Как сделать генератор сигнала низкой частоты, схема и описание

Схема, технические характеристики, работа генератора ГУК-1.

     Недавно мне принесли в ремонт генератор ГУК-1. Что бы потом не думалось, сразу заменил все электролиты. О чудо! Все заработало. Генератор еще советских времен, а отношение у коммунистов к радиолюбителям было такое Х… , что вспоминать не охота.

      Вот отсюда и генератор желал бы быть получше. Конечно самое главное неудобство, это установка частоты высокочастотного генератора. Хоть бы, какой ни будь простенький верньер поставили, поэтому пришлось добавить дополнительный подстроечный конденсатор с воздушным диэлектриком (Фото1). По правде сказать я очень не удачно выбрал для его место, надо было бы чуть-чуть сместить. Я думаю вы это учтете.

     Что бы поставить ручку, пришлось удлинить ось триммера, кусок медной проволоки диаметром 3мм. Конденсатор подключается параллельно основному КПЕ или непосредственно, или через «растягивающий» конденсатор, что еще больше увеличивает плавность настройки генератора ВЧ. Для кучи заменил и выходные разъемы – родные уже все раздрыгались. На этом ремонт закончился. От куда схема генератора я не узнал, но похоже, что все соответствует. Возможно она пригодится и вам.
      Схема генератора универсального комбинированного – ГУК-1 приведена на рисунке 1. В состав прибора входят два генератора, низкочастотный генератор и генератор ВЧ.

ТЕХНИЧЕСКИЕ ДАННЫЕ

1. Диапазон частот ВЧ генератора от 150 кГц до 28 мГц перекрывается пятью поддиапазонами со следующими частотами:
• 1 поддиапазон 150 — 340 кГц
• II 340 — 800 кГц
• III 800 — 1800 кГц
• IV 4,0 — 10,2 мГц
• V 10,2 — 28,0 мГц

2. Погрешность установки ВЧ не более ±5%.
3. Генератор ВЧ обеспечивает плавную регулировку выходного напряжения от 0,05 мВ до 0,1 В.
4. Генератор обеспечивает следующие виды работ:
а) непрерывная генерация;
б) внутренняя амплитудная модуляция синусоидальным напряжением с частотой 1кГц.
5. Глубина модуляции не менее 30%.
6. Выходное сопротивление ВЧ генератора не более 200 Ом.
7. НЧ генератор генерирует 5 фиксированных частот: 100 Гц, 500 Гц, 1кГц, 5кГц, 15кГц.
8. Допустимое отклонение частоты НЧ генератора не более ±10%.
9. Выходное сопротивление НЧ генератора не более 600 Ом.
10. Выходное напряжение НЧ плавно регулируется от 0 до 0.5 В.
11. Время самопрогрева прибора — 10 минут.
12. Питание прибора осуществляется от батареи «Крона» напряжением 9 В.

Индуктивная трехточка

Эту схему выбираю я, и советую вам.

R1 – ограничивает ток генератора
R2 – задает смещение базы
C1, L1 – колебательный контур
C2 – конденсатор ПОС

Катушка L1 имеет отвод, к которому подключен эмиттер транзистора. Этот отвод должен быть расположен не ровно посередине, а ближе к «холодному» концу катушки (то есть тому, который соединен с проводом питания). Кроме того, можно вообще не делать отвод, а намотать дополнительную катушку, то есть – сделать трансформатор:

Эти схемы идентичны.

Механизм генерации:

Для понимания того, как работает такой генератор, давайте рассмотрим именно вторую схему. При этом, левая (по схеме) обмотка будет вторичной, правая – первичной.

Когда на верхней обкладке C1 увеличивается напряжение (то есть, ток во вторичной обмотке течет «вверх»), то на базу транзистора через конденсатор обратной связи C2 подается открывающий импульс. Это приводит к тому, что транзистор подает на первичную обмотку ток, этот ток вызывает увеличение тока во вторичной обмотке. Происходит подпитка энергией. В-общем – то, все тоже довольно просто.

