Содержание
- 1 Катушка для мормышинга – критерии выбора
- 2 Конструктивная схема прибора
- 3 Некоторые сведения об искровике
- 4 Как самостоятельно сделать катушку в домашних условиях
- 5 Простой регулятор температуры паяльника
- 6 Схемы трансформатора Тесла
- 7 Обзор лучших моделей
- 8 Кто вы, мистер Тесла?
- 9 Устройство катушки Тесла
- 10 Проверка
- 11 Схемы трансформатора Тесла
- 12 Конструкция трансформатора Тесла
- 13 Для чего нужен трансформатор Тесла?
- 14 Критерии выбора
- 15 Мощность электронных трансформаторов
- 16 Схемы трансформатора Тесла
- 17 Описание устройства
- 18 Воздействие на человека
- 19 Принцип работы
- 20 Составные части и принцип работы
Катушка для мормышинга – критерии выбора
Ловля на мормышку спиннингом предъявляет особенные требования к качеству намотки шнура или лески. Оно должно быть идеальным, так как безинерционке придется работать не только с самыми тонкими шнурами, которые только можно найти в продаже, но и укладывать их на шпулю без натяжения. В подобных условиях большинство бюджетных катушек на первом же забросе делают «бороду».
Самые ходовые размеры – 500 и 1000, уже 2000 используют довольно редко. Неплохо обзавестись устройством какого-нибудь известного бренда. Такие катушки с большей вероятностью будут хорошо справляться со сверхтонкими лесками. Вес такой безинерционки не должен превышать 200 граммов, а в идеале – меньше 170.
Фото 2. Катушка размером в 1000 единиц.
Конструктивная схема прибора
Невозможно понять принцип действия этого прибора не изучив его устройство. Конструктивно схема трансформатора состоит из первичной и вторичной обмоток. Для их контуров используется медная проволока сечением 0,1-0,2 мм2. В некоторых случаях можно применить схему на транзисторе.
Первичная обмотка соединяется с источником переменного тока, что приводит к образованию магнитного поля. Через это поле передается электрический ток от первой катушки ко второй. Одновременно вторичной обмоткой создается колебательный контур. В ней же накапливается поступающее электричество и сохраняется здесь в виде определенного значения напряжения. В разных схемах резонансных трансформаторов катушки могут конструктивно отличаться. Однако, создаваемые ими контуры, по всем признакам похожи друг на друга.
Одним из элементов трансформатора Тесла является тороид. Именно под его влиянием происходит накопление электроэнергии. Количество электричества, вмещающееся в тороиде, напрямую зависит от его размеров. В соответствии с этим выполняется настройка прибора. Кроме того, данное устройство способствует снижению резонансной частоты и созданию электростатического поля, отталкивающего разряды молний. В некоторых конструкциях эта функция возложена на вторичную катушку.
Большое значение имеют параметры вторичной катушки. Например, отношение диаметра к ее длине составляет пропорцию 1:4.
Еще одна важная деталь представлена в виде специального медного кольца, защищающего электронику от выхода из строя. Чтобы трансформатор Тесла работал правильно, защитное кольцо необходимо заземлить. Когда молнии ударяются в землю, происходит замыкание электрического тока. За счет незначительного сопротивления первичной обмотки обеспечивается передача электроэнергии. Таким образом, для нормальной работы устройства нужно, чтобы все его элементы взаимодействовали между собой.
Некоторые сведения об искровике
Искровик предназначен для возбуждения колебаний в контуре. Если его в схеме не будет, то питание пойдет, а вот резонанс — нет. Кроме того, блок питания начинает «пробивать» через первичную обмотку, что практически гарантированно приводит к короткому замыканию! Если искровик не замкнут, высоковольтные конденсаторы не могут заряжаться. Как только происходит его замыкание, в контуре начинаются колебания. Именно для предотвращения некоторых проблем используют дросселя. Когда искровик замыкается, дроссель предотвращает утечку тока от блока питания, а уж потом, когда контур будет разомкнут, начинается ускоренная зарядка конденсаторов.
