Содержание
- 1 Соотношения между числами твердости
- 2 Почему нужно знать твердость древесины по Бринеллю?
- 3 Шкала Мооса
- 4 Определение твердости по методу Бринелля
- 5 Требования к образцу
- 6 Факторы, определяющие вариант измерения
- 7 Зависимость между напряжением текучести и пределом прочности
- 8 Характеристики методики Виккерса
- 9 Не можете найти нужную единицу?
- 10 Что такое твердость?
- 11 Методика проведения испытаний
- 12 Характеристика материала сталь 40Х
- 13 Перевод единиц твердости по Роквеллу, Бринеллю и Виккерсу (таблица)
- 14 Насколько твердыми бывают основные металлы
- 15 План исследования по методу Роквелла
Соотношения между числами твердости
Твердостью металла называют его свойство оказывать сопротивление пластической деформации при контактном воздействии стандартного тела-наконечника на поверхностные слои материала.
Испытание на твердость — основной метод оценки качества термообработки изделия.
Определение твердости по методу Бринелля. Метод основан на том, что в плоскую поверхность под нагрузкой внедряют стальной шарик. Число твердости НВ определяется отношением нагрузки к сферической поверхности отпечатка.
Метод Роквелла (HR) основан на статическом вдавливании в испытываемую поверхность наконечника под определенной нагрузкой. В качестве наконечников для материалов с твердостью до 450 HR используют стальной шарик. В этом случае твердость обозначают как HRB. При использовании алмазного конуса твердость обозначают как HRA или HRC (в зависимости от нагрузки).
Твердость по методу Виккерса (HV) определяют путем статического вдавливания в испытуемую поверхность алмазной четырехгранной пирамиды. При испытании измеряют отпечаток с точностью до 0,001 мм при помощи микроскопа, который является составной частью прибора Виккерса.
Метод Шора. Сущность данного метода состоит в определении твердости материала образца по высоте отскакивания бойка, падающего на поверхность испытуемого тела с определенной высоты. Твердость оценивается в условных единицах, пропорциональных высоте отскакивания бойка.
Числа твердости HRC для некоторых деталей и инструментов
Головки откидных болтов, гайки шестигранные, рукоятки зажимные | 33…38 |
Головки шарнирных винтов, концы и головки установочных винтов, оси шарниров, планки прижимные и съемные, головки винтов с внутренними шестигранными отверстиями, палец поводкового патрона | 35…40 |
Шлицы круглых гаек | 36…42 |
Зубчатые колеса, шпонки, прихваты, сухари к станочным пазам | 40…45 |
Пружинные и стопорные кольца, клинья натяжные | 45…50 |
Винты самонарезающие, центры токарные, эксцентрики, опоры грибковые и опорные платики, пальцы установочные, цанги | 50…60 |
Гайки установочные, контргайки, сухари к станочным пазам, эксцентрики круговые, кулачки эксцентриковые, фиксаторы делительных устройств, губки сменные к тискам и патронам, зубчатые колеса | 56…60 |
Рабочие поверхности калибров — пробок и скоб | 56…64 |
Копиры, ролики копирные | 58…63 |
Втулки кондукторные, втулки вращающиеся для расточных борштанг | 60…64 |
Таблица соотношений между числами твердости по Бринеллю, Роквеллу, Виккерсу, Шору
65 | 84,5 | — | 2,34 | 688 | 940 | 96 |
64 | 83,5 | — | 2,37 | 670 | 912 | 94 |
63 | 83 | — | 2,39 | 659 | 867 | 93 |
62 | 82,5 | — | 2,42 | 643 | 846 | 92 |
61 | 82 | — | 2,45 | 627 | 818 | 91 |
60 | 81,5 | — | 2,47 | 616 | — | — |
59 | 81 | — | 2,5 | 601 | 756 | 86 |