УСОВЕРШЕНСТВОВАНИЕ ГЕНЕРАТОРА «ГУК-1»

Рейтинг:  5 / 5

Подробности
Категория: Генераторы ВЧ
Опубликовано: 17.03.2017 13:06
Просмотров: 4919

В. РУДОЙ Один из популярных промышленных измерительных приборов» встречающихся в торговле — генератор «ГУК-1» (генератор учебный комбинированный). Им можно пользоваться при налаживании самой разнообразной радиоаппаратуры: усилителей, радиоприемников, магнитофонов, телевизоров. По низкой частоте на выходе генератора можно получать сигналы амплитудой до 0,5 В пяти фиксированных частот: 100, 500, 1000, 5000 и 15 000 Гц. С высокочастотного выхода можно снимать сигналы амплитудой до 0,1 В в пяти поддиапазонах частот: I — 150…340 кГц, II — 340…800 к Гц, III — 800.. 1800 кГц, IV — 4,0… 10,2 МГц, V — 10,2..,28.0 МГц. Как видно из приведенных данных, в генераторе, к сожалению, отсутствует поддиапазон частот 1.8…4 МГц, охватывающий любительские диапазоны 160 и 80 м.

Как подобрать резисторы «на глаз»

В принципе можно оставить и подстроечный резистор. Все зависит от требуемой точности и генерируемой частоты синусоидального сигнала.

Для самостоятельного подбора следует, в первую очередь, установить подстроечный резистор номиналом 200-500 Ом. Подав выходной сигнал генератора на осциллограф и вращая подстроечный резистор дойти до момента когда начнется ограничение.

Затем понижая амплитуду найти положение, в котором форма синусоиды будет наилучшей.Теперь можно выпаять подстроечник, замерить получившиеся величины сопротивлений и впаять максимально близкие значения.

Если вам требуется генератор синусоидального сигнала звуковой частоты, то можно обойтись и без осциллографа. Для этого, опять таки, лучше дойти до момента когда сигнал, на слух, начнет искажаться из-за подрезания, а затем убавить амплитуду. Убавлять следует до тех пор пока искажения не пропадут, а затем еще немного. Это необходимо т.к. на слух не всегда можно уловить искажения и в 10%.

Как выглядят низкочастотные генераторы сигналов?

Стандартные низкочастотные генераторы сигналов синусоидальной формы представлены в виде небольшого короба, на передней панели имеется экран. С его помощью производится контроль колебаний и регулировки. В верхней части экрана имеется текстовое поле – это своеобразное меню, в котором присутствуют разные функции. Управление может производиться кнопками и переменными резисторами. На экране указывается вся информация, необходимая при работе.

Амплитуда и смещение сигнала регулируются при помощи кнопок. Новейшие образцы приборов оснащаются выходами, посредством которых можно произвести запись всех результатов на флеш-накопитель. Для изменения частоты дискретизации в генераторах синусоидального сигнала применяются специальные регуляторы. Благодаря им пользователь может очень быстро осуществить синхронизацию. Обычно внизу, под экраном, располагается кнопка включения, а рядом с ней выходы генератора.

Самодельные приборы

Можно сделать низкочастотные генераторы сигналов своими руками из подручных средств. Основная часть любого генератора – это селектор (англ. select – выбор). В любой конструкции он рассчитан на несколько каналов. В стандартных конструкциях применяется не более двух микросхем. Этого для реализации простейших приборов оказывается достаточно. Идеально подойдут для изготовления генераторов микросхемы из серии КН148. Что касается преобразователей, то они используются только аналоговые.

В некоторых случаях допускается использовать персональный компьютер в качестве генератора сигналов. Своими руками можно сделать небольшой переходник – он устанавливается на выходе звуковой карты. Сигнал снимается с выхода и используется для тестирования аппаратуры. На ПК устанавливается программа, которая будет управлять звуковой картой. Недостаток такой конструкции – слишком узкий диапазон частот, поэтому его нельзя использовать при тестировании некоторых приборов.