Как самостоятельно сделать катушку в домашних условиях
Чтобы собрать прибор Тесла своими руками, нужно:
Отрезать 15-30 см трубы диаметром 4-7 см для корпуса вторичной обмотки.
Намотать на нее эмалированную медную проволоку. Витки необходимо располагать плотно друг к другу. В верхней части трубы вывести конец провода через стенку, чтобы он возвышался над ней на 2 см.
Вырезать платформу. Для этих целей можно использовать обычный лист ДСП.
Для изготовления первой катушки надо взять трубку из меди диаметром 6 мм, согнуть ее в 3-4 витка и прикрепить к каркасу
Если трубка будет меньшего диаметра, сделать нужно больше витков.
Вторую катушку крепим на корпусе рядом с первой.
Для изготовления тороида проще всего использовать алюминиевую гофру и обычный гвоздь для ее крепления на торчащем конце проволоки.
Важно помнить про защитное кольцо.
Дальше нужно соединить транзистор по схеме и прикрепить конструкцию к кулеру, который будет охлаждать установку.
Последний шаг заключается в подводке питания к получившемуся прибору.
Простой регулятор температуры паяльника
Для приличного качества проведения паяльных работ, домашнему мастеру, и тем более радиолюбителю, пригодится простой и удобный регулятор температуры жала паяльника. Впервые схему устройства, я увидел в журнале «Юный техник» начала 80-х, и собрав несколько экземпляров, использую до сих пор.
Для сборки устройства потребуются:
-диод 1N4007 или любой другой, с допустимым током 1А и напряжением 400 – 600В. -тиристор КУ101Г. -электролитический конденсатор 4,7 микрофарад с рабочим напряжением 50 – 100В. -сопротивление 27 – 33 килоом с допустимой мощностью 0,25 – 0,5 ватт. -переменный резистор 30 или 47 килоом СП-1, с линейной характеристикой.
Для простоты и наглядности я нарисовал размещение и взаимное соединение деталей.
Перед сборкой необходимо изолировать и отформовать выводы деталей. На выводы тиристора надеваем изоляционные трубочки длинной 20мм., на выводы диода и резистора 5мм. Для наглядности можно использовать цветную ПВХ изоляцию, снятую с подходящих проводов, или присаживаем термоусадку. Стараясь не повредить изоляцию загибаем проводники, руководствуясь рисунком и фотографиями.
Все детали монтируются на выводах переменного резистора, соединяясь в схему четырьмя точками пайки. Заводим проводники компонентов в отверстия на выводах переменного резистора всё подравниваем и припаиваем. Укорачиваем выводы радиоэлементов. Плюсовой вывод конденсатора, управляющий электрод тиристора, вывод сопротивления, соединяем вместе и фиксируем пайкой. Корпус тиристора является анодом, для безопасности, изолируем его.
Для придания конструкции законченного вида, удобно воспользоваться корпусом от блока питания с сетевой вилкой.
На верхней грани корпуса сверлим отверстие диаметром 10 мм. В отверстие вставляем резьбовую часть переменного резистора и фиксируем его гайкой.
Для подключения нагрузки я использовал два разъёма с отверстиями под штыри диаметром 4 мм. На корпусе размечаем центры отверстий, с расстоянием между ними 19 мм. В просверленные отверстия диаметром 10 мм. вставляем разъёмы, фиксируем гайками. Соединяем вилку на корпусе, выходные разъёмы и собранную схему, места пайки можно защитить термоусадкой. Для переменного резистора необходимо подобрать ручку из изоляционного материала такой формы и размера, чтобы закрыть ось и гайку. Собираем корпус, надёжно фиксируем ручку регулятора.
Проверяем регулятор, подключив в качестве нагрузки лампу накаливания 20 – 40 ватт. Вращая ручку, убеждаемся в плавном изменении яркости лампы, от половины яркости до полного накала.