58 | 80,5 | — | 2,54 | 582 | 704 | 83 |
57 | 80 | — | 2,56 | 573 | 693 | — |
56 | 79 | — | 2,6 | 555 | 653 | 79,5 |
55 | 79 | — | 2,61 | 551 | 644 | — |
54 | 78,5 | — | 2,65 | 534 | 618 | 76,5 |
53 | 78 | — | 2,68 | 522 | 594 | — |
52 | 77,5 | — | 2,71 | 510 | 578 | — |
51 | 76 | — | 2,75 | 495 | 56 | 71 |
50 | 76 | — | 2,76 | 492 | 549 | — |
49 | 76 | — | 2,81 | 474 | 528 | — |
48 | 75 | — | 2,85 | 461 | 509 | 65,5 |
47 | 74 | — | 2,9 | 444 | 484 | 63,5 |
46 | 73,5 | — | 2,93 | 435 | 469 | — |
45 | 73 | — | 2,95 | 429 | 461 | 61,5 |
44 | 73 | — | 3 | 415 | 442 | 59,5 |
42 | 72 | — | 3,06 | 398 | 419 | — |
40 | 71 | — | 3,14 | 378 | 395 | 54 |
38 | 69 | — | 3,24 | 354 | 366 | 50 |
36 | 68 | — | 3,34 | 333 | 342 | — |
34 | 67 | — | 3,44 | 313 | 319 | 44 |
32 | 67 | — | 3,52 | 298 | 302 | — |
30 | 66 | — | 3,6 | 285 | 288 | 40,5 |
28 | 65 | — | 3,7 | 269 | 271 | 38,5 |
26 | 64 | — | 3,8 | 255 | 256 | 36,5 |
24 | 63 | 100 | 3,9 | 241 | 242 | 34,5 |
22 | 62 | 98 | 4 | 229 | 229 | 32,5 |
20 | 61 | 97 | 4,1 | 217 | 217 | 31 |
18 | 60 | 95 | 4,2 | 207 | 206 | 29,5 |
— | 59 | 93 | 4,26 | 200 | 199 | — |
— | 58 | — | 4,34 | 193 | 192 | 27,5 |
— | 57 | 91 | 4,4 | 187 | 186 | 27 |
— | 56 | 89 | 4,48 | 180 | 179 | 25 |
Почему нужно знать твердость древесины по Бринеллю?
Эта информация важна, т. к. позволяет судить о прочности и потенциальной износостойкости конкретного продукта, будь то массивная доска, штучный паркет или инженерные конструкции. Чем мягче слой износа паркета, тем легче он будет повреждаться от твердых предметов (например, ножек мебели, каблуков и т. п.) и быстрее изнашиваться с годами.
Особенно это актуально для мест высокой проходимости: прихожих, детских, кухонь. В таких помещениях рекомендуют укладывать паркет, сделанный из пород высокой и средней твердости. Например, бамбуковый паркет для детской.
Для паркетной доски твердость древесины тоже имеет значение, однако нужно иметь в виду, что чем тоньше слой ценной древесины, тем меньшую нагрузку принимает он на себя. Поэтому при производстве шпонированной паркетной доски (ценный слой – 0,5-1,5 мм) в качестве промежуточного слоя используется сверхтвердая HDF-плита, выдерживающая высокие нагрузки.
Кто предложил впервые метод?
Метод Бринелля впервые предложил шведский инженер Юхан Август Бринелль в 1900 году, и стал широко применяемым и эталонным методом измерении твердости.
В чем сущность измерения твердости по методу Бринелля?
Сущность метода Бринелля заключается в постепенном внедрении индентора со строгими геометрическими размерами в исследуемый образец с определенной нагрузкой, и последующим определением твердости по диаметру отпечатка.
Какой индентор применяют для определения твердости по Бринеллю?
Для определения твердости по Бринеллю используют стальные или твердосплавные шарики с диаметрами 2,5 мм; 5 мм и 10 мм (также для определения твердости пластиков и твердых полимерных материалов используются шарики диаметрами 7,5 и 12 мм).
Как обозначается твердость по методу Бринелля?
Для металлов с твердостью менее 450 единиц используют стальные закаленные шарики (общепринятое обозначение HB).
Для металлов с твердостью от 450 до 650 единиц используют твердосплавный шарик (общепринятое обозначение HBW).
Для металлов с твердостью более 650 HBW метод Бринелля не используется.
Сводная таблица для выбора методики проведения испытания.
