Химия

Возможности массового производства

Прежде чем принять решение о переходе на SiC-транзисторы, клиенты должны быть уверены, что производитель компонентов сможет обеспечить стабильную поставку высококачественной продукции даже при значительном увеличении спроса. Компания Infineon на протяжении долгих лет демонстрирует высокое качество при выполнении крупносерийного производства Si- и SiC-компонентов, а также сборок и силовых модулей. При этом Infineon постоянно развивает и совершенствует технологии, например, CoolMOS, TRENCHSTOP IGBT и CoolSiC Schottky. Опыт компании позволяет вывести на рынок и обеспечить крупное производство CoolSiC MOSFET.

Карборунд: внешний вид и свойства

Будучи синтетическим, карбид кремния перенимает свойства природного муассанита. При этом его гораздо легче получить. Неорганическое бинарное углеродное соединение образует кристаллы, схожие внешне с антрацитом, но обладающие радужными переливами. Обычно кристаллы бесцветны и блестят, но технический карборунд порой приобретает различные цветовые оттенки из-за присутствия железных примесей.

Природный муассанит интересен своими уникальными свойствами. Он обладает поразительной, близкой к алмазу, твердостью, является инертным (не вступает в химические реакции с большинством кислот), выдерживает нагревание до 1500°С и воздействие радиации. Помимо этого, муассанит механически прочен и стабилен по части физических свойств. Редкость не позволяет использовать его полезные качества в промышленности, поэтому был создан синтетический аналог с теми же качествами.

Купить карбид кремния намного проще, чем муассанит. Его стоимость также ниже, что значительно повышает доступность.

Полки в ванной из гипсокартона: что учесть для создании долговечных конструкций

Применение материала

Основной областью применения карбида кремния является электроника и энергетика. Это вещество используется при производстве полупроводниковых механизмов, светодиодов, резисторов, транзисторов и счетчиков энергии. Эти приспособления обладают высокой прочностью и могут стабильно функционировать в течение 10 лет. Они применяются в высокочастотной электронике. Изделия из карбида кремния отличаются следующими свойствами:

  1. Обладают большой шириной запрещенной зоны;
  2. Могут функционировать при высоких температурах (до 600 °C);
  3. Располагают повышенной теплопроводностью, в отличие от приборов, выполненных из арсенида галлия и иных минералов.
  4. Устойчивы к радиации и воздействию электрических зарядов.

Благодаря высокой огнеупорности и теплостойкости материала, он активно применяется в металлургии и химической промышленности. Из твердого раствора карборунда изготавливается множество нагревательных приборов, способны работать при высоких температурах (до 2000 °C). Эти приспособления могут функционировать в нейтральных или восстановленных средах. Нагревательные элементы активно используются при термообработке металлических деталей для керамических приборов и электронных компонентах.

Карбид кремния применяется в качестве абразива, что обусловлено высокой прочностью и низкой стоимостью химического соединения. При абразивной обработке этот материал используется в следующих процессах:

  • шлифование;
  • ламинирование бумажных изделий;
  • пескоструйная обработка;
  • хонингование;
  • водоструйная резка.

Карборунд нашел широкое применение в производстве конструкционных материалов. Он обладает стойкостью к физическим нагрузкам и активно используется при изготовлении пуленепробиваемых жилетов и дисковых тормозов, устанавливаемых на транспортном средстве. С 1990-х гг. из карборунда изготавливают прочные газовые турбины. Они устойчивы к высоким температурам и ударным нагрузкам.

Дефекты структуры SiC и характеристики модулей

Последние достижения SiC-технологии привели к значительному сокращению плотности дефектов. Как правило, качество новых и более крупных подложек всегда ниже, чем у приборов предыдущих поколений, но оно постепенно растет по мере освоения производства. Выпуск пластин диаметром 150 мм дает возможность снизить стоимость модулей, однако они все еще остаются достаточно дорогими для массового применения.

Чтобы в полной мере реализовать преимущества 150-мм SiC-подложек, их следует адаптировать для массового изготовления. Уменьшение плотности дефектов позволит обеспечить плавный переход от производства пластин меньшего диаметра к технологии 150 мм. Кроме этого, качество эпитаксиальных пленок и уровень технологических процессов должны обеспечить равномерные характеристики по всей поверхности пластины.

Наиболее известными «врагами» карбида кремния являются так называемые микротрубки или микропоры, представляющие собой кристаллографические дефекты структуры. С тех пор как компания Dow Corning разработала свою технологию 150-мм пластин, плотность микропор поддерживается на уровне менее 1/см2.

