастоты.

Если говорить о системе распространения постоянного тока, то даже это невозможно. Так как для этого требуется разъем между источником питания и устройством. Существует такая картина: система полностью лишена проводов, где можно получить мощность переменного тока в домах без каких-либо дополнительных устройств. Там, где есть возможность зарядить свой мобильный телефон без необходимости физически подключаться к гнезду. Конечно, такая система возможна. И множество современных исследователей пытаются создать нечто модернизированное, при этом, изучив роль разработки новых способов беспроводной передачи электроэнергии на расстоянии. Хотя, с точки зрения экономической составляющей, для государств это будет не совсем выгодно, если внедрять такие устройства повсеместно, и заменять стандартное электричество на природное.

Мифы и реальность

В специальной литературе и на просторах интернета ведутся оживленные дискуссии, возможна ли однопроводная передача электричества к потребителю. Мнения разделились на два противоположных лагеря.

Разберемся, где мифы и реальность. Изобретение Тесла доказывает возможность передачи электричества по одному проводнику. Однако, достоверных данных, подтверждающих это, нет. Поэтому вокруг изобретения существуют многочисленные догадки и слухи.

Опыты нашего соотечественника доказывают, что однопроводная передача энергии возможна. При этом Авраменко не только доказал такую возможность, он создал установку, которая позволяет передавать электричество по одному проводу.

Свое изобретение он открыл случайно, когда снимал нейлоновую рубашку возле выключенной настольной лампы. После случайного касания рубашкой лампы, она начала светиться.

Длительные эксперименты позволили изобрести «вилку Авраменко». Она представляет собой два диода и конденсатор. Как показано на схеме:

С ее помощью удавалось по одному проводу заряжать конденсатор, который питает нагрузку. В данном случае лампочку. Изначально применялся разрядник, в котором появлялись искры.

Частота разряда зависела от номинала конденсатора. На основании своего изобретения, Авраменко собирает схему и демонстрирует передачу электричества по одному проводу.

На рисунке снизу представлена схема однопроводной передачи электроэнергии:

Она состоит из генератора частотой 8 кГц, катушки, провода. Причем в опытах применялся не медный, а вольфрамовый провод. Во время опыта он не нагревался и не светился. Приемным элементом выступала «вилка Авраменко», к которой подсоединена нагрузка.

В этом случае электричество передается не по проводнику, а по поверхности провода. Поэтому он может быть очень тонким. Ограничение заключается в механической прочности. Он должен выдерживать атмосферные осадки и порывы ветра.

При такой подаче напряжения, провода не нагреваются. А это значит, что потери на большие расстояния будут незначительными. А поражение электрическим током человека, если он прикоснется к оголенному проводу, исключено. Т.к. в проводе отсутствует ток.

Кроме того, проводились опыты с перегоревшими лампами накаливания. При включении в сеть они загорались.

Использование схемы Авраменко позволяет исключить потери на нагрев проводов, что составляет 10-15%. При передаче электроэнергии традиционным способом, плотность тока составляет всего 6-7 А/мм2, а передача энергии по однопроводной линии позволяет увеличить этот показатель до 428 А/мм2 и это при мощности 10 кВт.

По схеме Авраменко были созданы многочисленные схемы с применением трансформатора. Например, как показано на рисунке снизу:

Где генератор ВЧ собран на транзисторе. Это открытие должно было перевернуть всю электро индустрию. Несмотря на высокий КПД установки и очевидные выгоды, этого не произошло.

Кроме этого Авраменко доказал, что для однопроводной передачи напряжения, совершенно не обязательно применять металлические провода. В качестве волновода можно использовать луч лазера, оптоволокно, электронные лучи, трубопроводы и т.д.

Т.е. для передачи энергии можно использовать любую изолированную токопроводящую среду. А это в свою очередь дает возможность изобрести многочисленные машины, где применяется этот эффект. Но это будущее.

Технология

Принцип индуктивной связи

Два устройства, взаимно индуктивно-связанные или имеющие магнитную связь, выполнены так, что изменение тока при том, что один провод индуцирует напряжение на концах другого провода, производится посредством электромагнитной индукции. Это связано с взаимной индуктивностью. Индуктивная связь является предпочтительной из-за её способности работать без проводов, а также устойчивости к ударам.