При работе с мягкими припоями (например ПОС-61), паяльником ЭПСН 25, достаточно 75% мощности (положение ручки регулятора примерно посередине хода)
Важно: на всех элементах схемы присутствует напряжение питающей сети 220 вольт! Необходимо соблюдать меры электробезопасности
Схемы трансформатора Тесла
Устройство собирается по одной из прилагаемых схем, номиналы могут меняться, поскольку от них зависит эффективность работы устройства. Сперва наматывается около тысячи витков эмалированного тонкого провода на пластиковый сердечник, получаем вторичную обмотку. Витки лакируются или покрываются скотчем. Количество витков первичной обмотки подбирается опытным путем, но в среднем, это 5-7 витков. Далее устройство подключается согласно схеме.
Для получения эффектных разрядов достаточно поэкспериментировать с формой терминала, излучателя искрового свечения, а о том, что устройство при включении уже работает, можно судить по светящимся неоновым лампам, находящихся в радиусе полуметра от прибора, по самостоятельно включающихся радиолампах и, конечно, по плазменным вспышкам и молниям на конце излучателя.
Обзор лучших моделей
Кто вы, мистер Тесла?
Тесла — это новая цивилизация. Ученый был невыгоден правящей элите, невыгоден и сейчас. Он настолько опередил свое время, что до сих пор его изобретения и эксперименты не всегда находят объяснение с точки зрения современнейшей науки. Он заставлял светиться ночное небо над всем Нью-Йорком, над Атлантическим океаном и над Антарктидой, он превращал ночь в белый день, в это время волосы и кончики пальцев у прохожих светились необычным плазменным светом, из-под копыт лошадей высекались метровые искры.
Теслу боялись, он мог запросто поставить крест на монополии по продаже энергии, а если бы захотел, то мог бы сдвинуть с трона всех Рокфеллеров и Ротшильдов вместе взятых. Но он упрямо продолжал эксперименты, до тех пор, пока не погиб при таинственных обстоятельствах, а его архивы были выкрадены и местонахождение их до сих пор неизвестно.
Устройство катушки Тесла
В настоящее время существует много схем, по которым изготовливают катушки Тесла. Наиболее простой трансформатор Тесла состоит и следующих элементов:
- Источник питания
- Трансформатор
- Конденсаторы
- Первичная и вторичная обмотки катушки
- Тороид
Разрядник - Заземление
Вторичная обмотка катушки
Наиболее значимым элементом в катушке Тесла является вторичная обмотка. Можно своими руками изготовить трансформатор Тесла. Сначала нам потребуется найти каркас-основу для вторичной обмотки. Для этого хорошо подойдет пластиковая канализационная труба. Соотношение длины к диаметру трубы должно быть от 4:1 до 5:1.Т.е. длина каркаса должна превышать диаметр в 4-5 раз.
На такую трубу надо намотать порядка 1000 витков проволоки. Для обмотки лучше брать медный провод в изоляции диаметром от 0,08 до 0,3 мм. Намотка должна быть аккуратной, плотной, без перехлёстов. После того, как обмотка закончена, следует покрыть её несколькими слоями лака. Это предохранит обмотку от физических повреждений и от пробоев электричества.
Первичная обмотка
Для первичной обмотки можно взять медную трубку толстого диаметра или толстый кабель. Для не слишком сильных трансформаторов Тесла подойдет медная трубка или провод диаметром 5-6 мм. Если планируется более мощная катушка, то диаметр трубы или провода для намотки увеличивают исходя из планируемой мощности.
Для первичной обмотки потребуется всего несколько витков провода или медной трубки. Обычно делают от 3-х до 10 витков. По своей форме первичную обмотку можно делать как цилиндрическую, так и в виде конуса или изготовить в одной плоскости.