Традиционно для выбора методики проведения испытания по методу Бринелля применяются сводные таблицы, одна из которых представлена ниже.
Условия испытания металлов на твердость по Бринеллю.
Металлы | Твердость HB, кгс/кв.мм | Толщина образца, мм | Соотношение между P и D^2 | Диаметр шарика D, мм | Нагрузка P, кгс | Выдержка под нагрузкой, с |
---|---|---|---|---|---|---|
Черные | 140-250 | 6-3 | P = 30 D^2 | 10 | 3000 | 10 |
4-2 | 5 | 750 | ||||
Менее 2 | 2,5 | 187,5 | ||||
Черные | 140 | Более 6 | P = 10 D^2 | 10 | 1000 | 10 |
6-3 | 5 | 250 | ||||
Менее 3 | 2,5 | 62,5 | ||||
Цветные | 130 | 6-3 | P = 30 D^2 | 10 | 3000 | 30 |
4-2 | 5 | 750 | ||||
Менее 2 | 2,5 | 187,5 | ||||
Цветные | 35-130 | 9-3 | P = 10 D^2 | 10 | 1000 | 30 |
6-3 | 5 | 250 | ||||
2-3 | 2,5 | 62,5 | ||||
Цветные | 8-35 | Более 6 | P = 2,5 D^2 | 10 | 250 | 60 |
6-3 | 5 | 62,5 | ||||
Менее 3 | 2,5 | 15,6 |
Чем измеряют диаметр отпечатка по Бринеллю?
После окончания испытания измеряют диаметр отпечатка с помощью микроскопа с общим увеличением 20х, 40х или 50х, оснащенного окуляром с измерительной визирной шкалой или окулярным микрометром.
Затем по размеру отпечатка и таблицам с эмпирическими данными определяют твердость по Бринеллю.
Шкала Мооса
Шкала твердости по Моосу является относительной и применяется она исключительно для минералов. В качестве эталонных выбрано десять минералов, которые были расположены в порядке возрастания их твердости (на фотосхеме ниже). Соответственно, шкала имеет 10 баллов (от 1 до 10).
Минералогическая шкала твердости была предложена немецким ученым Фридрихом Моосом еще в 1811 году. Тем не менее в геологии она используется до сих пор.
Как определить твердость конкретного минерала по шкале Мооса? Это можно сделать при помощи внимательного рассмотрения царапины, оставленной образцом. При этом удобно пользоваться ногтем, медной монетой, куском стекла или стальным ножом.
Итак, если тестируемый минерал пишет по бумаге, не царапая ее, то его твердость равна единице. Если камень легко царапается ногтем, его твердость – 2. Три балла имеют минералы, которые легко царапаются ножом. Если же нужно приложить некоторые усилия, чтобы оставить на камне отметку, то его твердость равна 4 или 5. Минералы с твердостью 6 или выше сами оставляют царапины на лезвии ножа.
Определение твердости по методу Бринелля
Процесс исследования протекает в следующей последовательности:
- Проверка детали на соответствие требованиям (ГОСТ 9012-59, гост 2789).
- Проверка исправности аппарата.
- Выбор необходимого шарика, определение возможного усилия, установка грузов для его формирования, периода вдавливания.
- Запуск твердомера и деформация образца.
- Измерение диаметра углубления.
- Эмпирическое вычисление.
где F – нагрузка, кгс или Н; A – площадь отпечатка, мм 2 .
где D – диаметр шарика, мм; h – глубина отпечатка, мм.
Твердость металлов, измеренная этим способом, имеет эмпирическую связь с вычислением параметров прочности. Метод точен, особенно для мягких сплавов. Является основополагающим в системах определения значений этого механического свойства.
Требования к образцу
В соответствии с требованиями ГОСТов, испытуемые детали должны соответствовать следующим характеристикам:
Заготовка должна быть ровная, твердо лежать на столе твердомера, ее края должны быть гладкими или тщательно обработаны.
Поверхность должна иметь минимальную шероховатость. Должна быть отшлифована и очищена, в том числе с помощью химических составов
Одновременно, во время процессов механической обработки, важно предупредить образование наклепа и повышения температуры обрабатываемого слоя.