Резонансная индуктивная связь является сочетанием индуктивной связи и резонанса. Используя понятие резонанса можно заставить два объекта работать зависимо от сигналов друг друга.

Концепция резонанса индуктивной связи

Как видно из схемы выше, резонанс обеспечивает индуктивность катушки. Конденсатор подключен параллельно к обмотке. Энергия будет перемещаться назад и вперед между магнитным полем, окружающим катушку и электрическим полем вокруг конденсатора. Здесь потери на излучение будет минимальными.

Существует также концепция беспроводной ионизированной связи.

Она тоже воплотима в жизнь, но здесь необходимо приложить немного больше усилий. Эта техника уже существует в природе, но вряд ли есть целесообразность ее реализации, поскольку она нуждается в высоком магнитном поле, от 2,11 М /м . Её разработал гениальный ученый Ричард Волрас, разработчик вихревого генератора, который посылает и передает энергию тепла на огромные расстояния, в частности при помощи специальных коллекторов. Самой простой пример такой связи – это молния.

К истокам появления

В 1893 году проходила выставка в Чикаго. На ней была демонстрация беспроводного освещения, в которой все действовало за счет люминесцентных ламп. Это работа принадлежала Николе Тесла.

Сейчас эксперимент сможешь повторить и ты – просто встань с лампой дневного света под линией с высоким напряжением. А тогда это было больше похоже на сеанс магии, поэтому изобретатель получил такую популярность.

Сегодня не каждый ученый согласится, что именно Тесле принадлежит идея создания беспроводного электричества. Они считают, что его работы – это доработка уже существующей идеи. Например, за 73 года до выставки, Андре Ампер записал закон, который указывает, что при использовании электротока возникает магнитное поле. Через одиннадцать лет, Майкл Фарадей открыл закон индукции. Был проведен опыт, который показал, что генерируемое в одном проводнике магнитное поле индуцирует ток в другой проводник.

В 1864 году произошло объединение всех теорий. Работа принадлежит Джеймсу Максвеллу. Он пришел к уравнению, которое описывало электромагнитное поле, а также связь с электрозарядами и токами в вакууме.

Спустя двадцать семь лет Тесла модернизировал передатчик волн, который изобрел Герц немного ранее. Он запатентовал его в качестве устройства для радиочастотного энергоснабжения.

История развития

Передача электроэнергии на расстояние без проводов рука об руку развивается с прогрессом в области радиопередачи, потому что принцип действия в этих явлениях во многом схож, если не сказать одинаков. Большая часть изобретений основывается на методе электромагнитной индукции, а также электростатического поля.

В 1820 году А.М. Ампер открыл закон взаимодействия токов, который заключался, в том, что если по двум близко расположенным проводникам ток течет в одном направлении, то они притягиваются друг к другу, а если в разных, то отталкиваются.

М. Фарадей в 1831 году установил в процессе проведения экспериментов, что переменное (меняющееся по величине и направлении во времени) магнитное поле, порождаемое протеканием электрического тока, наводит (индуцирует) токи в близлежащих проводниках. Т.е. происходит передача электроэнергии без проводов. Подробно закон Фарадея мы рассматривали в статье ранее.

Ну а Дж. К. Максвелл еще через 33 года, в 1864 году перевел экспериментальные данные Фарадея в математический вид, собственно уравнения Максвелла являются основополагающими в электродинамике. Они описывают, как связаны электрический ток и электромагнитное поле.

Существование электромагнитных волн подтвердил в 1888 Г. Герц, в ходе своих экспериментов с искровым передатчиком с прерывателем на катушке Румкорфа. Таким образом производились ЭМ волны с частотой до пол гигагерца. Стоит отметить, что эти волны могли быть приняты несколькими приемниками, но те должны быть настроены в резонанс с передатчиком. Радиус действия установки был в районе 3-х метров. Когда в передатчике возникала искра, такие же возникали и на приемниках. Фактически это и есть первые опыты по передачи электроэнергии без проводов.