Другие элементы трансформатора Тесла
Тороид создает поле статического электричества. Помогает накапливать энергию для разряда . А также применение тороида в конструкции катушки Тесла защищает вторичную обмотку. Статическое электричество, создаваемое тороидом, отталкивает ионизированные газовые каналы, возникающие на тороиде или разряднике — стримеры. Эти стримеры можно наблюдать в виде тонких светящихся нитей.
Можно вместо тороида поставить простой разрядник. Он изготавливается в виде заостренного металлического штырька. Для небольших трансформаторов Тесла хорошо подойдет шарик от пинг-понга, обмотанный фольгой. Один из концов проволоки от вторичной обмотки подсоединяют к фольге этого шарика.
Чтобы защитить от попадания стримеров на первичную обмотку можно поставить кольцо защиты. Такое защитное кольцо изготовляется из одного медного витка. Проволока должна быть потолще диаметром, чем материал первичной обмотки. А диаметр самого защитного кольца делают шире диаметра первичной обмотки катушки. Кольцо защиты надо заземлить.
Существует множество модификаций катушки Тесла. В продаже такие катушки стоят очень дорого и применяются для демонстрации дуговых разрядов, спарков (искровой разряд), коронных разрядов и светящихся ионизированных газовых каналов — стримеров. Любители своими руками изготавливают катушки Тесла. Существует множество схем и видео того, как это можно сделать в домашних условиях.
Но во всех схемах основа остается неизменной. Это сама катушка из 2-х обмоток, разрядник, источник питания и еще пара элементов. Это не сложно сделать, и каждый, кто умеет держать паяльник в руках, способен на это. А с помощью такой катушки можно удивлять друзей, показывая фокусы, зажигая лампочку без проводов в своих руках. В этой статье читайте о том, как изготовить простую катушку Тесла в домашних условиях.
Проверка
После того, как наша самодельная катушка для металлоискателя была полностью готова, надо было проверить ее на отсутствие внутреннего обрыва. Самый простой способ проверки — тестером измерить сопротивление обмотки, которое в норме должно быть очень низким (максимум 2.5 Ома).
В моем случае сопротивление катушки вместе с двумя метрами соединительного кабеля оказалось в районе 0.9 Ом.
К сожалению, таким простым способом не получится выявить межвитковое замыкание, поэтому приходится рассчитывать на свою аккуратность при намотке. Замыкание, если оно есть, сразу же проявит себя после запуска схемы — металлоискатель будет потреблять повышенный ток и иметь крайне низкую чувствительность.
Схемы трансформатора Тесла
Устройство собирается по одной из прилагаемых схем, номиналы могут меняться, поскольку от них зависит эффективность работы устройства. Сперва наматывается около тысячи витков эмалированного тонкого провода на пластиковый сердечник, получаем вторичную обмотку. Витки лакируются или покрываются скотчем. Количество витков первичной обмотки подбирается опытным путем, но в среднем, это 5-7 витков. Далее устройство подключается согласно схеме.
Для получения эффектных разрядов достаточно поэкспериментировать с формой терминала, излучателя искрового свечения, а о том, что устройство при включении уже работает, можно судить по светящимся неоновым лампам, находящихся в радиусе полуметра от прибора, по самостоятельно включающихся радиолампах и, конечно, по плазменным вспышкам и молниям на конце излучателя.
Конструкция трансформатора Тесла
Аппарат для получения токов высокой частоты и высокого потенциала был запатентован Теслой в 1896 году. Устройство выглядит невероятно просто и состоит из:
- первичной катушки, выполненной из провода сечением не менее 6 мм², около 5-7 витков;
- вторичной катушки, намотанной на диэлектрик, это провод диаметром до 0,3 мм, 700-1000 витков;
- разрядника;
- конденсатора;
- излучателя искрового свечения.
