Подключение потенциометра к ардуино

Как работает потенциометр?

Традиционный потенциометр имеет ось, на которой размещается ручка для изменения сопротивления, и 3 вывода.

Два крайних вывода соединены электропроводным материалом с постоянным сопротивлением. Фактически это постоянный резистор. Центральный вывод потенциометра соединен с подвижным контактом, который перемещается по электропроводному материалу. В результате изменения положения подвижного контакта изменяется и сопротивление между центральным выводом и крайними выводами потенциометра.

Таким образом, потенциометр может изменять свое сопротивление между центральным контактом и любым из крайних контактов от 0 Ом до максимального значения, указанного на корпусе.

Схематически потенциометр можно представить в виде двух постоянных резисторов:

Как рассчитать его сопротивление? Эта схема напоминает довольно известную схему так называемого делителя напряжения.

В делителе напряжения крайние выводы резисторов подключены между питанием Vcc и массой GND. А средний вывод с GND создает новое более низкое напряжение.

Выходное напряжение можно расчитать по следующей формулы:

Если у нас есть резистор с максимальным сопротивлением 10 кОм и его ручку перевести в среднее положение, то мы получим 2 резистора со значением 5 кОм. Подав напряжение 5 вольт на вход, на выходе делителя мы получим напряжение:

Uвых = Uвх * R2/(R1+R2) = 5*5000/(5000+5000) = 5*5/10 = 5*1/2 = 2,5В

Выходное напряжение оказалось равным половине входного напряжения.

А что же произойдет, если мы повернем ручку так, что центральный вывод соединиться с выводом Vcc?

Uвых = Uвх*R2/(R1+R2) = 5*10000/(0+10000) = 5*10000/10000 = 5*1 = 5В

Так как сопротивление резистора R1 уменьшилось до 0 Ом, а сопротивление R2 увеличилась до 10 кОм, на выходе мы получили максимальное выходное напряжение.

Что будет, если мы повернем ручку до упора в противоположную сторону?

Uвых = Uвх*R2/(R1+R2) = 5*0/(10000 0) = 5*0 = 0В

В этом случае сопротивление R1 будет иметь максимальное сопротивление 10 кОм, а сопротивление R2 упадет до 0. Фактически на выходе напряжение будет отсутствовать.

Источник

Схема регулятора оборотов для электродвигателя

Чтобы собрать регулятор оборотов для двигателя потребуется генератор ШИМ импульсов и симистор для управления двигателем. Диод и резистор D1 и R1, позволяют снижать напряжение для питания двигателя, а конденсатор C1, призван обеспечивать фильтрацию тока на входе электроцепи.

Элементы P1, R5 и R3 — это делители напряжения с возможностью регулировки его значений. Резистор R2, который указан на схеме регулятора оборотов электродвигателя, позволяет синхронизировать внутренние блоки регулятора с основным симистором (ВТ139), на котором собственно и работает регулятор оборотов.

Ниже на рисунке можно увидеть наглядное расположение всех элементов регулятора оборотов для электродвигателей. Обязательно следует безопасно расположить элементы, так как работа регулятора осуществляется от опасного напряжения в 220 Вольт.

Что такое закон Ома?

Основные характеристики

Чтобы правильно выбрать резистор важно знать, на какие характеристики нужно смотреть при выборе. К его основным параметрам относится:

  1. Номинальное сопротивление.
  2. Максимальная рассеиваемая мощность.
  3. Допуск или класс точности. От него зависит, насколько процентов сопротивление деталей из этого класса может отличаться от заявленного.

В большинстве случае этих сведений достаточно. Новички часто забывают о допустимой мощности резистора, и они у них перегорают. Вы можете рассчитать сколько Ватт выделяется на резисторе по формуле, указанной в предыдущем разделе статьи. Покупайте резисторы с запасом по мощности в 20-30%, больше – лучше, меньше – не нужно!