Глубокие исследования вел известный ученый Никола Тесла. Он в 1891 году изучал переменный ток высокого напряжения и частоты. В результате чего были сделаны выводы:

Для каждой конкретной цели нужно настраивать установку на соответствующую частоту и напряжение. При этом высокая частота не является обязательным условием. Лучшие результаты удалось добиться при частоте 15-20 кГц и напряжении передатчика 20кВ. Чтобы получить ток высокой частоты и напряжения использовался колебательный разряд конденсатора. Таким образом, можно передавать как электроэнергию, так и производить свет.

Ученный на своих выступлениях и лекциях демонстрировал свечение ламп (вакуумных трубок) под воздействием высокочастотного электростатического поля. Собственно основными заключениями Теслы было то, что даже в случае использования резонансных систем много энергии с помощью электромагнитной волны передать не получится.

Параллельно целый ряд ученных до 1897 года занимались подобными исследованиями: Джагдиш Боше в Индии, Александр Попов в России и Гульельмо Маркони в Италии.

Каждый из них внес свой вклад в развитие беспроводной передачи электроэнергии:

  1. Дж. Боше в 1894 году, зажигал порох, передав электроэнергию на расстояние без проводов. Это он сделал на демонстрации в Калькутте.
  2. А. Попов в 25 апреля (7 мая) 1895 года с помощью азбуки Морзе передал первое сообщение. В России до сих пор этот день, 7 мая, является Днём Радио.
  3. В 1896 году Г. Маркони в Великобритании также передал радиосигнал (азбука Морзе) на расстояние в 1,5 км, позже на 3 км на Солсберийской равнине.

Стоит отметить, что работы Тесла, недооценённые в свое время и потерянные на века, превосходили по параметрам и возможностям работы его современников. В тоже время, а именно в 1896 году его аппараты передавали сигнал на большие расстояния (48 км), к сожалению это было небольшим количеством электроэнергии.

И к 1899 году Тесла приходит к выводу:

Несостоятельность метода индукции представляется огромной по сравнению с методом возбуждения заряда земли и воздуха.

Эти выводу приведут к другим исследованиям, в 1900 году ему удалось запитать лампу от катушки, вынесенной в поле, а в 1903 году была запущена башня Вондерклифф на Лонг-Айленде. Она состояла из трансформатора с заземленной вторичной обмоткой, а на её вершине стоял медный сферический купол. С её помощью получилось зажечь 200 50-ватных ламп. При этом передатчик находился за 40 км от неё. К сожалению, эти исследования были прерваны, финансирование было прекращено, а бесплатная передача электроэнергии без проводов была экономически не выгодной бизнесменам. Башню разрушили в 1917 году.

К вопросу выбора МОП-транзисторов

Выбор подходящего N‑канального МОП-транзистора в основном зависит от уровня напряжения питания. Если это лишь 5 В, то для надежного управления может, например, использоваться транзистор с логическими уровнями управления по затвору. Поскольку большинство мощных МОП-транзисторов имеют максимально допустимое напряжение затвор/исток ±20 В, то при использовании напряжения питания выше 20 В необходимо принять меры для защиты затвора. Это может быть, скажем, стабилитрон, включенный с затвора на общий провод, или емкостный делитель напряжения, который удержит напряжение затвора в оптимальном диапазоне

Следует также обратить внимание на то, чтобы напряжение на затворе не было слишком низким, поскольку в таком случае МОП-транзистор резонансного преобразователя может оказаться в режиме линейного усилителя, в результате чего схема перестанет функционировать

Такой режим, когда транзистор окажется в активной области своей вольт-амперной характеристики, как правило, приводит к перегреву одного из двух МОП-транзисторов

Кроме того, необходимо соблюдать осторожность, чтобы предотвратить превышение напряжения с учетом увеличения напряжения на множитель π. Так, при напряжении питания 20 В МОП-транзисторы должны выдерживать напряжение исток/сток не менее 63 В

В этом случае следует использовать 100‑В транзисторы. Эффективность (КПД) схемы в значительной степени зависит от того, насколько высоки сопротивление канала транзисторов в открытом состоянии Rds,on и требования по заряду затвора (имеется в виду общий заряд затвора) выбранных МОП-транзисторов. Здесь нужно найти компромисс, поскольку МОП-транзисторы с низким Rds,on обычно имеют более высокую емкость затвора и, следовательно, требуется высокий общий заряд затвора.