Генераторы синусоидального сигнала

Синус – это наиболее распространенная форма низкочастотного сигнала генераторов. Он необходим для тестирования большей части аппаратуры. В конструкции применяются самые простые микросхемы. Они вырабатывают сигнал, который преобразовывается операционным усилителем. Чтобы производить регулировку сигналов, необходимо в схему включить переменные или постоянные резисторы. От типа используемых сопротивлений зависит, ступенчато или плавно будет осуществляться регулировка.

Генераторы синусоидального сигнала широко применяются для настройки не только радиоаппаратуры, но и высокочастотной техники – инверторов, блоков питания, преобразователей частоты для асинхронных двигателей и т. д. Эта техника позволяет производить преобразование исходного синуса бытовой сети (частота 50 Гц). Причем частота увеличивается в десятки раз – до 100 МГц. Это необходимо для нормальной работы импульсного трансформатора.

Низкочастотные генераторы сигналов

Такие конструкции применяются для настройки и тестирования аудиоаппаратуры

Если обратить внимание на схему простейшего низкочастотного генератора сигналов, то можно увидеть, что в нем устанавливаются переменные резисторы – с их помощью производится корректировка формы и величины сигнала. Чтобы осуществить изменение величины импульса, можно использовать модулятор серии КК202

Сигнал в этом случае должен генерироваться через конденсаторы.

Низкочастотный генератор сигналов используется для настройки любой аудио аппаратуры – проигрывателей, усилителей звуковой частоты и т. д. В качестве такого генератора можно использовать персональный компьютер (даже старый ноутбук подойдет). Это бюджетный вариант, который не потребует больших затрат, если в наличии имеется старенький компьютер. Достаточно установить последнюю версию драйверов, программу для работы со звуковой картой и сделать переходник для подключения к аппаратуре.

Встроенные редакторы

Все низко- и высокочастотные генераторы сигналов очень просты в настройке. У них имеется несколько четырехпозиционных регуляторов, позволяющих корректировать значение максимальной частоты. Время перехода на установившийся режим в большей части моделей составляет не больше 3 мс. Такое малое время можно достичь благодаря использованию микроконтроллеров.

Микроконтроллеры монтируются на основной плате, в некоторых конструкциях они съемные – буквально одним движением можно установить новый элемент. В конструкциях со встроенным редактором не устанавливаются ограничители. После селекторов по схеме расположены преобразователи. Иногда в схемах можно встретить синтезаторы. Максимальная частота генерируемого сигнала может составлять 2000 кГц, суммарная погрешность не более 2 %.

Контроллеры сложных сигналов

В сборке присутствуют только многоканальные селекторы, так как приборы получают импульсы сложной формы. Сигналы многократно усиливаются, режим можно изменить при помощи регулятора. Вариацией такого прибора считается DDS (устройство по схеме прямого цифрового синтеза).

Базовая плата оборудуется микроконтроллерами, которые легко снимаются и ставятся на место. В некоторых моделях можно заменить микроконтроллер одним движением. Если редактор монтированный, ограничители установить нельзя. Прибор генерирует измерительный сигнал мощностью до 2000 кГц с погрешностью до 2%.

Доработка генератора ГУК-1

FM модуляция в генераторе ГУК-1.

