Содержание
- 1 Китайские преобразователи – что в них особенного
- 2 Схемы драйверов и их принцип работы
- 3 Принципиальная схема
- 4 Коэффициент мощности и энергоэффективность
- 5 Особенности выбора
- 6 Краткое описание микросхемы PT4115
- 7 Микросхема ULN2003 — описание
- 8 Конструкция и детали сборки
- 9 Как изготовить драйвер для светодиодов своими руками
- 10 Требования к вентиляции
- 11 Виды
- 12 Подводя итог о выборе схемы драйвера для светодиодов (светодиодной лампы)
Китайские преобразователи – что в них особенного
Китайские друзья славятся умением подделать оборудование так, что им становится невозможно пользоваться. По отношению к драйверам можно сказать так же. Приобретая китайское устройство будьте готовыми к завышенным заявленным характеристикам, низкому качеству и быстрому выходу преобразователя из строя. Если же собирается первый в жизни LED-светильник, потренироваться и получить навыки в радиоэлектронике, такие изделия незаменимы по причине низкой стоимости и простоты исполнения.
Если добавить в схему китайского преобразователя конденсатор, срок службы лампы увеличится
Схемы драйверов и их принцип работы
Чтобы провести успешный ремонт, необходимо четко представлять, как лампа работает. Одним из основных узлов любой светодиодной лампы является драйвер. Схем драйверов для светодиодных ламп на 220 В существует множество, но условно их можно разделить на 3 типа:
- Со стабилизацией тока.
- Со стабилизацией напряжения.
- Без стабилизации.
Только устройства первого типа, по своей сути, являются драйверами. Они ограничивают ток через светодиоды. Второй тип лучше назвать блоком питания для светодиодной ленты. Третий вообще как-то назвать сложно, но его ремонт, как я указывал выше, самый простой. Рассмотрим схемы ламп на драйверах каждого типа.
Драйвер со стабилизацией тока
Драйвер лампы, схему которой ты видишь ниже, собран на интегральном стабилизаторе тока SM2082D. Несмотря на кажущуюся простоту он является полноценным и качественным, да и ремонт его несложен.
Схема лампы LED-А60 на полноценном драйвере
Сетевое напряжение через предохранитель F подается на диодный мост VD1-VD4, а затем, уже выпрямленное, на сглаживающий конденсатор С1. Полученное таким образом постоянное напряжение поступает на светодиоды лампы HL1-HL14, включенные последовательно, и вывод 2 микросхемы DA1.
С первого же вывода этой микросхемы на светодиоды поступает напряжение, стабилизированное по току. Величина тока зависит от номинала резистора R2. Резистор R1 довольно большой величины, шунтирующий конденсатор, в процессе работы схемы не участвует. Он нужен для того, чтобы быстро разрядить конденсатор, когда ты выкрутишь лампочку. В противном случае, взявшись за цоколь, ты рискуешь получить серьезный удар током, поскольку С1 останется заряженным до напряжения 300 В.
Драйвер со стабилизацией напряжения
Эта схема, в принципе, тоже довольно качественная, но подключать ее к светодиодам нужно несколько иначе. Как я уже говорил выше, такой драйвер правильнее было бы назвать блоком питания, поскольку он стабилизирует не ток, а напряжение.
Схема блока питания для светодиодной лампы
Здесь сетевое напряжение сначала поступает на балластный конденсатор С1, снижающий его до величины примерно 20 В, а затем уже на диодный мост VD1-VD4. Далее выпрямленное напряжение сглаживается конденсатором С2 и подается на интегральный стабилизатор напряжения. Снова сглаживается (С3) и через токоограничивающий резистор R2 питает цепочку светодиодов, включенных последовательно. Таким образом, даже при колебаниях сетевого напряжения ток через светодиоды останется постоянным.
Драйвер без стабилизации
Драйвер, собранный по этой схеме, — чудо китайской схемотехники. Тем не менее, если в сети напряжение нормальной величины и не сильно скачет, он работает. Устройство собрано по простейшей схеме и не стабилизирует ни ток, ни напряжение. Оно просто понижает его (напряжение) до примерной нужной величины и выпрямляет.