В процессе производства материал подложки подвергается воздействию внутренних и внешних стрессов, что приводит к увеличению размера дефектов и сдвигам внутри атомной решетки. Чаще всего возникает так называемое «винтовое смещение», которое нарушает последовательность атомных плоскостей в кристаллической решетке и располагает их в форме спирали. Винтовое смещение, происходящее во время выращивания подложки, образует микропоры, с повышением плотности которых резко растет процент дефектных чипов. Технология Dow Corning обеспечивает не только низкую плотность микропор в пластинах диаметром до 150 мм, но и сверхмалый уровень винтовых и базальных (плоскостных) смещений.

На рис. 1 в хронологическом порядке показано снижение количества микропор в 4H SiC-пластинах, полученное за счет внедрения технологии PVT Dow Corning. Это позволило довести среднее значение плотности дефектов до <0,1/см2. Подробные замеры винтовых смещений на пластинах 76 мм показали очень хорошие результаты, их статистическое распределение в группе кристаллов приведено на рис. 2.

Рис. 1. Средняя плотность микропор в пластинах 4H SiC диаметром 76 и 100 мм (производство с ноября 2009 по январь 2011 г.)

Рис. 2. Измерения плотности винтовых смещений на 25 кристаллах нескольких 4H SiC-пластин. Анализ проводился методом рентгеновской топографии по девяти участкам на пластине (каждый столбец отображает девять точек измерений). Группы представляют собой две выборки выпускаемой продукции за период с середины 2009 по середину 2010 г.

Степень выхода годных SiC ограничена в основном поверхностными дефектами, образующимися при химическом осаждении из газовой фазы в ходе эпитаксиального процесса (CVD). На сегодня это наиболее значимая проблема, резко снижающая эффективность работы полупроводниковых устройств. Размеры эпитаксиальных дефектов зависят от толщины пленки, а их плотность (1,5–2/см2) характерна для приборов с блокирующим напряжением ниже 2 кВ. Для решения этой проблемы и адаптации 150-мм пластин к серийному производству была разработана эпитаксиальная технология, обеспечивающая приемлемую плотность эпитаксиальных дефектов на подложках разного диаметра. Новая технология пригодна для использования легирующих примесей n— и p-типа, она также допускает увеличение толщины слоя эпитаксии свыше 50 мкм для высоковольтных приложений.

Компания Dow Corning разработала и внедрила процесс эпитаксии CVD для производства 4H SiC-подложек толщиной до 100 мкм. Очень важным критерием качества пленок является количество дефектов, добавляемых в процессе формирования эпитаксиального слоя. При крайне низком уровне MPD в современных 4Н SiC-пластинах дефекты эпитаксии, скорее всего, в наибольшей степени влияют на выход годных в процессе изготовления. Их влияние оценивается путем лазерной светорассеивающей спектрометрии. Пластина разделяется на области, каждая из которых исследуется с помощью лазерного сканирующего спектрометра. Зоны, содержащие дефекты, помечаются как бракованные, плотность дефектов определяется с помощью распределения Пуассона. На рис. 3 показана общая плотность дефектов (пластин и эпитаксии) для подложек Dow Corning диаметром 76 мм, полученная в течение пяти кварталов непрерывного производства.

Рис. 3. Распределение общего количества дефектов (подложки и эпитаксии) для пластин 76 мм, измерения проведены методом лазерной светорассеивающей спектрометрии

Нахождение в природе

Содержание кремния в земной коре составляет по разным данным 27,6—29,5 % по массе. Таким образом, по распространённости в земной коре кремний занимает второе место после кислорода. Концентрация в морской воде 3 мг/л.

Чаще всего в природе кремний встречается в виде кремнезёма — соединений на основе диоксида кремния (IV) SiO2 (около 12 % массы земной коры). Основные минералы и горные породы, образуемые диоксидом кремния, — это песок (речной и кварцевый), кварц и кварциты, кремень, полевые шпаты. Вторую по распространённости в природе группу соединений кремния составляют силикаты и алюмосиликаты.

Отмечены единичные факты нахождения чистого кремния в самородном виде.

Карборунд: что это такое?

На самом деле, камень, созданный по велению небес, имеет природное происхождение, но встречается там в очень мизерных количествах. Карборунд, на языке ученых называемый карбидом кремния, имеет вид бесцветных, переливчатых кристаллов с алмазным блеском.