Еще одна идея модернизации генератора ГУК-1, я ее не пробовал, потому, как у меня собственного генератора нет, но по идее все должно работать. Эта доработка позволяет настраивать узлы, как приемной, так и передающей аппаратуры, работающей с применением частотной модуляции, например радиостанций СВ диапазона

И, что не маловажно, с помощью резистора Rп можно подстраивать несущую частоту. Напряжение, которое используется для смещения варикапов должно быть обязательно стабилизированным

Для этих целей можно использовать однокристальные трехвыводные стабилизаторы на напряжение 5В и небольшим падением напряжения на самом стабилизаторе. В крайнем случае можно собрать параметрический стабилизатор, состоящий из резистора и стабилитрона КС156А. Прикинем величину резистора в цепи стабилитрона. Ток стабилизации КС156А лежит в пределах от 3ма до 55ма. Выберем начальный ток стабилитрона 20ма. Значит при напряжении питания 9В и напряжении стабилизации стабилитрона 5.6В, на резисторе при токе в 20ма должно упасть 9 — 5,6 = 3,4В. R = U/I = 3,4/0,02 = 170 Ом. При необходимости величину резистора можно изменить. Глубина модуляции регулируется все тем же переменным резистором R8 — регулятор выходного напряжения НЧ. При необходимости изменить пределы регулировки глубины модуляции, можно подобрать номинал резистора R*.

Архивы

АрхивыВыберите месяц Январь 2021  (1) Декабрь 2020  (1) Ноябрь 2020  (1) Октябрь 2020  (1) Сентябрь 2020  (2) Июль 2020  (2) Июнь 2020  (1) Апрель 2020  (1) Март 2020  (3) Февраль 2020  (2) Декабрь 2019  (2) Октябрь 2019  (3) Сентябрь 2019  (3) Август 2019  (4) Июнь 2019  (4) Февраль 2019  (2) Январь 2019  (2) Декабрь 2018  (2) Ноябрь 2018  (2) Октябрь 2018  (3) Сентябрь 2018  (2) Август 2018  (3) Июль 2018  (2) Апрель 2018  (2) Март 2018  (1) Февраль 2018  (2) Январь 2018  (1) Декабрь 2017  (2) Ноябрь 2017  (2) Октябрь 2017  (2) Сентябрь 2017  (4) Август 2017  (5) Июль 2017  (1) Июнь 2017  (3) Май 2017  (1) Апрель 2017  (6) Февраль 2017  (2) Январь 2017  (2) Декабрь 2016  (3) Октябрь 2016  (1) Сентябрь 2016  (3) Август 2016  (1) Июль 2016  (9) Июнь 2016  (3) Апрель 2016  (5) Март 2016  (1) Февраль 2016  (3) Январь 2016  (3) Декабрь 2015  (3) Ноябрь 2015  (4) Октябрь 2015  (6) Сентябрь 2015  (5) Август 2015  (1) Июль 2015  (1) Июнь 2015  (3) Май 2015  (3) Апрель 2015  (3) Март 2015  (2) Январь 2015  (4) Декабрь 2014  (9) Ноябрь 2014  (4) Октябрь 2014  (4) Сентябрь 2014  (7) Август 2014  (3) Июль 2014  (2) Июнь 2014  (6) Май 2014  (4) Апрель 2014  (2) Март 2014  (2) Февраль 2014  (5) Январь 2014  (4) Декабрь 2013  (7) Ноябрь 2013  (6) Октябрь 2013  (7) Сентябрь 2013  (8) Август 2013  (2) Июль 2013  (1) Июнь 2013  (2) Май 2013  (4) Апрель 2013  (7) Март 2013  (7) Февраль 2013  (7) Январь 2013  (11) Декабрь 2012  (7) Ноябрь 2012  (5) Октябрь 2012  (2) Сентябрь 2012  (10) Август 2012  (14) Июль 2012  (5) Июнь 2012  (21) Май 2012  (13) Апрель 2012  (4) Февраль 2012  (6) Январь 2012  (6) Декабрь 2011  (2) Ноябрь 2011  (9) Октябрь 2011  (14) Сентябрь 2011  (22) Август 2011  (1) Июль 2011  (5)

Радио-начинающим, Измерения

 
   
 
 

Этот прибор может быть использован для налаживания усилителей низкой частоты приемников, телевизоров, магнитофонов, для настройки аппаратуры радиоуправления моделями.