Особенности изготовления

Другой путь подразумевает самостоятельное приобретение радиокомпонентов и изготовление в случае необходимости печатной платы. Используя второй способ, можно будет сэкономить, но он занимает больше времени.

Существует множество схем разного уровня сложности для самостоятельного изготовления. Но чтобы сделать регулятор напряжения, кроме схемы, понадобится подготовить следующие инструменты, приборы и материалы:

Техника изготовления печатной платы в домашних условиях называется лазерно-утюжной (ЛУТ). Её суть заключается в распечатывании печатной платы на глянцевом листе бумаги, и переносом изображения на текстолит с помощью проглаживания утюгом. Затем плату погружают в раствор хлорного железа. В нём открытые участки меди растворяются, а закрытые с переведённым изображением формируют необходимые соединения.

При самостоятельном изготовлении прибора важно соблюдать осторожность и помнить про электробезопасность, особенно при работе с сетью переменного тока 220 В. Обычно правильно собранный регулятор из исправных радиодеталей не нуждается в настройке и сразу начинает работать

Единица измерения сопротивления резистора

В Международной системе единиц (СИ) сопротивление измеряется в омах – единице измерения, названной так в честь физика Георга Ома, который также открыл знаменитый закон для электрической цепи. Международное обозначение выглядит так: Ω. Физический смысл этой единицы заключается в следующем:

Сопротивление проводника равно 1 Ом при силе тока, равной 1 А, и напряжении на концах проводников, равном 1 В.

Оно может быть измерено с помощью прибора, называющегося омметр.

Существует большое разнообразие резисторов с широкой линейкой стандартных величин сопротивления. Рассмотрим соотношение этих номиналов и различные приставки, использующиеся для их обозначения.

Приставка кило- (килоом):

1 КОм равен 1000 Ом

Приставка мега- (мегаом):

1 МОм соответствует 1000 КОм или 1 000 000 Ом

Часто показатели резисторов наносятся непосредственно на их корпус. Это очень удобно. Рассмотрим обозначение их номиналов более подробно.

Номинал резистора – это то же самое, что его сопротивление. Раньше резисторы были достаточно крупными, поэтому все значения прописывались целиком на их корпусах с использованием обычных букв. Помимо сопротивления на резисторе могли указать ещё и класс точности или мощность рассеивания.

Сопротивление – основная характеристика резистора. О том, что оно из себя представляет и как рассчитывается, было рассказано выше, поэтому сейчас подробнее остановимся на особенностях их обозначений.

Для простановки значения, не привышающего 1КОм после цифры, обозначающей величину сопротивления, ставится R (или величина указывается совсем без буквы). На резисторах, выпускавшихся давно, можно встретить слово Ом. Позже принятая маркировка изменилась, теперь она используется в формате:

целая величина – R – дробный остаток

Примеры обозначений:

300 = 300 Ом
200 R = 200 Ом

Современные обозначения выглядят так:

4R02 = 4,02 Ом
2R2 = 2,2 Ом

Если значение меньше 1 ома, то ноль в начале обозначения опускают:

0R5 = R5 = 0,5 Ом

Если сопротивление больше тысячи ом, то применяются специальные приставки (мега-, кило-) для упрощения написания. Очень большие значения этой величины почти не встречаются, поэтому необходимость в префиксах Тера- и Гига- возникает крайне редко. Примеры обозначений:

K200 = 200 Ом
2К0 = 2 КОм = 2000 Ом
M200 = 0,2 МОм = 200 KОм = 100 000 Ом
3М0 = 3 МОм = 3 000 КОм = 3 000 000 Ом

Дополнительно можно рассмотреть следующую характеристику – удельное сопротивление.

Бывает, что возникает необходимость также рассчитать удельное сопротивление. Оно измеряется величиной Ом*м.

Для однородного проводника вычисляемое удельное сопротивление находится так:

R = (ρ*l) / S, где

l — длина отрезка проводника (м),

S — площадь сечения проводникового элемента (м2)

Подробнее о буквенной маркировке резисторов читайте здесь.