Итак, карборунд относится ко классу полупроводникового бинарного химического соединения, состоит из кремния и углерода, обозначается химической формулой SiC.

Этот материал очень тугоплавок и прочен. По сравнению с муассанитом, даже сам бриллиант, тихонечко отдыхает в сторонке. По прочности карборунд уступает пальму первенства лишь алмазу и боразону.

Природное происхождение карборунда

Уникальное, на диво прекрасное слияние кремния и углерода породило появление на свет блистательного минерала с легким оттеночным алмазным сиянием, это зрелище Богов, которое берет за душу своей непреклонной хрупкостью, удивительной нежностью и ангельской глубиной красоты.

В природе горстки мелких камушков – карбида кремния, распространены в очень малых количествах, поэтому крупные залежи найти не удалось. А почему не удалось – загадка века, над которой ломают головы все ученые.

Искусственное происхождение карборунда

Ювелирное искусство во все времена вызывало интерес у всех слоев населения. Чистый, радужный, наивный блеск драгоценностей будоражил сердце, заставляя его колотиться в сто крат сильнее, люди, как вороны, тянулись к тому, что сверкает и блестит.

И вот в 20 веке, на счастье народа, появился самый блестящий камень на планете – муассанит, от природы сам по себе очень красив, но какова красота усовершенствованного камня – просто ошеломительна!

Искусственный муассанит – это уникальное в своем роде сочетание истинного искусства и науки. В настоящее время на обработке карборунда специализируется всего одна-единственная компания в мире под названием Charles&Colvard.

Весь процесс происходит на новейшем высокотехнологичном оборудовании, специалисты внимательно следят за стадией роста камня, поэтому в структуре данного минерала нет ни единого изъяна! В результате в свет вышла новинка, произведенная по запатентованной технологии, эта новинка по красоте бьет все рекорды, это минерал наивысочайшего качества, который запечатлен в сердцах миллионов людей надолго.

Легендарный муассанит с его глубокой игрой света на гранях – один из самых благородных минералов в ювелирной коллекции, муассанит переливается самыми чистыми оттенками на свете, благодаря этому достигается уникальная внутренняя его красота, несравнимая с красотой любого другого камня на свете.

Глубокие ценители утонченности и эстетической красоты – ювелиры и коллекционеры, говорят о минерале, как о «венце творения»! Этот камень настолько хрупок, чист и священен, насколько это только можно! Это камень на миллион!

Получение карбида кремния

Наибольшее количество природного происхождения карбида кремния содержится в космическом пространстве: на пылевых облаках, окружающих звезды, в метеоритах. На Земле этот материал присутствует только на месторождениях кимберлита или корунда, что усложняет процесс его добычи в промышленных масштабах. По этой причине карборунд, используемый в современной индустриальных сферах и бытовых условиях, является искусственным.

Самым распространенным способом получения этого химического соединения является нагревание двуокиси кремния углеродом в специализированных печах, работающих на электричестве. Вещество нагревается до температуры 1800-2300 °C.Источниками кремния являются кварцевый песок, очищенный от примесей, и антрацит. Для улучшения газопроницаемости материала используются опилки из древесины. Цвет синтетического карборунда изменяется при помощи добавления хлорида натрия (поваренной соли). Увеличение плотности материала производится при помощи прессования. После этих процессов структурные частицы меняют свое местоположения, что приводит к деформации твердого раствора.

Также данное вещество получают при помощи следующих методов:

  1. Сублимация. Это технология предоставляет выращивать зерна карбида кремния природных материалов. Рост кристаллов осуществляется в графитовых тиглях из газовой фазы. Получить карборунд при помощи этой технологии можно из инертных газов, нагретых до температуры 2600 °C.
  2. Эпитаксия. Этот способ используется для получения твердых растворов карбида кремния. В нем используется водород, предварительно очищенный от примесей при помощи диффузионных методов. Химический элемент вступает в реакцию со свободным углеродом, что приводит к образованию полупроводниковых пленок.
  3. Синтез. Сырьем для получения карборунда является графит, измельченный до порошкообразного состояния. Также для получения необходимого материала можно использовать сажу с размером частиц не более 20 мкм. Синтез химических веществ происходит в твердой фазе, что обусловлено большим расстоянием между атомами углерода и кремния.
  4. Приготовление шихты. Для этого метода требуются компоненты, содержащие большое количество углерода и кремния. В качестве сырья могут использоваться нанопорошки, углеводы или многоатомные спирты. Приготовление шихты осуществляется в деионизованной воде в течение 5,5 часов. Материал нагревается ступенчато до температуры 1650 °С.