Главное отличие трансформатора Теслы от всех остальных приборов — в нем не применяются ферросплавы в качестве сердечника, а мощность прибора, независимо от мощности источника питания, ограничена только электрической прочностью воздуха. Суть и принцип действия прибора в создании колебательного контура, который может реализовываться несколькими методами:
- Генератор колебаний частоты, построенный на основе разрядника, искрового промежутка.
- Генератор колебания на лампах.
- На транзисторах.
- Генераторы двойного резонанса — самые мощные приборы.
Мы же соберем прибор для получения энергии эфира самым простым способом — на полупроводниковых транзисторах. Для этого нам будет необходимо запастись простейшим комплектом материалов и инструментов:
- медным проводом толщиной 0,40-0,45 мм;
- 9-сантиметровой пластиковой трубой, около полуметра длиной;
- 11-сантиметровой пластиковой трубой, длиной 3-5 см;
- толстым, миллиметровым медным проводом с хорошей изоляцией, 7-10 витков;
- транзистор D13007;
- радиатор для транзистора;
- переменник на 50 кОм;
- постоянный резистор на 0,25 Вт и 75 Ом.
Для чего нужен трансформатор Тесла?
Игрушка? Ничего подобного. По этому принципу Тесла собирался построить глобальную систему беспроводной передачи энергии, использующую энергию эфира. Для реализации такой схемы необходимо два мощных трансформатора, установленных в разных концах Земли, работающих с одинаковой резонансной частотой.
В этом случае полностью отпадает необходимость в медных проводах, электростанциях, счетах об оплате услуг монопольных поставщиков электроэнергии, поскольку любой человек в любой точке планеты мог бы пользоваться электричеством совершенно беспрепятственно и бесплатно. Естественно, что такая система не окупится никогда, поскольку платить за электричество не нужно. А раз так, то и инвесторы не спешат становиться в очередь на реализацию патента Николы Теслы № 645 576.
Критерии выбора
Материал изготовления
Как правило, в любом водоеме, будь то озеро или река, достаточно водорослей, во время рыбалки цепляющихся на леску и приманку, поэтому на удочку действует весьма ощутимая нагрузка. При выборе лучшего нужно понимать, что именно удилище будет принимать на себя силу рывков рыбы. Поэтому оно не должно быть слабым. Также необходимо учитывать тот момент, что слишком сильное не будет достаточно чувствительным из-за чего ряд не интенсивных поклевок можно упустить.
Самым оптимальным вариантом может стать один из этих материалов:
- Карбон (углепластик). Это легкий и прочный современный материал, удилища из которого достаточно чувствительные. Однако нужно учитывать, что при этом они и более хрупкие.
- Стекловолокно. Приспособление из этого материала будет достаточно неприхотливым и прочным, но при этом менее чувствительным.
- Композит. Еще один популярный материал для производства удочек, совмещает в себе все нужные характеристики.
Размер
Спиннинг должен быть оснащен длинной удобной ручкой, чтобы в случае надобности она могла комфортно упираться в локоть. Бывают также спиннинги, приспособленные для упора в пояс при вываживании крупной рыбы.
Самой оптимальной длиной для троллингового спиннинга считается 2-2,5 м. Больше этой длины удилища практически не используют за исключением случаев, когда планируется ловля двумя спиннингами с одной лодки. Тогда желательно чтобы длина одного из удилищ была до 3 м. При таком варианте ловли можно использовать менее дорогостоящие воблеры, при смещении они не будут перехлестываться.
Также более длинное удилище подходит для рыбалки в водоемах с частыми перепадами глубин, так как управление приманкой одной катушкой будет даваться сложнее, а длинный спиннинг позволяет скорее откорректировать глубину проводки. В остальных случаях длинная удочка будет создавать неудобство, особенно если рыбалку в лодке одновременно осуществляют сразу несколько человек. Недостаток более кроткого удилища в том, что переводить с борта на борт его будет неудобно.
Строй
Еще один важный параметр при ловле — это строй, так как именно он в большей части влияет на чувствительность всего приспособления. Для новичков подойдет удилище с быстрым строем (F) или очень быстрым (FF).