Деталь должна соответствовать выбранному методу определения твердости по параметрическим свойствам.
Выполнение первичных требований – обязательное условие точности измерений.
Твердость металлов — важное основополагающее механическое свойство, определяющее их некоторые остальные механические и технологические особенности, результаты предыдущих процессов обработки, влияние временных факторов, возможные условия эксплуатации. Выбор методики исследования зависит от ориентировочных характеристик образца, его параметров и химического состава
Факторы, определяющие вариант измерения
В лабораторных условиях, при наличии необходимого ассортимента оборудования, выбор способа исследования осуществляется в зависимости от определенных характеристик заготовки.
- Ориентировочное значение механического параметра. Для конструкционных сталей и материалов с небольшой твердостью до 450-650 НВ применяют метод Бринелля; для инструментальных, легированных сталей и других сплавов – Роквелла; для твердосплавов – Виккерса.
- Размеры испытуемого образца. Особо маленькие и тонкие детали обследуются с помощью твердомера Виккерса.
- Толщина металла в месте замера, в частности, цементированного или азотированного слоя.
Все требования и соответствия задокументированы ГОСТом.
Зависимость между напряжением текучести и пределом прочности
Связь между напряжением текучести и пределом прочности устанавливается по зависимости между экстраполированным пределом текучести и σB . Поскольку по экстраполированному пределу текучести можно достаточно точно определить напряжение текучести для большинства материалов, начиная со степени деформации , то такое допущение можно считать оправданным.
Ниже рассмотрены зависимости между пределом прочности и экстраполированным пределом текучести кривых упрочнения при растяжении первого рода и при сжатии второго рода.
Экстраполированный предел текучести у кривых упрочнения первого рода при растяжении находится по пересечению касательной к кривой упрочнения в точке начала образования шейки с осью ординат. У кривых упрочнения второго рода при сжатии экстраполированный предел текучести S0 (см. рис. 1) представляет собой напряжение, соответствующее по величине отрезку ординаты, отсекаемому прямой, являющейся продолжением участка III кривой упрочнения.
Согласно теоретическим выкладкам М. П. Марковца для материалов, у которых равномерное относительное поперечное сужение ΨB
не более 0,15, разница между экстраполированным пределом текучести определенным по кривым упрочнения при растяжении, и пределом прочности σB не превышает 3%, а при ΨB до 0,2 — не более 7%. При этом всегда должно быть меньше величины σB .
Теоретически установленную зависимость между и σB
М.П. Марковец подтвердил экспериментально. Было показано, что независимо от рода материала (цветные и черные металлы), вида предшествующей термической обработки (отжиг, нормализация, закалка, закалка + отпуск) и прочности ( изучаемых материалов составлял 20-180 кГ/мм2) отношение для материалов с до 15% близко к единице (рис. 1). Только для латуни и аустенитной стали ЭИ69, у которых величина ΨB доходит до 30%, это соотношение составляет 1,2-1,3.
П. Марковцем также была проведена большая работа по сопоставлению и σB
по экспериментальным данным других исследователей — Н. Н. Давиденкова, Кербера и Роланда. Было установлено, что данные различных авторов, полученные экспериментально в разных лабораториях над огромным количеством металлов н сплавов (алюминии, меди и их сплавах, углеродистых и легированных сталях) при комнатных и повышенных температурах (от 20 до 300°С), подтверждают теоретически установленную закономерность для металлов и сплавов, у которых ΨB не превышает 15%.
Экспериментально определим взаимосвязь между экстраполированным пределом текучести при сжатии S0 и σB
. В качестве исследуемого материала служили углеродистые и легированные горячекатаные и термически обработанные стали (табл. 1). Кривые упрочнения строили по результатам осадки образцов с торцовыми цилиндрическими выточками. Результаты сравнения графически изображены на рис. 1, из которого видно, что между величинами S0 и σB независимо от марки изделия и вида, и режима предварительной обработки имеется линейная зависимость. Математическая обработка экспериментальных данных показывает, что S0 в среднем меньше σB примерно на 6%, т. е.