Ток заряда/разряда по затвору МОП-тран-зистора: Igate = Cgate×(∆Vgate/∆tsw), где Cgate — емкость затвора транзистора; ∆Vgate — управляющее напряжение на затворе; ∆tsw — длительность импульса.

При этом коммутационные потери равны: PV = I2d×Rds,on, где Id — ток стока.

Где работает беспроводная передача электрической энергии (WPT)

Все технологии WPT в настоящее время находятся на стадии активных исследований, большая часть сосредоточена на максимизации эффективности передачи энергии и иследованию технологий для магнитной резонансной связи. Кроме того, самыми амбициозными являются идеи оснащения WPT системой помещений, в которых человек будет находиться, а носимые им устройства будут заряжаться автоматически.

В глобальном плане, электрические автобусы становятся нормой; планируется ввести беспроводную зарядку для культовых двухэтажных автобусов в Лондоне так же, как и у автобусных систем в Южной Корее, в штате Юта США и в Германии.

Используя WiTricity, изобретенную учеными MIT, электромобили можно заряжать без проводов, а эти автомобили могут без проводов заряжать ваши мобильные телефоны! (Разумеется, используя Qi зарядку.) Эта беспроводная технология более удобна, а также она может заряжать автомобили быстрее, чем подключаемая зарядка.

Беспроводная зарядка электромобиля, встроенная в парковочное место

Уже была продемонстрирована экспериментальная система для беспроводного питания дронов. И, как уже упоминалось ранее, текущие исследования и разработки сосредоточены на перспективе удовлетворении некоторых энергетических потребностей Земли путем использования беспроводной передачи энергии и солнечных панелей, расположенных в космосе.

WPT работает везде!

Эффективность рассматриваемой передачи энергии

Общая эффективность беспроводной системы питания является самым важным фактором в определении ее производительности. Результативность системы измеряет количество мощности, передаваемой между источником питания (то есть, настенной розеткой) и принимающим устройством. Это, в свою очередь, определяет такие аспекты как скорость зарядки и дальность распространения.

Системы беспроводной связи различаются в зависимости от их уровня эффективности, основанного на таких факторах, как конфигурация и дизайн катушки, расстояние передачи. Менее результативное устройство будет генерировать больше выбросов и приведет к меньшей мощности, проходящей через приемное устройство. Как правило, беспроводные технологии передачи электроэнергии для таких устройств как смартфоны, могут достигать 70% производительности.

Принципы передачи электричества

До последнего времени наиболее оптимальной и популярной считалась магнитно-резонансная система CMRS. Ее создали еще в 2007 году. Благодаря этой технологии специалистам удавалось передавать электричество на расстояние в 2.1 метр. Однако ее не удавалось запустить в массовое производство, так как частота передачи была слишком высокой, а катушки имели сложную конфигурацию и были больших размеров.

Электроэнергия без проводов позволяет заряжать мобильный телефон

Сравнительно недавно ученые из Южной Кореи создали новый передатчик, который позволяет передавать электричество на расстояние в 5 метров. Система не имеет никаких недостатков и при необходимости ее можно будет установить в стены квартиры.

В результате проведения этого эксперимента на частоте в 20 кГц специалистам удалось передать:

  • 209 Вт на 5 метров;
  • 471 Вт на 4 метра;
  • 1403 Вт на 3 метра.

Благодаря беспроводному излучению можно будет запитать большие ЖК телевизоры, которые требуют всего 40 Вт на расстоянии в 5 метров. Сейчас существуют и другие технологии, которые позволяют передавать электроэнергию без проводов. К ним можно отнести:

  1. Лазерное излучение. Дальность действия достаточно большая. Однако необходима прямая видимость между приемником и передатчиком. Компания Lockheed Martin уже испытала беспилотный летательный аппарат Stalker, который питается от лазерного луча и способен оставаться в воздухе до 48 часов.
  2. Микроволновое излучение. Этот вид позволяет обеспечивать большую дальность действия, но стоимость оборудования достаточно высока. В качестве передатчика электроэнергии будет использоваться радиоантенна, которая создает микроволновое излучение. А приемнике устанавливают ректенну, которая преобразует электрический ток в принимаемое микроволновое излучение.