Весь диапазон частот, генерируемых прибором, разбит на четыре поддиапазона: 10—100 гц 100 — 1000 гц, 1000 гц—10 кгц и 10— 100 кгц.

Рис. 25. Схема генератора звуковой частоты.

Прибор работает на четырех транзисторах и питается от трех батарей КБС-Л-0,50, соединенных последовательно. Ток, потребляемый прибором от источника питания, 10 ма при выходном напряжении 8 в. Выходное сопротивление прибора 1 ком.Схема прибора показана на рис. 25. Генератор собран по cxetae Т-образного моста на транзисторах Т1 и Т2. Положительная обратная связь между коллектором транзистора Т1 и базой транзистора Т2 осуществляется через диод Д1, на электродах которого поддерживается фиксированное напряжение 0,6 в, благодаря чему характеристика тока транзистора Т1 получается более линейной.Обратная связь между коллектором транзистора Т2 и эмиттером транзистора Т1 осуществляется через резистор R7. Напряжение на диоде Д2 определяет рабочую точку обоих транзисторов.Частота генератора грубо изменяется включением в Т-образный мост конденсаторов C1—С4 и С5—C8 переключателями П1, и П1б. Плавно частоту регулируют резистором R13.Для уменьшения влияния на генератор подключаемых к нему налаживаемых приборов на транзисторе Т3, включенном по схеме эмиттерного повторителя, собран выходной каскад.Детали. Для генератора используют широко распространенные детали. Переключатель П4 — одноплатный, на 4 положения. Резистор R4 типа СПО-0,5, R3 — СПО-2. Конденсаторы С1—С8 типа МБ или БГМ. Диоды Д1—Д3 типов Д9, Д2, Д101. Микроамперметр на ток 500 мка с внутренним сопротивлением 1 500 ом.

Рис. 26. Внешний вид генератора.

Детали генератора монтируют на плате из текстолита (рис. 26) и лицевой панели прибора. Корпус и панель изготовлены из листового дюралюминия толщиной 1,5—2 мм. Внешние размеры корпуса составляют 210X100x55 мм.Внешний вид прибора показан на рис. 27.Настройку генератора начинают с подбора диодов Д1 и Д2, прямое падение напряжений на которых должно быть 0,5—0,6 в. При таких напряжениях на диодах ток, потребляемый прибором от батареи при максимальном выходном напряжении, должен быть 8—12 ма. Если ток меньше, значит прибор не генерирует. Генерации добиваются переменным резистором R4.

Рис. 27. Расположение деталей в корпусе генератора.

Чтобы каждый поддиапазон перекрывал указанные частоты, нужно конденсаторы, входящие в мост, подобрать такой емкости, чтобы переводя генератор переключателем П1 с одного поддиапазона на соседний, частота изменялась точно в 10 раз.Сначала переключатель П1 надо установить в положение 1, когда в мост будут включены конденсаторы С4 и С8. Генератор при этом должен перекрывать диапазон частот от 10 до 100 гц. Подогнать такой участок частот можно изменением емкостей конденсаторов C1 и C8. Затем переключатель устанавливают в положение 2 (подключают конденсаторы С7 и С2). Теперь частота генератора должна изменяться резистором R13 от 100 до 1 000 гц. Если она не соответствует этому диапазону, нужно изменить емкости конденсаторов С2 и С7.Так же настраивают остальные поддиапазоны генератора, умножая частоты соответственно на 100 и 1 000.Для градуировки прибора нужен контрольный генератор звуковой частоты, по которому и настраивают самодельный прибор. К обоим генераторам подключают головные телефоны. При равенстве частот генераторов в телефонах слышен звук одного тока (нулевые биения между частотой эталонного и самодельного генераторов).Шкалу прибора вычерчивают на плотной белой бумаге и покрывают прозрачным лаком.