Полученные экспериментальные данные согласуются с экспериментальными и теоретическими данными М. П. Марковца о зависимости между экстраполированным пределом текучести при растяжении и σB
в том смысле, что S0 меньше σB примерно на ту же величину.
Таблица 1
Химический состав и вид предшествующей обработки сталей, для которых устанавливали зависимость между экстраполированным пределом текучести при сжатии S0 и пределом прочности σB
Сталь | Предшествующая обработка | Содержание элементов в % | |||||
C | Mn | Si | Cr | Ni | Mo | ||
10 | Горячая прокатка | 0,11 | 0,45 | 0,21 | — | — | — |
15 | То же | 0,15 | 0,43 | 0,27 | — | — | — |
20 | 0,19 | 0,37 | 0,37 | — | — | — | |
15Х | 0,13 | 0,42 | 0,32 | 0,90 | — | — | |
20Х | 0,24 | 0,67 | 0,25 | 0,91 | — | — | |
45Х | 0,44 | 0,61 | 0,19 | 0,90 | — | — | |
12ХНЗА | 0,13 | 0,26 | 0,64 | 2,95 | — | ||
12ХНЗА | Отжиг, нормализация | 0,16 | 0,40 | 0,36 | 0,66 | 2,81 | — |
40ХНМА | Отжиг, нормализация, улучшение (t0 mn=600°С) | 0,37 | 0,60 | 0,24 | 0,66 | 1,39 | 0,15-0,25 |
Характеристики методики Виккерса
Еще один очень простой способ, который отличается скоростью и точностью, но дороговизной оборудования. Перечислим особенности:
- Используется алмазная пирамидка с более тупым углом – 136 градусов в вершине.
- Не допускается деформация более 100 кгс.
- Выдерживают время очень короткое – от 10 до 15 секунд.
- Измерять можно параметры любого материала, в том числе особенно прочного, а также сталей, которые прошли термическую обработку.
Последовательность исследования
Упрощенный алгоритм:
- Проверьте поверхностный слой детали, а также все оборудование.
- Рассчитайте допустимое усилие.
- Установите образец, закрепите его.
- Запустите аппарат и спустя 10-15 секунд проанализируйте итог.
Не можете найти нужную единицу?
Что такое твердость?
Каждое из известных науке веществ обладает целым рядом определенных физических свойств и качеств. В этой статье речь пойдет о том, что такое твердость. Это способность того или иного материала сопротивляться внедрению в него другого, более прочного тела (например, режущего или колющего инструмента).
Твердость веществ чаще всего измеряется в специальных единицах – кгс/мм2 (килограмм-сила на квадратный миллиметр площади). Обозначается она латинскими буквами HB, HRC или HRB, в зависимости от выбранной шкалы.
Самым твердым минералом на Земле считается алмаз. Если же говорить о материалах искусственного происхождения, то самым прочным является фуллерит. Это молекулярный кристалл, который образуется при высоких температурах (около 300 градусов по Цельсию) и чрезвычайно высоком давлении (свыше 90 000 атмосфер). Согласно исследованиям ученых, фуллерит примерно в полтора раза тверже алмаза.
Методика проведения испытаний
Проведение исследования требует тщательной подготовки. При определении твердости металлов методом Роквелла поверхность образца должна быть чистой, без трещин и окалин
Важно постоянно контролировать перпендикулярно ли прилагается нагрузка на поверхность материала, а также устойчиво ли он располагается на столике
Отпечаток при вдавливании конуса должен быть не меньше 1,5 мм, а при вдавливании шарика – более 4 мм. Для эффективных расчётов образец должен быть в 10 раз толще, чем глубина внедрения индентора после снятия основной нагрузки. Также следует проводить не меньше 3 испытаний одного образца, после чего усреднить результаты.