При увеличении расстояния передачи значительно увеличивается стоимость и габариты оборудования. В свою очередь микроволновое излучение может приносить вред для окружающей среды. Тут вы можете прочесть про роботов в сфере энергетики.

Анкеровка арматуры. Соединения арматуры. Гнутые стержни

Производство электроэнергии

Среди генераторов электроэнергии наиболее распространены электромеханические генераторы переменного тока

. Они преобразуют механическую энергию вращения ротора в энергию индукционного переменного тока, возникающего благодаря явлению электромагнитной индукции.

На рис. 1 проиллюстрирована основная идея генератора переменного тока: проводящая рамка (называемая якорем

) вращается в магнитном поле.

Рис.1. Схема генератора переменного тока

Магнитный поток сквозь рамку меняется со временем и порождает ЭДС индукции, которая приводит к возникновению индукционного тока в рамке. С помощью специальных приспособлений (колец и щёток) переменный ток передаётся из рамки во внешнюю цепь.

Если рамка вращается в однородном магнитном поле с постоянной угловой скоростью , то возникающий переменный ток будет синусоидальным. Покажем это.

Выберем направление вектора нормали к плоскости рамки. Вектор , таким образом, вращается вместе с рамкой. Направление обхода рамки считается положительным, если с конца вектора этот обход видится против часовой стрелки.

Напомним, что ток считается положительным, если он течёт в положительном направлении (и отрицательным в противном случае). ЭДС индукции считается положительной, если она создаёт ток в положительном направлении (и отрицательной в противном случае).

Предположим, что в начальный момент времени векторы и сонаправлены. За время рамка повернётся на угол . Магнитный поток через рамку в момент времени равен:

(1)

где — площадь рамки. Дифференцируя по времени, находим ЭДС индукции:

(2)

Если сопротивление рамки равно , то в ней возникает ток:

(3)

Как видим, ток действительно меняется по гармоническому закону, то есть является синусоидальным.

В реальных генераторах переменного тока рамка содержит не один виток, как в нашей схеме, а большое число витков. Это позволяет увеличить в раз ЭДС индукции в рамке. Почему?

Объяснить это несложно. В самом деле, магнитный поток через каждый виток площади по-прежнему определяется выражением (1), так что ЭДС индукции в одном витке согласно формуле (2) равна: . Все эти ЭДС индукции, возникающие в каждом витке, складываются друг с другом, и суммарная ЭДС в рамке окажется равной:

Сила тока в рамке:

где есть по-прежнему сопротивление рамки.

Кроме того, рамку снабжают железным (или стальным) сердечником. Железо многократно усиливает магнитное поле внутри себя, и поэтому наличие сердечника позволяет увеличить магнитный поток сквозь рамку в сотни и даже тысячи раз. Как следует из формул (2) и (3), ЭДС индукции и ток в рамке увеличатся во столько же раз.

Высокое напряжение как способ уменьшения потерь

Реальность такова, что передача электроэнергии на большие расстояния неизбежно сопровождается её потерями. Существенная часть электричества, проходя путь от генератора на электростанции до розетки бытового потребителя, превращается в тепло и расходуется на обогрев атмосферы. Однако это не снижает затрат за производство электроэнергии, поэтому конечному пользователю всё же приходится оплачивать и эти нецелевые расходы.

Уменьшить ненужные потери, соответственно, траты, позволяют следующие способы:

  1. применение высокотемпературных сверхпроводников;
  2. увеличение сечения кабелей и проводов ЛЭП;
  3. повышение напряжения в линиях передачи.

За первым способом будущее. Однако сегодня он технически неосуществим. От второго отказались на первых парах развития электроэнергетики, ведь он экономически нецелесообразен из-за лишних расходов на утолщение проводников. Применение высокого напряжения оказалось наиболее удачным методом, поэтому он используется по всему миру уже порядка ста лет.