Что такое падение напряжения на резисторе

Электрический ток, проходя по цепи, испытывает сопротивление, которое может изменяться под воздействием разнообразных условий внешней среды (экстремально низкие температуры или нагрев) и может зависеть от характеристик конкретного проводника. Например, чем тоньше проводник или длиннее – тем оно выше.

На значение его величины влияют следующие факторы:

  • сила тока;
  • длина проводящих частей;
  • напряжение;
  • материал проводниковых элементов;
  • нагрев (температура);
  • площадь поперечного сечения.

Резисторы можно разделить на постоянные, переменные и подстроечные. Главное их отличие друг от друга – возможность изменения показателя сопротивления. Чаще всего встречаются постоянные резисторы – данный показатель в них нельзя изменить, поэтому они и получили такое название. Переменные отличаются тем, что величину сопротивления в них можно настраивать. В подстроечном резисторе её также можно изменять, но отличие данной разновидности в том, что он не рассчитан на частое изменение параметра. Подстроечные резисторы выполняются в более компактном корпусе по сравнению с переменными.

Чтобы вычислить падение напряжения на резисторе, нужно помнить, что снижение нагрузки, приложенной ко всей цепи (то есть, напряжения, подключённого к контуру) может быть получено как для всего контура, так и для любого элемента цепи. Напряжение понижается за счёт сопротивления, которым обладают проводники.

Падение напряжения на резисторе зависит от силы проходящего тока и характеристик проводников. Температура и показатели тока также имеют значение. Например, напряжение, измеренное вольтметром на лампочке, подключённой к сети 220 В, будет немного ниже за счёт сопротивления, которым обладает лампочка.

Источники питания имеют разную величину напряжения. Это значение может превышать то, которое бывает необходимо на выходе. Чтобы нагрузка, которую требуется запитать, не сгорела, часто возникает необходимость в понижении вольтажа, в том числе с помощью резисторов.

Сравнительная таблица напряжений

Источник питания Напряжение
NiCd аккумулятор 1,2 В
Литий-железо-фосфатный аккумулятор 3,3 В
Батарея типа «Крона» 9 В
Автомобильный аккумулятор 12 В
Аккумулятор для грузовых автомобилей 24 В

В этом случае резистор должен уменьшить протекающий по цепи ток. При этом ток не превращается в тепло, происходит именно его ограничение. То есть при включении резистора в цепь ток упадёт – в этом и состоит работа резистора, при совершении которой элемент нагревается.

В общем случае падения напряжения можно рассчитать, используя простую формулу, связывающее показатели между собой.

Но в ряде случаев, например, при параллельном подключении сопротивлений, посчитать необходимую величину уже сложнее. В этом случае по специальной формуле потребуется привести сопротивление параллельных веток к одному числу:

R = R1*R2 / (R1+R2)

При необходимости также учитываются другие сопротивления, суммирующиеся с этим значением (например, сопротивление провода и источника питания).

Расход

Проволочные переменные резисторы

В проволочных переменных резисторах (рис. 13) сопротивление создается высокоомным проводом, намотанным в один слой на кольцеобразном каркасе, по ребру которого перемещается подвижный контакт. Для получения надежного контакта между щеткой и обмоткой контактная дорожка зачищается, полируется, или шлифуется на глубину до 0,25d.

Рис. 13 — Устройство проволочного переменного резистора

Устройство и материал каркаса определяется исходя из класса точности и закона изменения сопротивления резистора . Каркасы изготавливают из пластины, которую после намотки провода сворачивают в кольцо, или же берут готовое кольцо, на которое укладывают обмотку.

Для резисторов с точностью, не превышающей 10…15%, каркасы изготавливают из пластины, которую после намотки провода сворачивают в кольцо. Материалом для каркаса служат изоляционные материалы, такие как гетинакс, текстолит, стеклотекстолит, или металл – алюминий, латунь и т.п. Такие каркасы просты в изготовлении, но не обеспечивают точных геометрических размеров.