Простейший драйвер светодиодной лампы 220 В
На этой схеме ты видишь уже знакомый тебе гасящий (балластный) конденсатор, зашунтированный для безопасности резистором. Далее напряжение поступает на выпрямительный мост, сглаживается конденсатором обидно малой емкости – всего 10 мкФ – и через токоограничивающий резистор поступает на цепочку светодиодов.
Что можно сказать о таком «драйвере»? Поскольку он ничего не стабилизирует, напряжение на светодиодах и, соответственно, ток через них напрямую зависят от входного напряжения. Если оно завышено, то лампа быстро сгорит. Если «скачет», то будет мигать и лампочка.
Такое решение обычно используется в бюджетных лампах китайских производителей. Назвать его удачным, конечно, сложно, но оно встречается довольно часто и при нормальном напряжении в сети может работать достаточно долго. Кроме того, такие схемы легко поддаются ремонту.
Принципиальная схема
На рисунке 3 показана схема с добавленной схемой таймера на 20 минут, сделанного на основе микросхемы CD4060. Этот таймер ограничивает время работы лампы. То есть, через 20 минут после включения лампа гаснет.
Чтобы её снова включить нужно сначала выключить питание лампы (выключить обычным выключателем) на несколько секунд, а потом снова включить. Счетчик D1 питается напряжением 12V.
Это напряжение получается при помощи параметрического стабилизатора, состоящего из резистора R2 и стабилитрона VD1 (на схеме пронумерованы только детали добавленные к схеме светодиодной лампы). Конденсатор С2 дополнительно сглаживает пульсации. В момент включения в электросеть появляется напряжение на С2, которым питается микросхема D1.
Это же напряжение, с помощью цепочки C1-R1 формирует импульс обнуления счетчика микросхемы D1, который поступает на её вывод 12. После этого на всех выходах счетчика D1, включая и выход D14, появляются логические нули. Нулевое напряжение поступает на затвор VT1. Он закрыт. И никак не влияет на работу схемы светодиодной лампы.
Поэтому светодиодная лампа горит.
Рис. 3. Схема сетевого импульсного драйвера для питания светодиодной лампы + таймер.
Так продолжается пока идет отсчет времени. Частота импульсов задающего генератора цепью C3-R3 установлена таким образом, что логическая единица на выводе 3 D1 появляется через 20 минут после обнуления счетчика. Как только единица появляется на выводе 3 D1 происходит две вещи.
Во-первых, единица через диод VD2 поступает на вход первого элемента мультивибратора микросхемы и срывает его генерацию, поэтому счетчик останавливается в этом состоянии и далее не считает. Во-вторых, единица с вывода 3 D1 поступает на затвор полевого транзистора VT1, который открывается и замыкает вывод 4 микросхемы ВР2832А на общий минус питания.
Это приводит к блокировке генератора этой микросхемы и она перестает работать. Питание на светодиоды не поступает и лампа гаснет. Чтобы снова включить лампу, нужно её сначала отключить от электросети (выключить) на некоторое время около 2-3 секунд или более.
При этом происходит разрядка конденсаторов, имеющихся в схеме. Затем, при включении питания появляется напряжение на С2, которым питается микросхема D1. Это же напряжение, с помощью цепочки C1-R1 формирует импульс обнуления счетчика микросхемы D1, который поступает на её вывод 12.
После этого на всех выходах счетчика D1, включая и выход D14, появляются логические нули. Нулевое напряжение поступает на затвор VT1. Он закрыт. И никак не влияет на работу схемы светодиодной лампы. Поэтому светодиодная лампа горит.
Таким образом, схема таймера запускается при включении лампы и ограничивает время горения до 20 минут. Но это время не обязательно должно быть именно 20 минут. Изменив емкость С3 и сопротивление R3 можно в очень широких пределах регулировать время горения лампы, от нескольких секунд до нескольких дней.