Здесь Ваше мнение имеет значение

 —
 поставьте вашу оценку (оценили — 29 раз)

 
  • 68
 

В.В. Вознюк. В помощь школьному радиокружку

Ключевые теги: Измерения, Вознюк

 
 
 
Смотри также:
 
   
  • Приборы для проверки межвиткового замыкания
  • Частотомер с линейной шкалой
  • Измеритель емкости конденсаторов с линейной шкалой
  • Генераторы промежуточной и высокой частоты
  • Измерительные приборы. Генераторы низкой частоты
  • Аппаратура радиоуправления моделями
  • Генератор сигналов для настройки усилителей
  • Простейший звуковой генератор на неоновой лампе
  • Гетеродинный измеритель резонанса
  • Мост для измерения сопротивлений и емкостей конденсаторов
  • Гетеродинный измеритель резонанса
  • Осциллограф на двух радиолампах
  • Самодельные измерительные приборы. Авометр
  • Измеритель емкости оксидных конденсаторов
  • Схемы и описания измерительных генераторов
 

Стабилизация амплитуды на светодиодах

Эффективным методом стабилизации амплитуды выходного напряжения генератора синусоидальных сигналов является применение в цепи отрицательной обратной связи ОУ светодиодов (VD1 и VD2).

Основной коэффициент усиления задается резисторами R3 и R4. Остальные же элементы (R5, R6 и светодиоды) регулируют коэффициент усиления в небольшом диапазоне, поддерживая генерацию стабильной. Резистором R5 можно регулировать величину выходного напряжения в интервале примерное 5-10 вольт.

В дополнительной цепи ОС желательно использовать низкоомные резисторы (R5 и R6). Это позволит пропускать значительный ток (до 5мА) через светодиоды и они будут находиться в оптимальном режиме. Даже будут немного светиться 🙂

Автоколебательные транзисторные приборы

Генератор на транзисторе разделяют на несколько видов:

  • по частотному диапазону выдаваемого сигнала;
  • по типу выдаваемого сигнала;
  • по алгоритму действия.

Частотный диапазон принято подразделять на следующие группы:

  • 30 Гц-300 кГц – низкий диапазон, обозначается нч;
  • 300 кГц-3 МГц – средний диапазон, обозначается сч;
  • 3-300 МГц – высокий диапазон, обозначается вч;
  • более 300 МГц – сверхвысокий диапазон, обозначается свч.

Так подразделяют диапазоны радиолюбители. Для звуковых частот используют промежуток 16 Гц-22 кГц и тоже делят его на низкие, средние и высокие группы. Эти частоты присутствуют в любом бытовом приёмнике звука.

Следующее разделение – по виду выдаваемого сигнала:

  • синусоидальный – происходит выдача сигнала по синусоиде;
  • функциональный – на выходе у сигналов появляется специально заданная форма, например, прямоугольная или треугольная;
  • генератор шума – на выходе наблюдается равномерный диапазон частот; диапазоны могут быть различны, в зависимости от нужд потребителя.

Транзисторные усилители различаются по алгоритму действия:

RC – основная область применения – низкий диапазон и звуковые частоты;
LC – основная область применения – высокие частоты;
Блокинг-генератор – используется для производства сигналов-импульсов с большой скважностью.

Деление частот

Диоды 4148 вместо светодиодов

Светодиоды были заменены на всеми любимые диоды 4148. Это доступные быстродействующие сигнальные диоды со скоростью переключения менее 4 нс. Схема при этом осталась полноценно работоспособной, от описанных выше проблем не осталось и следа, а синусоида приобрела идеальный вид.

На следующей схеме элементы моста вина рассчитаны на частоту генерации 100 кГц. Так же переменный резистор R5 был заменен на постоянные, но об этом позже.

В отличие от светодиодов, падение напряжения на p-n переходе обычных диодов составляет 0.6÷0.7 В, поэтому величина выходного напряжения генератора составила около 2.5 В. Для увеличения выходного напряжения возможно включение нескольких диодов последовательно, вместо одного, например вот так:

Однако увеличение количества нелинейных элементов сделает генератор более зависимым от внешней температуры. По этой причине было решено отказаться от такого подхода и использовать по одному диоду.