Каркасы из готового кольца изготавливают с высокой точностью и применяют в основном для изготовления переменных резисторов. Материалом для них служит пластмасса, керамика или металл, но недостатком таких каркасов является сложность выполнения обмотки, так как для ее намотки требуется специальное оборудование.

Обмотку выполняют проводами из сплавов с высоким удельным электрическим сопротивлением, например, константан, нихром или манганин в эмалевой изоляции. Для переменных резисторов применяют провода из специальных сплавов на основе благородных металлов, обладающих пониженной окисляемостью и высокой износостойкостью. Диаметр провода определяют исходя из допустимой плотности тока.

Формула параллельного соединения резисторов

Общее сопротивление нескольких резисторов соединенных параллельно определяется по следующей формуле:

Ток, протекающий через отдельно взятый резистор, согласно закону Ома, можно найти по формуле:

Пример  №1

При разработке устройства, возникла необходимость установить резистор с сопротивлением 8 Ом. Если мы просмотрим весь номинальный ряд стандартных значений резисторов, то мы увидим, что резистора с сопротивлением в 8 Ом в нем нет.

Выходом из данной ситуации будет использование двух параллельно соединенных резисторов. Эквивалентное значение сопротивления для двух резисторов соединенных параллельно рассчитывается следующим образом:

Данное уравнение показывает, что если R1 равен R2, то сопротивление R составляет половину сопротивления одного из двух резисторов. При R = 8 Ом, R1 и R2 должны, следовательно, иметь значение 2 × 8 = 16 Ом.
Теперь проведем проверку, рассчитав общее сопротивление двух резисторов:

Таким образом, мы получили необходимое сопротивление 8 Ом, соединив параллельно два резистора по 16 Ом.

Пример расчета №2

Найти общее сопротивление  R из трех параллельно соединенных резисторов:

Общее сопротивление R рассчитывается по формуле:

Этот метод расчета может быть использованы для расчета любого количества отдельных сопротивлений соединенных параллельно.

Один важный момент, который необходимо запомнить при расчете параллельно соединенных резисторов – это то, что общее сопротивление всегда будет меньше, чем значение наименьшего сопротивления в этой комбинации.

Как рассчитать сложные схемы соединения резисторов

Более сложные соединения резисторов могут быть рассчитаны путем систематической группировки резисторов. На рисунке ниже необходимо посчитать общее сопротивление цепи, состоящей из трех резисторов:

Резисторы R2 и R3 соединены последовательно (группа 2). Они в свою очередь соединены параллельно с резистором R1 (группа 1).

Последовательное соединение резисторов группы 2 вычисляется как сумма сопротивлений R2 и R3:

В результате мы упрощаем схему в виде двух параллельных резисторов. Теперь общее сопротивление всей схемы можно посчитать следующим образом:

Расчет более сложных соединений резисторов можно выполнить используя законы Кирхгофа.

Ток, протекающий в цепи параллельно соединенных резисторах

Общий ток I протекающий в цепи параллельных резисторов равняется сумме отдельных токов, протекающих во всех параллельных ветвях, причем ток в отдельно взятой ветви не обязательно должен быть равен току в соседних ветвях.

Несмотря на параллельное соединение, к каждому резистору приложено одно и то же напряжение. А поскольку величина сопротивлений в параллельной цепи может быть разной, то и величина протекающего тока через каждый резистор тоже будет отличаться (по определению закона Ома).

Рассмотрим это на примере двух параллельно соединенных резисторов. Ток, который течет через каждый из резисторов ( I1 и I2 ) будет отличаться друг от друга поскольку сопротивления резисторов R1 и R2 не равны.
Однако мы знаем, что ток, который поступает в цепь в точке «А» должен выйти из цепи в точке «B» .

Первое правило Кирхгофа гласит: «Общий ток, выходящий из цепи равен току входящий в цепь».

