Медные руды

Сплавы меди

Помимо относительно чистой формы, характеризуемой ничтожным содержанием примесей, медь – составляющий элемент многих сплавов, среди которых наиболее известны:

латунь;

Латунь — сплав меди

бронза;

мельхиор.

Мельхиор — больше относится к серебру, нежели к меди

Отдельно стоит выделить медный сплав с никелем, именуемый мельхиор. Он известен широкой аудитории по разменным монетам советских времен, начиная с 10 копеек а также подарочные наборы столовых приборов, но существенно уступает первым двум в степени востребованности.

Наиболее перспективными для нужд человека остаются: латунь и бронза. Желтая медь, так иначе называют латунь, на бытовом уровне широко востребована в сантехнике. Те, кто сталкивался с подбором крана или смесителя, хорошо знают это. По химическому составу различают:

двойные латуни – сплав меди с цинком;

многокомпонентные, в которых Zn остается основным легирующим элементом.

Процентное содержание цинка, даже в двойной латуни, широко варьируется. Сплавы, где доля Zn составляет не более 20%, именуют томпаком
.

Определить состав латуни можно исходя из маркировки: для двойных сплавов после буквы «Л» указывается процентное содержание меди, например Л60. Маркировка многокомпонентных сплавов строится аналогично, только за «Л» следуют легирующие примеси с их концентрациями. Таким образом, многокомпонентная латунь марки ЛМц58- 2, использования при изготовлении деталей машин, гаек, болтом, арматуры, подразумевает содержание меди – 58%, цинка – 40%, марганца – 2%.

Бронза – в стандартном понимании, представляет медный сплав с оловом, однако на практике также обладает весьма вариативным составом. Фактически под бронзой принято понимать любой медный сплав, где никель и цинк не являются основными легирующими элементами. Стоит отметить, что найти оловянную бронзу достаточно сложно. Большее распространение получили ее безоловянные сорта.

Месторождения медных руд в мире

Медный карьер Чукикамата в Чили

Медный карьер Чино в США

Уникальные месторождения имеют запасы более 5 млн т меди (Эль-Теньенте, Чукикамата в Чили и др.), очень большие — 1-5 млн т, средние — 0,2-1 млн т и мелкие — менее 0,2 млн т меди. Богатые руды содержат Cu 2,5-3%, рядовые — 1-2,5% и бедные — меньше 0,5%.

Среди промышленных месторождений меди выделяются: магматические, карбонатитовые, скарновые, плутоногенные гидротермальные, вулканогенные гидротермальные, колчеданные и стратиформные типы.

Магматические месторождения представлены сульфидными медно-никелевыми рудами и медно-ванадиевыми комплексными рудами, из которых, кроме меди (содержание 1-2%) и никеля, добывают также кобальт, золото, платину и рассеянные элементы. Нерудные минералы представлены главным образом плагиоклазом и пироксеном.

К таким месторождениям относятся в России: Печенга, Аллареченское, Мончегорское (Кольский полуостров); Талнах, Октябрьское, Норильск (Красноярский край); в Финляндии — Пори; Швеции — Клевая; Канаде — Садбери, Томпсон; США — Стиллуотер и в ЮАР — Бушвельд, Инсизва.

К группе вулканогенных гидротермальных месторождений относятся редкие проявления формаций самородной меди (месторождения озера Верхнего, США). Такие рудопроявления известны в Азербайджане, на Урале, Кольском полуострове, в Казахстане и Горной Шории. Медные и медно-цинковые колчеданные месторождения известны на Урале (Гай, Сибай), в Мугоджарах (Приорское), на Кавказе (Уруп, Кафан), в Турции (Эрганы), на Кипре (Скуршо-Тисса), в Болгарии (Радка), Испании (Рио-Тинто), Норвегии (Леккон), Швеции (Болиден), США (Юнайтед Верде), Канаде (Кидд-Крик), Японии (Бесси) и др. Руды сложены сульфидами железа (на 80-90%) и содержащих S до 40%, Cu 3-5%, Zn 2-4%. Попутно изымают Cd, Se и Te.

Карбонатитовые медные руды очень редки, в них кроме меди содержится магнетит, а породы представлены карбонатами, оливином, апатитом. Представителем карбонатитовых руд является месторождение Палабор (ЮАР). Месторождение комплексное, содержит медь (в среднем 0,68%), железо и фосфатное сырье. Запасы меди оцениваются в 1,5 млн т.

Скарновые месторождения меди — комплексные, в них присутствуют молибден, кобальт, висмут, селен, теллур, железо, свинец, сурьма, мышьяк, никель, олово, вольфрам. Сульфидные минералы в этих рудах имеют неравномерные вкрапления или ассоциированные с эпидотом, кварцем, кальцитом. Эти месторождения известны в Казахстане (Саяк), РФ — на Урале (Турьинская группа), в Западной Сибири (Юлия), США (Клифтон, Бисби), Мексике (Долорес) и др. Содержание меди в них высокое, но неравномерное (1-10%, в среднем 1,5-3%). Руды, кроме меди, содержат Mo, Au, Hg, Co, Bi, Se, Te.