Для промышленных нужд чаще всего изготавливают карбиды зеленого и черного цветов. Особенности их химического состава определены в ГОСТ 26327-84. В нем указаны 4 марки карбида кремния: 53С, 54С, 63С и 64С.

История

Любопытна история камня. Здесь не обошлось без научного заблуждения, рождённого самоуверенностью. Второе название камня — муассанит. Оно присвоено в честь французского химика XX века — Фердинанда Анри Муассана, прославившегося получением фтора, за что и получил Нобелевскую премию.

Но ещё до этого знаменательного события Муассан изучал минералы в Каньоне Смерти, который образовался в Аризоне из-за падения метеорита.

Однако и мировое научное сообщество, и Муассан обманулись. Соединение SiC было получено Э. Г. Ачесоном лабораторным путём задолго до открытия муассанита. Это был простой и действенный способ, который Ачесон запатентовал. Учёный придумал графитовую печь, в которой при температуре 1600 — 2500 градусов Цельсия спекался углерод с кремнезёмом.

Заблуждение вскоре вскрылось, но камню уже было присвоено имя. Научный мир договорился: карборунд или карбид кремния называть искусственный материал, а муассанит натуральный. Настоящие образцы муассанита были обнаружены через десят лет после исследования Муассана. Это оказались неприметные тёмно-зелёные камни.

Производство

Из-за редкости нахождения в природе муассанита карбид кремния, как правило, имеет искусственное происхождение. Простейшим способом производства является спекание кремнезёма с углеродом в графитовой электропечи Ачесона при высокой температуре 1600—2500 °C:

Чистота карбида кремния, образующегося в печи Ачесона, зависит от расстояния до графитового резистора в ТЭНе.

Кристаллы высокой чистоты бесцветного, бледно-жёлтого и зелёного цвета находятся ближе всего к резистору. На большем расстоянии от резистора цвет изменяется на синий или чёрный из-за примесей. Загрязнителями чаще всего являются азот и алюминий, они влияют на электропроводность полученного материала.

Кристаллы карбида кремния, полученные благодаря процессу Лели

Чистый карбид кремния можно получить с помощью так называемого процесса Лели, в котором порошкообразный SiC возгоняется в атмосфере аргона при 2500 °C и осаждается на более холодной подложке в виде чешуйчатых монокристаллов размерами до 2×2 см. Этот процесс даёт высококачественные монокристаллы, получающиеся из-за быстрого нагрева до высоких температур и в основном состоящие из 6H-SiC фазы. Улучшенный процесс Лели при участии индукционного нагрева в графитовых тиглях даёт ещё большие монокристаллы до 10 см в диаметре. Кубический SiC, как правило, выращивается с помощью более дорогостоящего процесса — химического осаждения паров.

Чистый карбид кремния также может быть получен путём термического разложения полимера полиметилсилана (SiCH3)n, в атмосфере инертного газа при низких температурах. Относительно CVD-процесса метод пиролиза более удобен, поскольку из полимера можно сформировать изделие любой формы перед запеканием в керамику.

Вопросы совместимости

Наиболее важный вопрос совместимости касается схемы управления затвором. Дело в том, что изначально карбид-кремниевые МОП-транзисторы требовали более высокого управляющего напряжения «затвор-исток», чем кремниевые IGBT или MOSFET. В то же время SiC-транзисторы имели малое пороговое напряжение, из-за чего они оказывались чувствительными к паразитным включениям вследствие высоких скоростей переключения dv/dt. Это становилось большой проблемой для разработчиков. Новая trench-технология, используемая в семействе CoolSiC от Infineon, позволяет новым SiC-транзисторам работать с такими же управляющими сигналами, как и у кремниевых IGBT. Для них рабочее напряжение включения составляет +15 В, а пороговое напряжение – 4 В. Запаса напряжения 4 В оказывается достаточно для надежного запирания транзистора в выключенном состоянии даже при наличии шумов.