Характеристика материала сталь 40Х
Марка стали | сталь 40Х |
Заменитель стали |
сталь 45Х, сталь 38ХА, сталь 40ХН, сталь 40ХС, сталь 40ХФ, сталь 40ХР |
Классификация стали | Сталь конструкционная легированная ГОСТ 4543-71 |
В Компании ГП «Стальмаш» Вы можете купить сталь 40Х в следующих видах металлопроката: круг ст 40Х ГОСТ 2590-2006 (ГОСТ 2590-88) круг (пруток) стальной горячекатаный круг ст 40Х ГОСТ 7417-75 круг (пруток) калиброванный шестигранник ст 40Х ГОСТ 2879-2006 (ГОСТ 2879-88) шестигранник горячекатаный шестигранник ст 40Х ГОСТ 8560-78 шестигранник калиброванный лист ст 40Х ГОСТ 19903-74 прокат листовой горячекатаный | |
Применение стали 40Х | оси, валы, вал-шестерни, плунжеры, штоки, коленчатые и кулачковые валы, кольца, шпиндели, оправки, рейки, губчатые венцы, болты, полуоси, втулки и другие улучшаемые детали повышенной прочности. |
Химический состав в % материала сталь 40Х
C | Si | Mn | Ni | S | P | Cr | Cu |
0.36 — 0.44 | 0.17 — 0.37 | 0.5 — 0.8 | до 0.3 | до 0.035 | до 0.035 | 0.8 — 1.1 | до 0.3 |
Температура критических точек материала сталь 40Х
Ac1 = 743 , Ac3(Acm) = 782 , Ar3(Arcm) = 730 , Ar1 = 693
Механические свойства при Т=20oС материала сталь 40Х
Сортамент | Размер | Напр. | sв | sT | d5 | y | KCU | Термообр. |
— | мм | — | МПа | МПа | % | % | кДж / м2 | — |
Диск | Танг. | 570 | 320 | 17 | 35 | 400 | ||
Пруток | Ж 28 — 55 | Прод. | 940 | 800 | 13 | 55 | 850 | |
Пруток | Ж 25 | 980 | 785 | 10 | 45 | 590 | Закалка 860oC, масло, Отпуск 500oC, вода, |
Твердость материала сталь 40Х после отжига , | HB 10 -1 = 217 МПа |
Физические свойства материала сталь 40Х
T | E 10- 5 | a 10 6 | l | r | C | R 10 9 |
Град | МПа | 1/Град | Вт/(м·град) | кг/м3 | Дж/(кг·град) | Ом·м |
20 | 2.14 | 7820 | 210 | |||
100 | 2.11 | 11.9 | 46 | 7800 | 466 | 285 |
200 | 2.06 | 12.5 | 42.7 | 7770 | 508 | 346 |
300 | 2.03 | 13.2 | 42.3 | 7740 | 529 | 425 |
400 | 1.85 | 13.8 | 38.5 | 7700 | 563 | 528 |
500 | 1.76 | 14.1 | 35.6 | 7670 | 592 | 642 |
600 | 1.64 | 14.4 | 31.9 | 7630 | 622 | 780 |
700 | 1.43 | 14.6 | 28.8 | 7590 | 634 | 936 |
800 | 1.32 | 26 | 7610 | 664 | 1100 | |
900 | 26.7 | 7560 | 1140 | |||
1000 | 28 | 7510 | 1170 | |||
1100 | 28.8 | 7470 | 120 | |||
1200 | 7430 | 1230 | ||||
T | E 10- 5 | a 10 6 | l | r | C | R 10 9 |
Технологические свойства материала сталь 40Х
Свариваемость: | трудносвариваемая. |
Флокеночувствительность: | чувствительна. |
Склонность к отпускной хрупкости: | склонна. |
Зарубежные аналоги материала сталь 40ХВнимание! Указаны как точные, так и ближайшие аналоги
США | Германия | Япония | Франция | Англия | Евросоюз | Италия | Бельгия | Испания | Китай | Швеция | Болгария | Венгрия | Польша | Румыния | Чехия | Австралия | Юж.Корея | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
— | DIN,WNr | JIS | AFNOR | BS | EN | UNI | NBN | UNE | GB | SS | BDS | MSZ | PN | STAS | CSN | AS | KS | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
Обозначения:
Механические свойства : | |
sв | — Предел кратковременной прочности , |
sT | — Предел пропорциональности (предел текучести для остаточной деформации), |
d5 | — Относительное удлинение при разрыве , |
y | — Относительное сужение , |
KCU | — Ударная вязкость , |
HB | — Твердость по Бринеллю , |
Физические свойства : | |
T | — Температура, при которой получены данные свойства , |
E | — Модуль упругости первого рода , |
a | — Коэффициент температурного (линейного) расширения (диапазон 20o — T ) , |
l | — Коэффициент теплопроводности (теплоемкость материала) , |
r | — Плотность материала , |
C | — Удельная теплоемкость материала (диапазон 20o — T ), |
R | — Удельное электросопротивление, |
Свариваемость : | |
без ограничений | — сварка производится без подогрева и без последующей термообработки |
ограниченно свариваемая | — сварка возможна при подогреве до 100-120 град. и последующей термообработке |
трудносвариваемая | — для получения качественных сварных соединений требуются дополнительные операции: подогрев до 200-300 град. при сварке, термообработка после сварки — отжиг |
Марочник стали и сплавов
Перевод единиц твердости по Роквеллу, Бринеллю и Виккерсу (таблица)
SVERLA.info » Статьи » Твердость — перевод единиц
Роквелл | Бринелль | Виккерс | Шор | На разрыв | ||
HRA | HRC | HB (3000H) | Диаметр отпечатка, мм | HV | HSD | Н/мм² |
89 | 72 | 782 | 2.20 | 1220 | ||
86.5 | 70 | 1076 | 101 | |||
86 | 69 | 744 | 2.25 | 1004 | 99 | |
85.5 | 68 | 942 | 97 | |||
85 | 67 | 713 | 2.30 | 894 | 95 | |
84.5 | 66 | 854 | 92 | |||
84 | 65 | 683 | 2.35 | 820 | 91 | |
83.5 | 64 | 789 | 88 | |||
83 | 63 | 652 | 2.40 | 763 | 87 | |
82.5 | 62 | 739 | 85 | |||
81.5 | 61 | 627 | 2.45 | 715 | 83 | |
81 | 60 | 695 | 81 | 2206 | ||
80.5 | 59 | 600 | 2.50 | 675 | 80 | 2137 |
80 | 58 | 2.55 | 655 | 78 | 2069 | |
79.5 | 57 | 578 | 636 | 76 | 2000 | |
79 | 56 | 2.60 | 617 | 75 | 1944 | |
78.5 | 55 | 555 | 598 | 74 | 1889 | |
78 | 54 | 2.65 | 580 | 72 | 1834 | |
77.5 | 53 | 532 | 562 | 71 | 1772 | |
77 | 52 | 512 | 2.70 | 545 | 69 | 1689 |
76.5 | 51 | 495 | 2.75 | 528 | 68 | 1648 |
76 | 50 | 513 | 67 | 1607 | ||
75.5 | 49 | 477 | 2.80 | 498 | 66 | 1565 |
74.5 | 48 | 460 | 2.85 | 485 | 64 | 1524 |
74 | 47 | 448 | 2.89 | 471 | 63 | 1496 |
73.5 | 46 | 437 | 2.92 | 458 | 62 | 1462 |
73 | 45 | 426 | 2.96 | 446 | 60 | 1420 |
72.5 | 44 | 415 | 3.00 | 435 | 58 | 1379 |
71.5 | 42 | 393 | 3.08 | 413 | 56 | 1317 |
70.5 | 40 | 372 | 3.16 | 393 | 54 | 1255 |
38 | 352 | 3.25 | 373 | 51 | 1193 | |
36 | 332 | 3.34 | 353 | 49 | 1138 | |
34 | 313 | 3.44 | 334 | 47 | 1076 | |
32 | 297 | 3.53 | 317 | 44 | 1014 | |
30 | 283 | 3.61 | 301 | 42 | 965 | |
28 | 270 | 3.69 | 285 | 41 | 917 | |
26 | 260 | 3.76 | 271 | 39 | 869 | |
24 | 250 | 3.83 | 257 | 37 | 834 | |
22 | 240 | 3.91 | 246 | 35 | 793 | |
20 | 230 | 3.99 | 236 | 34 | 752 |
Вдавливание алмазного конуса с углом 120° при вершине и замер относительной глубины погружения в исследуемый материал.