Генератор на 120 Гц

На рисунке 4 показана схема генератора частоты 120 Гц. Частота стабилизирована кварцевым резонатором Q1 на 32768 Гц, с его выхода внутри микросхемы D1 импульсы поступают на двоичный счетчик. Коэффициент деления частоты задан диодами VD1-VD2 и резистором R1, которые обнуляют счетчик каждый раз, когда его состояние достигает 272. При этом, 32768 / 272 = 120,470588.

Это не совсем 120 Гц, но близко. К тому же, подбором емкостей конденсаторов С1 и С2 можно немного изменить частоту кварцевого генератора и получить результат более близкий к 120 Гц.

Рис. 4. Принципиальная схема генератора сигнала частотой 120 Гц.

Напряжение источника питания может быть от 3 до 15V, в зависимости от напряжения питания схемы, вернее, от необходимой величины логического уровня. Выходные импульсы во всех схемах несимметричные, это нужно учитывать при конкретном их применении.

ГИР для настройки проволочных антенн

Рейтинг:   / 5

Подробности
Категория: Генераторы ВЧ
Опубликовано: 17.03.2017 13:17
Просмотров: 2209

Простые в изготовлении и эксплуатации гетеродинные индикаторы резонанса широко используются радиолюбителями. Применяют их, в частности, и при настройке антенн. Однако классические варианты ГИР ориентированы на индуктивную связь с измеряемым колебательным контуром. Их небольшие по размерам катушки индуктивности в большинстве случаев не позволяют обеспечить достаточную связь с элементами антенны, например, с проволочной рамкой. В результате индикация резонансной частоты элемента становится нечеткой, что приводит к значительным погрешностям измерений. Английский коротковолновик Питер Додд (G3LDO) решил эту проблему просто, изготовив для настройки элементов своего «двойного квадрата» несложный специализированный ГИР. Он отличается от классических вариантов этого прибора лишь его конструктивным исполнением (Peter Dodd. Antennas. — RadCom, 2008, March, p. 66, 67). Схемотехническое решение гетеродинного индикатора резонанса может быть любым — великое множество их было опубликовано в радиолюбительской литературе. Питер Додд использовал один из простейших вариантов ГИР.

Блокинг-генератор

По своей сути, является усилителем, собранным на базе транзисторов, расположенных в один каскад. Область применения узка – источник внушительных, но скоротечных по времени (продолжительность от тысячных долей до нескольких десятков мкс) сигналов-импульсов с большой индуктивной плюсовой обратной связью

Скважность – больше 10 и может доходить до нескольких десятков тысяч в относительных величинах. Наблюдается серьезная резкость фронтов, по своей форме практически не отличающихся от геометрически правильных прямоугольников

Применяются в экранах электронно-лучевых приборов (кинескоп, осциллограф).

Виды генераторов сигналов

Приборы различаются по ряду характеристик. Например, по форме сигнала (синусоидальные, прямоугольные, в виде пилы), по частоте (низкочастотные, высокочастотные), по принципу возбуждения (независимое, самовозбуждение). Однако существует несколько основных видов — о них и расскажем подробнее.

Синусоидальный

Прибор усиливает первоначальный синусоидный код в десятки раз. На выходе получается частота до 100 МГц. При этом исходный синус, как правило, не превышает 50 МГц. Генераторы синусоидального импульса активно используют при проверке блоков питания, инверторов и другой высокочастотной техники, а также радиоаппаратуры.

Генератор низкочастотный

Ниже схема самого простого низкочастотного генератора. На ней видно, что в приборе присутствуют переменные резисторы. Они позволяют корректировать форму и частоту сигнала. Изменить силу импульса можно подключенным модулятором KK202.