Для того чтобы полностью реализовать потенциал SiC MOSFET, необходимо подбирать оптимальные драйверы. Драйверы для карбид-кремниевых МОП-транзисторов должны обеспечивать dv/dt до 50 В/нс (или даже больше) и высокую частоту переключений, что приводит к значительному ужесточению требований к временным параметрам и их согласованию. Силовым SiC-транзисторам также может потребоваться отрицательное запирающее напряжение затвора, особенно если речь идет о приложениях с жесткими переключениями. Интеллектуальные драйверы семейства EiceDRIVER производства Infineon хорошо подходят для работы с SiC-транзисторами. В зависимости от требований конкретного приложения разработчики могут выбрать модель драйвера с оптимальными характеристиками и функционалом :

  • с точным согласованием задержки распространения;
  • со встроенными прецизионными входными фильтрами;
  • с широким диапазоном рабочих напряжений;
  • с возможностью формирования отрицательных запирающих напряжений затвора;
  • с подавлением эффекта Миллера;
  • с повышенной устойчивостью к синфазным переходным процессам (CMTI).

Структура и характеристики SiC-диодов Шоттки от Littelfuse

Диоды Шоттки не содержат традиционного p-n-перехода. Вместо этого используется переход «металл-полупроводник». Структура диодов Шоттки на основе SiC производства компании Littelfuse состоит из трех слоев (рисунок 5): высоколегированного основания n+, низколегированного дрейфового слоя n-, металла анода. Барьер Шоттки образуется между металлом анода и дрейфовым слоем.

Рис. 5. Структура диодов Шоттки от Littelfuse на основе карбида кремния

Кроме основных n-легированных слоев в структуре формируются легированные карманы p+. Они выполняют двойную функцию. С одной стороны, при приложении к диоду обратного смещения области p+ создают дополнительную зону обеднения, что приводит к уменьшению значений обратных токов. С другой стороны, при приложении прямого смещения области p+ могут обеспечить защиту от помех со значительными импульсными токами. В последнем случае они выступают в качестве источников дополнительных носителей зарядов.

Рис. 6. Сравнение характеристик различных типов диодов

В результате исследований, проведенных компанией Littelfuse, оказалось, что новое семейство диодов Шоттки на основе SiC превосходит кремниевые диоды по целому ряду ключевых показателей (рисунок 6). При максимальном рабочем напряжении до 1200 В они отличаются минимальным падением напряжения, максимальной допустимой температурой перехода до 175°С, рекордными значениями времени восстановления и заряда восстановления.

Малые значения времени обратного восстановления и заряда восстановления позволяют минимизировать динамические потери на переключения (рисунок 7). При использовании импульсных схем (рисунок 3) удается практически полностью избавиться от токовых импульсов обратной полярности.

Рис. 7. Сравнение диаграмм восстановления различных типов диодов

Использование диодов Шоттки на основе SiC производства Littelfuse дает целый ряд преимуществ:

  • сокращение уровня потерь проводимости;
  • сокращение уровня динамических потерь;
  • увеличение диапазонов частот коммутации с последующим уменьшением габаритов трансформаторов, индуктивностей и конденсаторов выходных фильтров;
  • рост коммутируемой мощности без увеличения габаритов радиаторов;
  • сокращение импульсных нагрузок на силовые транзисторы, которые при использовании кремниевых диодов работали в режиме перегруза при протекании сквозных токов при включении;
  • сокращение общего перегрева системы.

Физико-химические характеристики

По химической классификации карборунд – это карбид кремния с простой формулой.

Тверже него только алмаз. Карборунд плотен, тугоплавок, равнодушен к истиранию, кислотам, прочим агрессивным веществам.

Карбид кремния:

  • Плотность 3,05 г/см³.
  • Состав 93 % карбида кремния.
  • Предел прочности на изгиб 320…350 МПа.
  • Предел прочности на сжатие 2300 МПа.
  • Модуль упругости 380 ГПа.
  • Твердость 87…92 HRC.
  • Трещиностойкость в пределах 3.5 — 4.5 МПа·м1/2.
  • Коэффициент теплопроводности при 100 °C, 140—200 Вт/(м·К).
  • Коэфф. теплового расширения при 20-1000 °C, 3,5…4,0 К−1⋅10−6.
  • Вязкость разрушения 3,5 МПа·м1/2.

Самосвязанный карбид кремния:

  • Плотность 3,1 г/см³.
  • Состав 99 % карбида кремния.
  • Предел прочности на изгиб 350—450 МПа.
  • Предел прочности на сжатие 2500 МПа.
  • Модуль упругости 390—420 ГПа.
  • Твердость 90…95 HRC.
  • Трещиностойкость в пределах 4 — 5 МПа·м1/2.
  • Коэффициент теплопроводности при 100 °C, 80 — 130 Вт/(м·К).
  • Коэфф. теплового расширения при 20-1000 °C, 2,8…4 К−1⋅10−6.
  • Вязкость разрушения 5 МПа·м1/2.