Коэффициент мощности и энергоэффективность
В бездрайверном светильнике, собранном по схеме рис. 1 или подобной, значительная часть потребляемой мощности (около 25%) рассеивается на токоограничительном резисторе. Кроме этого, значительную часть периода колебаний в сети, когда мгновенное значение напряжения на каждом светодиоде меньше 1,5 В, цепочка светодиодов полностью закрыта и ток через светильник практически не течет. Помимо нерационального использования электроэнергии, такая особенность приводит к снижению коэффициента мощности PF до значений ниже минимально допустимого предела 0,6. При потребляемой мощности до 5 Вт с этим еще можно как-то мириться, но при большей потребляемой светильником или светодиодной лампой-ретрофитом мощности нарушаются действующие нормы и может произойти преждевременный износ оборудования электросетей.
Простейшая схема включения чипа Acrich IC 3.0
Решение проблемы заключается в том, чтобы «наращивать» цепочку последовательно соединенных светодиодов по мере роста мгновенного значения напряжения питания. Находимся на пике синусоиды — включены все светодиоды. Находимся вблизи нуля — светится минимальное количество светодиодов, которые можно скоммутировать. При этом светодиоды открыты, и ток в нагрузке продолжает течь. Именно такое решение предлагает компания Seoul Semiconductor в своих бездрайверных светодиодных модулях Acrich3, производящихся с 2014 года. «Сердцем» такого модуля является чип Acrich IC 3.0, коммутирующий четыре группы последовательно включенных светодиодов.
Пример светодиодного модуля типа Acrich3
В итоге появляется возможность увеличить PF до 0,97, что находится на уровне лучших светильников с драйверами. Можно сказать, что такой светильник не создает практически никаких проблем для электросети, к которой он подключен. КПД чипа Acrich IC 3.0 достигает 90%.
Для уличного освещения Seoul Semiconductor предлагает модули Acrich2.5 на основе предыдущей версии платформы Acrich2, работающей аналогичным образом (коммутация четырех цепочек светодиодов).
Помимо Seoul Semiconductor технологию АС-модулей с повышенным PF развивает и такая известная компания как Edison Opto. Fla рынке представлена серия модулей EdiLex от этой компании. К сожалению, Edison Opto не публикует в открытых источниках данные о конструкции своих бездрайверных светодиодных модулей, тем не менее, по косвенным данным можно предположить, что и здесь используется принцип коммутации групп светодиодов в зависимости от конкретного участка синусоиды. PF модулей EdiLex достигает 0,95. Главная «фишка» данных модулей, выгодно отличающая их от конкурентов — наличие встроенной функции трехступенчатого диммирования.
Особенности выбора
Помимо указанных разновидностей, драйверы для светодиодных светильников подбираются по таким параметрам:
— Класс защиты (от влаги или пыли);
— Входные и выходные величины;
— Производитель
Марка – это залог высокого качества и сборки. Зачастую, покупатели отдают предпочтение именно качественной продукции, которая отличается продолжительным сроком эксплуатации и постоянным напряжением.
Как и вся электроника, они обладают определенным сроком годности. Профессиональные модели могут работать до 70 000 часов, когда более дешевые и доступные варианты – всего 20 000. Для освещения жилых помещений, где постоянно должна быть подсветка, лучше всего выбирать известных производителей. Бытовые же помещения могут освещаться более дешевыми и малопроизводительными.
В помещениях, где есть повышенные требования (соответственно, и яркость освещения) устанавливаются драйверы типа PLD-40. Коэффициент диммирования не более 20%, что говорит о постоянном и не утруждающим глаза, свете.
К драйверам применимы такие требования:
— Температурный диапазон. В зависимости от него, можно определить вероятность эксплуатации в определенных условиях;
— Виброустойчивость. В случае, если устанавливается в помещении, подверженном постоянным вибрациям;
— Максимальная мощность. Какой параметр входного напряжения выдержит
Чаще всего, выбирается оборудование по характеристикам самого светильника.
Краткое описание микросхемы PT4115
Согласно официальной документации, LED драйвер с функцией диммирования на основе PT4115 обладает следующими техническими характеристиками:
- диапазон рабочего входного напряжения: 6–30В;
- регулируемый выходной ток до 1,2А;
- погрешность стабилизации выходного тока 5%;
- имеется защита от обрыва нагрузки;
- имеется вывод для регулировки яркости и включения/выключения при помощи DC или ШИМ;
- частота переключения до 1 МГЦ;
- КПД до 97%;
- обладает эффективным корпусом, с точки зрения рассеивания мощности.