Преимущества, недостатки и биологическое воздействие

Преимущества

Преимущества беспроводной передачи энергии микроволновым излучением в том, что способ полностью устраняет существующие кабели линий электропередачи высокого напряжения, вышки и подстанции между генерирующей станцией и потребителями и облегчает соединение электрогенерирующих станций в глобальном масштабе.

Способ имеет больше свободы выбора приемника и передатчиков. Даже мобильные передатчики и приемники можно выбрать для этой системы. Стоимость передачи и распределения станет меньше, а стоимость электроэнергии для потребителя также будет снижена. Потери передачи являются незначительными в беспроводной передаче энергии, поэтому эффективность этого способа значительно выше, чем проводная.

Недостатки

Капитальные затраты на практическую реализацию передачи энергии микроволновым излучением кажутся очень высокими и другим недостатком концепции является интерференция СВЧ с существующими системами связи.

Существуют распространенные убеждения, что биологические воздействия микроволнового излучения опасны. Но исследования в этой области неоднократно доказывают, что уровень микроволнового излучения не будет выше дозы, полученной при открытии дверцы микроволновой печи, то есть он немного выше, чем выбросы, создаваемые сотовыми телефонами. Сотовые телефоны работают с высокими плотностями мощности. Таким образом, воздействие микроволновым излучением также будет ниже существующих руководящих принципов безопасности.

Сущностные особенности работы устройства

Мощность катушки Тесла заключается в процессе, называемом электромагнитной индукцией. То есть, изменяющееся поле создает потенциал. Он заставляет протекать ток. Когда электричество течет через катушку провода, он генерирует магнитное поле, которое заполняет область вокруг обмотки определенным образом. В отличие от некоторых других экспериментов с высоким напряжением, катушка Тесла выдержала множество проверок и проб. Процесс был достаточно трудоемким и длительным, но результат был успешным, потому и удачно запатентован ученым. Создать подобную катушку можно при наличии определенных составляющих. Для реализации потребуются следующие материалы:

  1. длина 30 см ПВХ (чем больше, тем лучше);
  2. медная эмалированная проволока (вторичный провод);
  3. березовая доска для основания;
  4. 2222A транзистор;
  5. подсоединение (первичный) провод;
  6. резистор 22 кОм;
  7. переключатели и соединительные провода;
  8. аккумулятор 9 вольт.


Смотреть галерею

Уникальность идеи

Всем известно, что для прохождения электрического тока по проводам должен иметься замкнутый контур из двух проводов, по которым протекает ток. Или отдельный провод и заземление.

Теоретически передача энергии по одному проводу невозможна. Однако, при передаче электроэнергии по методу Авраменко, ток протекает не по проводнику, а по его поверхности.

В результате мощность передаваемой энергии никак не зависит от материала и толщины проводов. Она может быть очень малой, при этом проводники не нагреваются.

При поверхностной передаче электроэнергии, толщина провода не имеет значения. А это значит, что проводник может иметь малую толщину. Так же не имеет значение материал, из которого сделан провод.

Его не обязательно делать медным, он может быть из стали или другого токопроводящего материала. По сути, проводник служит указателем, куда нужно передать энергию. Но это все по заявлениям разработчиков. На самом деле эта теория не имеет научного объяснения.

Но если представить, что это возможно, то перед мировой энергетикой открываются новые возможности:

  • Нет необходимости в громоздких опорах электропередач. Снижение капитальных затрат.
  • Отпадает необходимость использовать такое количество проводов. А это колоссальная экономия.
  • Отсутствие потерь в линиях электропередач. Увеличение пропускной способности.
  • Сведение до минимума аварийных ситуаций на линии. Отсутствие короткого замыкания и сокращение обрывов проводов.

Все это приведет к снижению эксплуатационных затрат. И как следствие уменьшению стоимости электричества конечному потребителю.

Оцените статью
Рейтинг автора
5
Материал подготовил
Андрей Измаилов
Наш эксперт
Написано статей
116
Добавить комментарий