  • Таким образом, протекающий общий ток в цепи  можно определить как:
  • I = I1 + I2
  • Затем с помощью закона Ома можно вычислить ток, который протекает через каждый резистор:
  • Ток, протекающий в R1 = U ÷ R1 = 12 ÷ 22 кОм = 0,545 мА
  • Ток, протекающий в R 2 = U ÷ R2 = 12 ÷ 47 кОм = 0,255 мА
  • Таким образом, общий ток будет равен:
  • I = 0,545 мА + 0,255 мА = 0,8 мА
  • Это также можно проверить, используя закон Ома:
  • I = U ÷ R = 12 В ÷ 15 кОм = 0,8 мА (то же самое)
  • где 15кОм — это общее сопротивление двух параллельно соединенных резисторов (22 кОм и 47 кОм)
  • И в завершении хочется отметить, что большинство современных резисторов маркируются цветными полосками и назначение ее можно узнать здесь.

Параллельное соединение резисторов — онлайн калькулятор

Чтобы быстро вычислить общее сопротивление двух и более резисторов, соединенных параллельно, вы можете воспользоваться следующим онлайн калькулятором:

Подведем итог

Когда два или более резистора соединены так, что оба вывода одного резистора соединены с соответствующими выводами другого резистора или резисторов, то говорят, что они соединены между собой параллельно. Напряжение на каждом резисторе внутри параллельной комбинации одинаковое, но токи, протекающие через них, могут отличаться друг от друга, в зависимости от величины сопротивлений каждого резистора.

Эквивалентное или полное сопротивление параллельной комбинации всегда будет меньше минимального сопротивления резистора входящего в параллельное соединение.

3Скетч управления цифровым потенциометром X9C102, X9C103, X9C104

Теперь напишем вот такой скетч:

const int CS = 10;
const int INC = 9;
const int UD = 8;

void setup() {
  pinMode(CS, OUTPUT);
  pinMode(INC, OUTPUT);
  pinMode(UD, OUTPUT);
  digitalWrite(CS, HIGH);  // X9C в режиме низкого потребления
  digitalWrite(INC, HIGH); 
  digitalWrite(UD, HIGH); 
}

void loop() {
   for (int i=0; i<=100; i+=10) {
    setResistance(i);
    delay(100);
  }
}

// Задаёт сопротивление на "подвижном" выводе.
// Уровень percent - от 0 до 100% от максимума.
void setResistance(int percent) { 
  // Понижаем сопротивление до 0%:
  digitalWrite(UD, LOW); // выбираем понижение
  digitalWrite(CS, LOW); // выбираем потенциометр X9C
  for (int i=0; i<100; i++) { // т.к. потенциометр имеет 100 доступных позиций
    digitalWrite(INC, LOW);
    delayMicroseconds(1);
    digitalWrite(INC, HIGH);
    delayMicroseconds(1);
  }

  // Поднимаем сопротивление до нужного:
  digitalWrite(UD, HIGH);
  for (int i=0; i<percent; i++) {
    digitalWrite(INC, LOW);
    delayMicroseconds(1);
    digitalWrite(INC, HIGH);
    delayMicroseconds(1);
  }

  digitalWrite(CS, HIGH); /* запоминаем значение 
  и выходим из режима настройки */
}

Данный скетч содержит такой алгоритм: повышаем каждые 100 мс с шагом 10% сопротивление от 0 до 100% от максимума потенциометра.

Загрузим данный скетч в память платы Arduino.

Механическое растягивание

Вашему вниманию подборка материалов:

Практика проектирования электронных схем Искусство разработки устройств. Элементная база. Типовые схемы. Примеры готовых устройств. Подробные описания. Онлайн расчет. Возможность задать вопрос авторам

Одним из распространенных способов растянуть диапазон регулировки является применение механического редуктора с большим передаточным числом. Редуктор устанавливается так, чтобы большое число оборотов регулировочной ручки соответствовало небольшому числу оборотов движка резистора, конденсатора или дросселя. С помощью такого редуктора можно добиться очень точного позиционирования движка регулировочного элемента и, тем самым, точной настройки схемы.