Назначение выводов PT4115:
- SW. Вывод выходного переключателя (МОП-транзистора), который подключен непосредственно к его стоку.
- GND. Общий вывод сигнальной и питающей части схемы.
- DIM. Вход для задания диммирования.
- CSN. Вход с датчика тока.
- VIN. Вывод напряжения питания.
Микросхема ULN2003 — описание
Краткое описание ULN2003a. Микросхема ULN2003a — это транзисторная сборка Дарлингтона с выходными ключами повышенной мощности, имеющая на выходах защитные диоды, которые предназначены для защиты управляющих электрических цепей от обратного выброса напряжения от индуктивной нагрузки.
Каждый канал (пара Дарлингтона) в ULN2003 рассчитан на нагрузку 500 мА и выдерживает максимальный ток до 600 мА. Входы и выходы расположены в корпусе микросхемы друг напротив друга, что значительно облегчает разводку печатной платы.
Микросхема ULN2003 Готовый драйвер шагового двигателя на ULN2003
ULN2003 относится к семейству микросхем ULN200X. Различные версии этой микросхемы предназначены для определенной логики. В частности, микросхема ULN2003 предназначена для работы с TTL логикой (5В) и логических устройств CMOS. Широкое применение ULN2003 нашло в схемах управления широким спектром нагрузок, в качестве релейных драйверов, драйверов дисплея, линейных драйверов и т. д. ULN2003 также используется в драйверах шаговых двигателей.
Принципиальная схема
Микросхема ULN2003 Для управления двигателями, реле, маломощной нагрузкой….
Шаговый двигатель с драйвером Драйвер на микросхеме ULN2003, позволяет управл….
Шаговый двигатель для 3D принтера Две фазы, ток: 1,2А, шаг: 1,8, размер…
Характеристики
- Номинальный ток коллектора одного ключа — 0,5А;
- Максимальное напряжение на выходе до 50 В;
- Защитные диоды на выходах;
- Вход адаптирован к всевозможным видам логики;
- Возможность применения для управления реле.
Конструкция и детали сборки
Выбор элементов, расположенных в обвязке микросхемы PT4115, следует производить на основании рекомендаций изготовителя. В качестве C IN рекомендуется использовать конденсатор с низким ESR (эквивалентным последовательным сопротивлением). Данный параметр является вредным и негативно влияет на КПД. При питании от стабилизированного источника достаточно одного входного конденсатора ёмкостью не менее 4,7 мкФ, который должен быть размещен в непосредственной близости от микросхемы. При питании от источника переменного тока компания PowTech указывает на необходимость монтажа танталового конденсатора ёмкостью более 100 мкФ.
Типовая схема включения PT4115 для 3w светодиода подразумевает установку катушки индуктивности на 68 мкГн, располагать ее следует максимально близко к выводу SW PT4115.
К диоду D выдвигаются особые требования: малое прямое падение напряжения, малое время восстановления во время переключения и стабильность параметров при росте температуры p-n перехода, чтобы не допустить увеличения тока утечки. Этим условиям отвечает диод Шоттки FR103, способный выдерживать импульсы тока до 30А при температуре до 150°C.
Наконец, самый прецизионный элемент схемы драйвера для 3w светодиода – резистор R S . Минимальное значение R S =0,082 Ом, что соответствует току 1,2 А. Его рассчитывают, исходя из необходимого тока питания светодиода, по формуле:
R S =0,1/I LED , где I LED – номинальное значение тока светодиода, А.
В схеме включения PT4115 для 3w светодиода значение R s составляет 0,13 Ом, что соответствует току 780 мА. В магазинах не всегда можно найти резистор такого номинала. Поэтому придется вспомнить формулы расчета суммарного сопротивления при последовательном и параллельном включении резисторов:
- R посл =R1+R2+…+R n ;
- R пар =(R1xR2)/(R1+R2).