Шкала А — нагрузка 60 кгс, для карбида вольфрама (ВК)
Шкала С — нагрузка 150 кгс, для твердых сталей HRB>100
Преимущество — простота. Недостаток — низкая точность.
Твердость по Бринеллю
Диаметр отпечатка металлического шарика в материале.
Недостаток — твердость до 450HB.
Твердость по Шору
Отскок шарика от поверхности в склероскопе (метод отскока). Очень простой и удобный метод.
Определение твердости материала является важной частью технологического процесса изготовления деталей любой сложности. Различные методы поиска твердости металла связанны в первую очередь с отличием их структуры и формы
Поработать с обычной заготовкой в форме болванки не составит труда, вот для листового материала нужен особый подход, учитывая его небольшую толщину
Различные методы поиска твердости металла связанны в первую очередь с отличием их структуры и формы. Поработать с обычной заготовкой в форме болванки не составит труда, вот для листового материала нужен особый подход, учитывая его небольшую толщину.
Расчет ресурса работы металлорежущего инструмента, его долговечность, всегда производится в первую очередь с учетом табличных показателей.
Именно благодаря повышенной твердости (около 71 HRC) твердосплавные сверла и фрезы из сплава ВК8 позволяют обрабатывать сверхтвердые материалы.
Насколько твердыми бывают основные металлы
Большинство материалов уже обладают определенными характеристиками, их давно измерили и записали в таблицы, при этом в сводках обозначены как исходные значения необработанного железа, так и после различных типов термо- и холодной металлообработки. Но при добавлении нестандартных и новых добавок, проведенных процедур необходимо заново измерять данный показатель. Но если вы сталкиваетесь со стандартными сплавами, то следует посмотреть в подготовленные списки.
Цветмет
Они более мягкие, чем черные, потому что в них нет твердых включений, а также их не подвергают закалке и прочим методам термообработки.
Титан составляет исключение. Приведем технологию, используемую Бриннелем:
Материал | Особенности | В нв |
Медь | Имеет высокую пластичность и низкую прочность. если добавляются специальные примеси, получаются новые марки, тогда показатель может увеличиваться. | 35 |
Латунь | Это двойной или многокомпонентный состав, который включает медь. но она более надежная, дополнительно включены цинк или олово. | 42 – 60 |
Алюминий | Может быть мягким или твердым, с увеличенной или уменьшенной пластичностью. | 15 – 20 |
Дюралюминий | Современный, легкий, активно применяется в авиастроении. есть добавки – медь, магний, марганец. | 70 |
Титан | Очень крепкий цветмет. | 160 |
Черные металлы
Это железо и стали, ферросплавы и чугуны. Иногда к этой категории относят ванадий, марганец. Общая характеристика:
- Способ получения – обработка железной руды.
- Увеличенная прочность.
- Невосприимчивость к механическим воздействиям.
- Высокая износостойкость.
- Хорошая свариваемость.
- Невысокая стоимость.
Поэтому железо активно применяют. Нецелесообразно приводить полный список всех марок, поэтому только основные:
- Чугун – 220 НВ.
- Инструментальные стальные сплавы – до 700 НВ, из нее делаются режущие инструменты.
- Нержавейка – до 250 НВ.
План исследования по методу Роквелла
Измерение твердости металла более упрощено, нежели для способа Бринелля.
- Оценка размеров и характеристик поверхности детали.
- Проверка исправности аппарата.
- Определение типа наконечника и допустимой нагрузки.
- Установка образца.
- Осуществление первичного усилия на материал, величиной в 10 кгс.
- Осуществление полного соответствующего усилия.
- Чтение полученного числа на шкале циферблата.
Также возможен математический расчет с целью точного определения механического параметра.
При условии использования алмазного конуса с нагрузкой 60 или 150 кгс:
при совершении испытания с помощью шарика под усилием 100 кгс:
где h – глубина внедрения индентора при первичном усилии 10 кгс; H – глубина внедрения индентора при полной нагрузке; 0,002 – коэффициент, регламентирующий величину перемещения наконечника при изменении числа твердости на 1 единицу.
Метод Роквелла является простым, но недостаточно точным. В то же время он позволяет измерять показатели механического свойства для твердых металлов и сплавов.