ВК6ОМ:

  • Плотность 14,8 г/см³.
  • Состав Карбид вольфрама.
  • Предел прочности на изгиб 1700…1900 МПа.
  • Предел прочности на сжатие 3500 МПа.
  • Модуль упругости 550 ГПа.
  • Твердость 90 HRA.
  • Трещиностойкость в пределах 8-25 МПа·м1/2.
  • Коэффициент теплопроводности при 100 °C, 75…85 Вт/(м·К).
  • Коэфф. теплового расширения при 20-1000 °C, 4,5 К−1⋅10−6.
  • Вязкость разрушения 10…15 МПа·м1/2.

Силицированный графит СГ-Т:

  • Плотность 2,6 г/см³.
  • Состав 50 % карбида кремния.
  • Предел прочности на изгиб 90…110 МПа.
  • Предел прочности на сжатие 300…320 МПа.
  • Модуль упругости 95 ГПа.
  • Твердость 50…70 HRC.
  • Трещиностойкость в пределах 2-3 МПа·м1/2.
  • Коэффициент теплопроводности при 10 °C, 100…115 Вт/(м·К).
  • Коэфф. теплового расширения при 20-1000 °C, 4,6 К−1⋅10−6.
  • Вязкость разрушения 3…4 МПа·м1/2.

Однако лучи света камень преломляет сильнее алмаза, по этому параметру сопоставим с муассанитом.

История

Любопытна история камня. Здесь не обошлось без научного заблуждения, рождённого самоуверенностью.

Второе название камня — муассанит. Оно присвоено в честь французского химика XX века — Фердинанда Анри Муассана, прославившегося получением фтора, за что и получил Нобелевскую премию.

Но ещё до этого знаменательного события Муассан изучал минералы в Каньоне Смерти, который образовался в Аризоне из-за падения метеорита.

Вооружившись пилой честолюбивый и активный учёный, начал разделывать камни в поисках сенсации. Кто ищет — тот найдёт. В одном из булыжников мелькнул SiC. Муассан не стал откладывать дело в долгий ящик и продемонстрировал находку учёному миру. Напомним, что он был известным учёным и имел вес в научных кругах. Это и сыграло роль. Долго разбираться не стали и назвали находку муассанитом, закрепив за Фердинандом Анри звание первооткрывателя.

Однако и мировое научное сообщество, и Муассан обманулись. Соединение SiC было получено Э. Г. Ачесоном лабораторным путём задолго до открытия муассанита. Это был простой и действенный способ, который Ачесон запатентовал. Учёный придумал графитовую печь, в которой при температуре 1600 — 2500 градусов Цельсия спекался углерод с кремнезёмом. В итоге получался порошок. Производитель его рекомендовал использовать как абразив. Его запустили в массовое производства. Пила, которой пользовался Муассан, как раз была с напылением из карбида кремния. Это и объясняет присутствие в исследуемом образце следов карборунда.

Заблуждение вскоре вскрылось, но камню уже было присвоено имя. Научный мир договорился: карборунд или карбид кремния называть искусственный материал, а муассанит натуральный. Настоящие образцы муассанита были обнаружены через десят лет после исследования Муассана. Это оказались неприметные тёмно-зелёные камни.

Ачесон — первый учёный, запатентовавший вещество. Успешные опыты по производству SiC до него. Первое упоминание относится к 1880 году, что на 13 лет раньше.

Применение карборунда

Формы нахождения в природе

Монокристалл муассанита (~1 мм в размере) Природный карбид кремния — муассанит можно найти только в ничтожно малых количествах в некоторых типах метеоритов и в месторождениях корунда и кимберлита. Практически любой карбид кремния, продаваемый в мире, в том числе и в виде муассанитового украшения, является синтетическим. Природный муассанит был впервые обнаружен в 1893 году в виде небольших шестиугольных пластинчатых включений в метеорите Каньон Диабло в Аризоне Фердинандом Анри Муассаном, в честь которого и был назван минерал в 1905 году. Исследование Муассана о естественном происхождении карбида кремния было изначально спорным, потому что его образец мог быть загрязнён крошкой карбида кремния от пилы (в то время пилы уже содержали данное вещество).

Оцените статью
Рейтинг автора
5
Материал подготовил
Андрей Измаилов
Наш эксперт
Написано статей
116
Добавить комментарий