Ограничением в использовании такого подхода является существенный дребезг многих радиоэлектронных подстроечных элементов. У них существует некоторая дискретность установки значения. То есть, даже минимальное перемещение движка приводит к некоторому изменению регулируемой величины. Сдвинуть движок так, чтобы изменение было еще меньше, невозможно.

Сейчас в продаже имеются специальные подстроечные элементы с низким дребезгом и встроенным редуктором, например, подстроечные резисторы для точной регулировки, в которых полное перемещение движка происходит за несколько десятков оборотов.

Подстроечный резистор.

Только для начала уточним терминологию… По сути подстроечный резистор является переменным, ведь его сопротивление можно изменить, но давайте условимся, что при обсуждении подстроечных резисторов под переменными резисторами мы будем иметь ввиду те, которые мы уже обсудили в этой статье (поворотные, ползунковые и т. д). Это упростит изложение, поскольку мы будем противопоставлять эти типы резисторов друг другу. Да и, к слову, в литературе зачастую под подстроечными резисторами и переменными понимаются разные элементы цепи, хотя, строго говоря, любой подстроечный резистор также является и переменным в силу того факта, что его сопротивление можно изменить.

Итак, отличие подстроечных резисторов от переменных, которые мы уже обсудили, в первую очередь, заключается в количестве циклов перемещения ползунка. Если для переменных это число может составлять и 50000, и даже 100000 (то есть ручку громкости можно крутить практически сколько угодно ), то для подстроечных резисторов эта величина намного меньше. Поэтому подстроечные резисторы чаще всего используются непосредственно на плате, где их сопротивление меняется только один раз, при настройке прибора, а при эксплуатации значение сопротивления уже не меняется. Внешне подстроечный резистор выглядит совсем не так как упомянутые переменные:

Из-за небольшой износоустойчивости не рекомендуется применять подстроечные резисторы вместо переменных – в цепях, в которых регулировка сопротивления будет производиться довольно часто.

Обозначение переменных резисторов немного отличается от обозначения постоянных:

Собственно, мы обсудили все основные моменты, касающиеся переменных и подстроечных резисторов, но есть еще один очень важный момент, который невозможно обойти стороной.

Часто в литературе или в различных статьях вы можете встретить термины потенциометр и реостат. В некоторых источниках так называют переменные резисторы, в других в эти термины может вкладываться какой-нибудь иной смысл. На самом деле, корректная трактовка терминов потенциометр и реостат есть только одна. Если все термины, которые мы уже упоминали в этой статье относились,в первую очередь, к конструктивному исполнению переменных резисторов, то потенциометр и реостат – это разные схемы включения (!) переменных резисторов. То есть, к примеру, поворотный переменный резистор может выступать и в роли потенциометра и в роли реостата – все зависит от схемы включения. Начнем с реостата.

Потенциометр предварительной настройки

Это более компактные потенциометры (иногда носят названи пресеты), и служат они главным образом для первичной настройки устройства, то есть они не предполагают частое их использование. Поэтому вместо большого удобного вала для регулировки сопротивления у них имеется небольшая вращающаяся пластина с резьбой под отвертку. Ниже приведены внешний вид такого потенциометра и его схемотехническое изображение.

Если мы возьмем клемму A и клемму B и повернем вращающуюся металлическую пластину по часовой стрелке, сопротивление увеличивается от 0 до максимального. Когда мы вращаем ее в направлении против часовой стрелки, сопротивление уменьшается.

Если мы возьмем клемму A и клемму C и повернем пластину в направлении против часовой стрелки, сопротивление пресета увеличится от 0 до максимального. Когда мы вращаем пластину по часовой стрелке, сопротивление уменьшается.