Таким образом, можно с высокой точностью получить нужное сопротивление из нескольких низкоомных резисторов.
В заключение хочется ещё раз подчеркнуть важность стабилизации тока, а не напряжения для обеспечения нормальной длительной работы мощных светодиодов. Известны случаи, когда в светодиодах китайского происхождения ток плавно продолжает нарастать в течение некоторого времени после включения и останавливается на значении, превышающем паспортный номинал
Это приводит к перегреву кристалла и постепенному снижению яркости. Драйвер для 3w светодиода на микросхеме PT4115 – это гарантия стабильной светоотдачи в сочетании с высоким КПД при условии эффективного отвода тепла от кристалла.
Как изготовить драйвер для светодиодов своими руками
Для работы требуется:
- маломощный паяльник (25-40 Вт);
- флюс (желательно нейтральный);
- оловянно-свинцовый припой;
- кусачки и пласкогубцы;
- многожильные медные провода в изоляции с сечением 0,35-1 м2;
- изолента (термоусадочная трубка);
- мультиметр;
- печатная плата.
Перечень компонентов зависит от того, какой блок питания необходимо сделать.
Пример расчета
Самая простая схема для подключения светодиодов к источникам с низким напряжением. Прежде всего, рассчитывается мощность блока, базируясь на параметры источников света. Вольтаж должен быть на 20-30% выше показателя подключаемой лампочки или ленты. На выходе напряжение зависит от падения вольтажа на светодиоде.
Если нужно подключить 6 светодиодов, падение напряжения в которых 2 В (на каждом), требуется блок на 12 В и 300 мА при последовательном размещении. Чтобы подключить те же элементов в 2 параллельные линии, необходимы другие показатели – напряжение 6 В, ток 600 мА. Для таких диодов подойдет простой драйвер, состоящий из диодного моста, 2-х конденсаторов и резистора.
Диодный мост состоит из 4-х разнонаправленные диодов, задача которых – превратить синусоидальный переменный электроток в пульсирующий. К плюсу моста (со стороны входа) присоединяется пленочный конденсатор, к минусу – сопротивление, параллельно –электролитический конденсатор (для сглаживания перепадов напряжения). Значение электротока зависит от метода подключения (если диодов несколько, их можно соединить последовательно или параллельно).
Для мощного светодиода (например, 3Вт) подойдет стабилизатор-драйвер, созданный на основе микросхемы LM317 и резистора. У стабилизатора LM317 постоянный вольтаж 1,25. Если лампа новая, ей требуется ток 700 мА (максимальное значение). Чтобы рассчитать сопротивление резистора, нужно напряжение разделить на ток:
1,25/0,7 = 1,78 Ом.
Такого резистора нет, поэтому нужно купить элемент на 1,8 Ом.
Так как микросхема LM317 предназначена для тока до 1,5 А, потребуется радиатор.
Драйвер для трех led по 1 Втможно сделать из зарядного устройства мобильного телефона, если немного усовершенствовать микросхему. Нужно снять корпус и выпаять имеющийся резистор и припаять другой (на 5 кОм). Светодиоды соединить последовательно и подключить к выходному каналу. Входные каналы заменить шнуром для присоединения к сети.
Для светодиодного источника с мощностью 10 Вт можно собрать блок питания на электронной плате люминесцентной лампы на 20 Вт. Купить нужно дроссели, диоды, конденсаторы и транзисторы.
Важные нюансы сборки
Падение напряжения на светодиодах 3-30 В. Это очень мало, если сравнивать с вольтажом сети. Готовые микросхемы отличаются только показателями входного напряжения. При выборе необходимо учесть, что падения напряжения на источниках света должно составлять 10-20% от вольтажа драйвера. Поэтому не стоит делать на основе микросхемы блок для подключения к сети, если имеется 1 или 2 диода на 3-6 В.
Все элементы на плате размещаются так, чтобы между ними было минимальное расстояние и количество перемычек. Полярность и распиновку лучше проверить в технической документации. Если элементы не новые, обязательна проверка мультиметром. Паяльник лучше выбрать небольшой, способный нагреваться до 260оС.