Понять реальный строй можно прямо во время покупки, для этого нужно собрать удочку и попросить кого-нибудь подержать её вершину. Затем спиннинг нужно приподнять и отвести в сторону. Если он сгибается на четверть длины, то это сверхбыстрый строй, а если сгибаться будет только верхняя треть, то это быстрый строй.
Тест
Этот критерий определяет оптимальный вес приманки для определённого спиннинга. Его обозначение указывается немного выше ручки в виде цифр в диапазоне от 30-250. Например, 10-30 обозначает, что данный спиннинг рассчитан на вес приманки от 10-30 г. Правильное соотношение теста и веса приманки обеспечит наилучшую чувствительность снасти. Чем меньше значение теста, тем удилище чувствительней.
Для того чтобы выбрать для себя правильный тест, нужно определить в первую очередь тип приманки, которая будет использоваться, её размер и массу. Для новичков подойдут воблеры с массой 50-100 г. Также нужно учитывать, что для водоема с сильным течением лучше выбирать спиннинг с повышенным пределом теста. Потому что сила течения будет воздействовать на него вместе с весом приманки.
Любителям троллинга лучше запастись вариантами спиннингов с разными тестами, чтобы иметь возможность одновременного использования приманок разной массы и размера для более эффективного «прохода».
Мощность электронных трансформаторов
Под показателем мощности ЭТ понимается величина тока в нагрузке, умноженная на напряжение питания галогенной лампочки. На отечественном рынке встречаются различные образцы трансформаторных изделий с заявленными показателями от 25-ти и до нескольких сотен Ватт. Наиболее широко представлены модели, рассчитанные на выходную мощность порядка 50-80 Ватт. К таким преобразователям допускается подключать две или даже три 20-ти ватные лампы. Как правило, все они рассчитаны на выходное напряжение 12 Вольт.
Рассмотренные блоки питания используются только по своему прямому назначению – для питания галогенных источников света. Применять их для светодиодных ламп, например, запрещено прикладываемой к изделию инструкцией.
Схемы трансформатора Тесла
Устройство собирается по одной из прилагаемых схем, номиналы могут меняться, поскольку от них зависит эффективность работы устройства. Сперва наматывается около тысячи витков эмалированного тонкого провода на пластиковый сердечник, получаем вторичную обмотку. Витки лакируются или покрываются скотчем. Количество витков первичной обмотки подбирается опытным путем, но в среднем, это 5-7 витков. Далее устройство подключается согласно схеме.
Для получения эффектных разрядов достаточно поэкспериментировать с формой терминала, излучателя искрового свечения, а о том, что устройство при включении уже работает, можно судить по светящимся неоновым лампам, находящихся в радиусе полуметра от прибора, по самостоятельно включающихся радиолампах и, конечно, по плазменным вспышкам и молниям на конце излучателя.
Описание устройства
Изделие представляет собой резонансный трансформатор, вырабатывающий повышенное напряжение высокой частоты. Учитывая информацию из записей ученого, он трудился над технологией, позволяющей передавать электроэнергию без проводов. Теоретически пара таких мощных катушек, расположенных на удалении 2 км друг от друга, способна передавать электрическую энергию. Чтобы это происходило, они должны работать на одинаковой частоте.
Кроме этого, есть догадки, что подобные катушки могли бы стать вечным двигателем. Если внедрить подобную технологию в известные на сегодняшний день любого типа станции (гидро-, тепло- и т.д.), вырабатывающие электричество, то они стали бы просто ненужными. Однако вопрос, почему никто не продолжает развивать эту технологию, остается загадкой.
Воздействие на человека
В отличие от низкочастотного тока, высоко частотный не проникает вглубь тканей человека, стекая по поверхности тела. ВЧ ток исключает электротравму.