Описание устройства

Регулятором напряжения называется электронный прибор, служащий для повышения или понижения уровня выходного сигнала, в зависимости от величины разности потенциалов на его входе. То есть это устройство, с помощью которого можно управлять значением мощности, подводимой к нагрузке. При этом регулировать подаваемый уровень энергии можно как на реактивной, так и активной нагрузке.

Использование реостата ограничено мощностью, которую можно через него пропустить. Так как при больших значениях тока или напряжения он начинает сильно нагреваться и в итоге перегорает, поэтому на практике применение реостата ограничено. Его используют в параметрических стабилизаторах, элементах электрического фильтра, усилителях звука и регуляторах освещённости небольшой мощности.

https://youtube.com/watch?v=Lb5sTFFAsSY

Принцип работы подстроечного резистора

После монтажа деталей электронного прибора, обычно его характеристики отличаются от номинальных. Для доводки показателей прибора применяют подстроечные резисторы. В принципе это те же переменные резисторы, но выделенные в отдельную группу, потому что конструктивно отличаются от переменных резисторов. У них нет ручек, вращая которые изменяются. Вместо них отверстия под отвертку шлицевую или прямую.

Подстроечный резистор с крестовиковым шлицом

В процессе работы прибора, через некоторое время, его параметры меняются. Для привидения их к номиналу применяют подстроечные резисторы.

По типу перемещения ползунка бывают подстроечные резисторы с перемещением по прямой и с перемещением по окружности.

Для точной настройки параметров электронного прибора используют подстроечные резисторы с большим числом оборотов. В них изменение сопротивления от минимума до максимума осуществляется за несколько оборотов или даже за десятки оборотов подстроечного вала. В этих резисторах перемещение контакта происходит при помощи червячной передачи.

Основные характеристики и параметры переменного резистора

Можно выделить несколько главных параметров:

Во время проектирования представленных устройств используются конкретные характеристики. Эти параметры относятся к приборам, которые работают на высоких частотах:

Проволочный переменный резистор считается основным и главным элементом в любой электронной аппаратуре. Его применяют в качестве дискретного компонента или составной части к интегральной микросхеме. Он классифицируется по основным параметрам, таким как способ защиты, монтаж, характер изменения сопротивления или технология производства.

Классификация по общему использованию:

  • Общего предназначения.
  • Специального назначения. Они бывают высокоомные, высоковольтные, высокочастотные или прецизионные.

В зависимости от характера изменения сопротивления можно выделить следующие резисторы:

  1. Постоянные.
  2. Переменные, с возможностью регулировки.
  3. Подстроенные переменные.

Если брать во внимание способ защиты резисторов, то можно выделить следующие конструкции:

Заключение

Всевозможные переменные резисторы находят широкое применение в роли потенциометров в различных приборах, начиная с бытовых, таких как обогреватели, водонагреватели, акустические системы, заканчивая музыкальными инструментами, такими как электрогитары и синтезаторы.

Подстроечные резисторы можно встретить практически на любых печатных платах, начиная с телевизоров, заканчивая цифровыми осциллографами и техникой оборонного значения. Подробно с устройством данного типа можно ознакомиться, скачав файл с ГОСТ 24237-84. Резисторы переменные непроволочные. Общие технические условия.

Надеемся, теперь вам полностью понятен принцип работы подстроечного резистора. Всю новую информацию по этой теме, а также по теме металлоискателей, вы сможете найти в группе. Подписывайтесь на нашу группу в социальной сети «Вконтакте».

www.katod-anod.ru

www.vk-book.ru

www.electricalschool.info

www.electrohobby.ru

Предыдущая
РадиодеталиВаристоры – что это такое, принцип действия, характеристики и параметры.
Следующая
РадиодеталиЧто такое катушка индуктивности и почему ее иногда называют дроссель

Оцените статью
Рейтинг автора
5
Материал подготовил
Андрей Измаилов
Наш эксперт
Написано статей
116
Добавить комментарий