Конденсаторы, резисторы, диоды, микросхемы паять достаточно сложно, если их нельзя предварительно закрепить на плате. Чтобы повысить качество пайки, желательно залудить места, куда будут ставиться компоненты. Для этого капается немного флюса, на паяльник берется припой и наносится на то же место.
Каждый элемент нужно брать пинцетом за ножку, которую нужно припаять, и приставить к месту пайки. Потом на ножку наносится капля флюса, берется паяльник и подносится к припаиваемой ножке. Прикоснуться достаточно примерно на секунду, так как припой и флюс уже есть. Ножка сразу погружается в припой, нанесенный в процессе лужения.
Если элементы можно закрепить на плате, припой должен быть с флюсом. В одну руку нужно взять паяльник, в другую – проволоку. Место пайки греется 3-4 секунды, потом к нему подносится припой. При соприкосновении элемента, паяльника и проволоки последняя плавится, флюс вытекает, через секунду паяльник можно убрать.
Одновременно с паяльником желательно купить специальный отсос и очки. Если случится, что элемент припаялся не туда или на месте пайки образовался огромный бугор, нужно разогреть припой, взять отсос и нажать на кнопку. Все лишнее с платы моментально исчезнет. При работе с проводами и ножками элементов они могут отпружинить. Чтобы горячий припой не попал в глаза, работать желательно в очках.
Требования к вентиляции
Нужно уделять внимание и эффективности вентиляции при организации места, особенно в случае работы с газовым аппаратом. Ее предназначение заключается в удалении теплого воздуха и подвода холодного, который требуется для охлаждения инструментов и техники
При работе может образовываться достаточно большое количество токсичных газов. При высокой их концентрации есть вероятность отравления. Если концентрация газов высока, то есть вероятность их детонации.
Как правило, искусственная вентиляция представлена воздуховодами, которые подводят и отводят воздух. Для повышения эффективности работы устанавливается вентилятор. Проблем с охлаждением оборудования и загазованностью практически не возникает в случае, когда работы проводятся на улице.
Виды
По типу устройства драйверы делятся на линейные и импульсные:
- Линейные – основываются на токовом генераторе с р-канальным транзистором. Дают плавную стабилизацию тока при нестабильном напряжении. Простая конфигурация, небольшой КПД = 85%, дешевизна и большая теплоотдача предполагают использование в маломощных схемах светодиодов. Плюс – плавный режим работы, не создающий электромагнитные высокочастотные помехи.
- Импульсные – образуют на выходе высокочастотные импульсы. Принцип работы – ШИМ (широтно-импульсная модуляция). Средняя величина выходного тока обеспечивается коэффициентом заполнения (отношение длительности импульса к количеству повторений). Изменение значения среднего тока на выходе происходит из-за вариации величины заполнения от 10 до 80% при неизменной частоте импульсов. Широкое применение получили благодаря высокому КПД (95%), длительному сроку службы и малым размерам. К минусам относится высокий уровень помех.
По наличию гальванической развязки, которая предоставляет повышенный КПД, надежность и безопасность, предпочтение стоит отдавать драйверам, обладающим этим свойством. Если гальванической развязки нет, драйвер стоит дешевле, но есть опасность удара электротоком (нет защиты).
Подводя итог о выборе схемы драйвера для светодиодов (светодиодной лампы)
Итак, как вы поняли, драйверы бывают как самые простые, где фактически напряжение ограничивается за счет резистора или конденсатора, так и с использованием микросхем ШИМ. В этом случае происходит не только ограничение напряжение, но обеспечивается оптимальное энергопотребление со всевозможными функциями ограничения и защиты. Конечно, драйверы на микросхемах более прогрессивны, но при этом более сложные в изготовлении и более дорогие. Так что здесь придется сделать как всегда банальный выбор, посложнее и получше или попроще и подешевле. Если перед вами стоит задача подключить всего лишь один светодиод от 220 вольт, то схема для одного светодиода будет куда проще предложенных здесь. Более подробно об этом в схеме «Подключение светодиода от 220 вольт».