Такой прибор подойдет для настройки аудиоаппаратуры (звуковых усилителей, проигрывателей). Наиболее доступным вариантом низкочастотного генератора является обычный компьютер. Достаточно скачать драйверы и подключить его к аппаратуре через переходник.

Генератор звуковой частоты

Стандартная конструкция с микросхемами внутри. Напряжение подается в селектор, а сам сигнал генерируется в одной или нескольких микросхемах. Частоту можно настраивать при помощи модуляционного регулятора. Прибор отличается более обширным диапазоном частоты, чем аналоги (до 2000 кГц).

Генератор цифрового сигнала

Цифровые генераторы популярны, потому что отличаются высокой точностью. Пользоваться ими удобно, однако они нуждаются в тщательной настройке. Здесь стоят коннекторы KP300, резисторы достигают сопротивления от 4 Ом. Это позволяет добиться предельно допустимого внутреннего напряжения в схеме.

Использование мультивибраторов

Практические примеры использования мультивибратора приведены на рис. 4, 5.

Рис. 4. Схема генератора, позволяющего плавно перераспределять длительность или яркость свечения светодиодов.

На рис. 4 показана схема генератора, позволяющего плавно перераспределять длительность или яркость свечения светодиодов, включенных в качестве нагрузки в цепи коллекторов. Вращением ручки потенциометра R3 можно управлять соотношением длительностей свечения светодиодов левой и правой ветвей.

Если увеличить емкость конденсаторов С1 и С2, частота генерации понизится, светодиоды начнут мигать. При уменьшении емкости этих конденсаторов частота генерации возрастает, мелькание светодиодов сольется в сплошное свечение, яркость которого будет зависеть от положения ручки потенциометра R3.

На основе подобного схемного решения могут быть собраны разнообразные полезные конструкции, например, регулятор яркости светодиодного фонарика; игрушка с мигающими глазами; устройство плавного изменения спектрального состава источника излучения (разноцветные светодиоды или миниатюрные лампочки и светосуммирую-

щий экран).

Рис. 5. Генератор переменной частоты — схема.

Генератор переменной частоты (рис. 5) конструкции В. Цибульского позволяет получать плавно изменяющееся со временем по частоте звучание [Р 5/85-54]. При включении генератора его частота возрастает с 300 до 3000 Гц за 6 сек (при емкости конденсатора C3 500 мкФ).

Изменение емкости этого конденсатора в ту или иную сторону ускоряет или, напротив, замедляет скорость изменения частоты. Плавно изменять эту скорость можно и переменным сопротивлением R6.

Для того чтобы этот генератор мог выполнять роль сирены, или быть использованным в качестве генератора качающейся частоты, можно предусмотреть схему принудительного периодического разряда конденсатора C3. Такие эксперименты можно рекомендовать для самостоятельного расширения познаний в области импульсной техники.

Дополнительное усиление

Генератор синуса был собран на сдвоенном ОУ, и половина микросхемы осталась висеть в воздухе. Поэтому логично задействовать ее под регулируемый усилитель напряжения. Это позволило перенести переменный резистор из дополнительной цепи ОС генератора в каскад усилителя напряжения для регулировки выходного напряжения.

Применение дополнительного усилительного каскада гарантирует лучшее согласование выхода генератора с нагрузкой. Он был построен по классической схеме неинвертирующего усилителя.

Указанные номиналы позволяют изменять коэффициент усиления от 2 до 5. При необходимости номиналы можно пересчитать под требуемую задачу. Коэффициент усиления каскада задается соотношением:

K=1+R2/R1

Резистор R1 представляет из себя сумму последовательно включенных переменного и постоянного резисторов. Постоянный резистор нужен, чтобы при минимальном положении ручки переменного резистора коэффициент усиления не ушел в бесконечность.

Оцените статью
Рейтинг автора
5
Материал подготовил
Андрей Измаилов
Наш эксперт
Написано статей
116
Добавить комментарий