УВЧ аппарат
Используется в медицине для лечения:
- ультра частотная терапия, аппараты УВЧ;
- диатермия, прогревание ВЧ токами;
- индуктотермия, лечение высокочастотным магнитным полем;
- оздоровление органов с помощью микроволнового аппарата;
- дарсонваль, воздействие на части тела высоковольтными разрядами.
В повседневной жизни пользуются микроволновой печью с СВЧ излучением.
Дарсонваль
Н. Теслу по праву считают гением своего времени. Существуют мнение, что его теория эфира, гениальные разработки блокировались. Тесла мечтал обеспечить человечество бесплатной энергией, создать антигравитационный двигатель, путём преобразования энергии эфира. Бестопливный генератор, резонансный трансформатор Н. Тесла собирают своими руками даже школьники. А это значит, что кто-то продолжит его дело.
Принцип работы
Большинство ошибок, допускаемых любителями при сборке, связано с непониманием принципа работы устройства. Стараясь имитировать, считая прибор простым трансформатором, они забывают о необходимости ясно представлять, как на самом деле она должна действовать КТ. Предусмотрено две обмотки. Одна именуется первичной, другая вторичной. К первой (разрядник) подводятся провода, идущие к внешнему источнику питания. Вокруг создается электромагнитное поле. Когда колебательный контур наберет достаточно мощности, заряд по воздуху передается на вторую обмотку.
Частично переданная энергия преобразуется в напряжение. Причем есть закономерная взаимосвязь между этой величиной и временем, за которое образуется колебательный контур. Показатели прямо пропорциональны. Наличие двух колебательных контуров и является принципиальным отличием катушки Тесла от простого трансформатора. Причем результат работы первой заключается в появлении видимых стримеров – разрядов молнии искусственного происхождения. В результате происходит ионизация водорода, содержащегося в воздухе, как и во время сильной грозы.
Составные части и принцип работы
Трансформатор Тесла собирается из первичной, вторичной катушки и обвязки, составляемой из разрядника или прерывателя, конденсатора и терминала, служащего выходом.
Первичная обмотка состоит из небольшого числа витков медного провода большого сечения или медной трубки. Она бывает горизонтальной (плоской), вертикальной (цилиндрической) или конической. Вторичная обмотка состоит из большого числа витков меньшего сечения и является наиболее важным узлом конструкции. Отношение ее длины к диаметру должно составлять 4:1, а в основании должно располагаться заземленное защитное кольцо из медного провода, призванное сохранить электронику установки.
Так как работает трансформатор Тесла в импульсном режиме, его конструкция характеризуется тем, что в нее не входит ферромагнитный сердечник. Это позволяет снизить взаимную индукцию между обмотками. Конденсатор, взаимодействуя с первичной катушкой, создает колебательный контур с включенным в него разрядником, в данном случае газовым. Разрядник собирают из массивных электродов, а для большей износостойкости дополнительно снабжают радиаторами.
Принцип работы катушки Тесла следующий. Конденсатор через дроссель заряжается от трансформатора. Скорость зарядки напрямую зависит от показателя индуктивности. Зарядившись до критического уровня, он вызовет пробой разрядника. После этого в первичном контуре генерируются высокочастотные колебания. Одновременно с этим активируется разрядник, убирающий трансформатор из общего контура, замыкая его.
Если это не произошло, то в первичном контуре могут произойти потери, негативно влияющие на его работу. В стандартной схеме параллельно с источником питания устанавливается газовый разрядник.
Таким образом, катушка Тесла на выходе может выдать напряжение в несколько миллионов вольт. От такого напряжения в воздухе возникают разряды электричества, имеющие вид коронарных разрядов и стримеров.
Крайне важно помнить, что эти изделия генерируют токи высокого потенциала и смертельно опасны для жизни. Даже маломощные устройства способны вызывать сильные ожоги, повреждение нервных окончаний, мышечных тканей и связок
Способны вызывать остановку сердца.
Watch this video on YouTube