Среди плутогенных гидротермальных месторождений выделяются медно-порфировые и жильные. К первым относятся месторождения крупных скоплений небогатых медных или молибден-медных прожилково-вкрапленных руд штокверкового типа в порфировых интрузиях. Они известны в Казахстане (Коунрад), Узбекистане (Кальмакир), Закавказье (Каджаран), на территории стран бывшей Югославии (Медет, Асарел), Чили (Эль-Теньенте), Перу (Токепала), Панаме (Сьерра-Колорада), США (Бингем-Каньон, Моренси, Мануэль), Канаде (Вэлли-Коппер) и др. Среднее содержание меди в первичных рудах 0,2-0,7%, в зоне повторного обогащения он увеличивается до 1-1,5%. Попутно добывается Мо (0,005-1,05%), Se, Te и Re. Жильные месторождения распространены, но крупные объекты встречаются редко. К ним относятся Чатыркульское и Жайсанское (Казахстан), Рсен и Вирли Бряг (Болгария), Бьютт, Магма (США), Матаамбре и Эль-Кобре (Куба). Рудные жилы при мощности 0,3-10 м. прослеживаются на глубину до 500-600 м. и в длину до 10 км. Содержание меди достигает 4-5%. Попутно добываемые благородные и рассеянные металлы.

К гидротермальным месторождениям относят медно-порфировые, кварц-сульфидные месторождения и месторождения самородной меди.

Пирометаллургический флотационный метод

Эта технология обычно используется для выделения меди из тех пород, в которых Cu содержится 1.5-2%. Такой материал подвергают обогащению флотационным методом. При этом:

  • руду тщательно размалывают до самого мелкого порошка;

  • смешивают полученный материал с водой;

  • добавляют в массу специальные флотореагенты, представляющие собой сложные органические вещества.

Флотореагенты покрывают мелкие крупинки разных соединений меди и передают им несмачиваемость.

На следующем этапе:

  • в воду добавляют вещества, создающие пену;

  • пропускают через взвесь сильный поток воздуха.

Легкие сухие частички соединений меди в результате прилипают к воздушным пузырькам и всплывают наверх. Содержащую их пену собирают, отжимают от воды и тщательно просушивают. В результате и получают концентрат, из которого затем выделяют черновой Cu.

Использование меди в медицине

Традиционная медицина считает медь очень важным элементом жизнедеятельности человека. В организме это вещество содержится в количестве 2*10 -4 % от общей массы. Ежедневно человек с пищей потребляет до 60 мг меди, из которых усваивается примерно 2 мг, что является необходимой нормой для здорового организма. Медь играет важную роль в биосинтезе гемоглобина, в поддержании уровня сахара, холестерина и мочевой кислоты. Для нормальной работы сердечно-сосудистой системы, головного мозга, пищеварительного тракта необходима медь. В случае ее недостатка развивается:

  • для лечения острой недостаточности используют лекарственные средства, содержащие этот микроэлемент;
  • в терапии – использование металлических аппликаций или браслетов.

Наибольшее количество микроэлемента содержится в таких продуктах питания, как:

  • шампиньоны;
  • картофель;
  • печень трески;
  • цельное зерно;
  • устрицы и каракатицы.

Вместе с тем избыток меди в организме, когда ее количество превышает 250 мг, ведет к интоксикации и нарушению работы печени, развитию болезни Вильсона, анемии.

Где искать?

Многие люди, знающие толк в сборе цветмета, точно знают, где искать металлолом меди. В первую очередь это городская свалка. Не советуем искать цветмет в этом не слишком приятном месте. Зато едва ли кто-то будет иметь претензии к человеку, который ищет нужную ему медь в горах различного, никому не нужного хлама, если там нет, конечно, своей “мусорной мафии”.

Кроме того, медь можно найти на станциях обслуживания электростанций. Здесь можно найти списанный кабель, а если повезет – поврежденный и никому не нужный трансформатор. Вот только чаще всего сами сотрудники, прекрасно зная о стоимости меди, добывают её и сдают самостоятельно. Однако, попытка не пытка. Постарайтесь наладить отношения с работниками, осмотрите территорию и найденные трансформаторы и попробуйте выторговать их за символическую плату. Если повезет провернуть такую затею несколько раз – можно неплохо заработать.

Старый небольшой трансформатор

Стадии пирометаллургического производства меди


Общие способы получения метала из руды

Промышленное получение меди с использованием пирометаллургического способа имеет преимущества перед другими методами:

  • технология обеспечивает высокую производительность – с ее помощью можно получать метал из породы, в которой содержание меди даже ниже 0,5%;
  • позволяет эффективно перерабатывать вторичное сырье;
  • достигнута высокая степень механизации и автоматизации всех этапов;
  • при его использовании значительно сокращаются выбросы вредных веществ в атмосферу;
  • метод экономичный и эффективный.

Обогащение


Схема обогащения руды

На первом этапе производства необходимо подготовить руду, которую доставляют на обогатительные комбинаты прямо с карьера или шахты. Часто встречаются большие куски породы, которые предварительно нужно измельчить.

Происходит это в огромных дробильных агрегатах. После дробления получается однородная масса, с фракцией до 150 мм. Технология предварительного обогащения:

  • в большую емкость засыпается сырье и заливается водой;
  • затем добавляется кислород под давлением, чтобы образовалась пена;
  • частицы металла прилипают к пузырькам и поднимаются наверх, а пустая порода оседает на дне;
  • далее, медный концентрат отправляется на обжиг.

Обжиг

Этот этап направлен на то, чтобы максимально снизить содержание серы. Рудную массу помещают в печь, где устанавливается температура 700–800оС. В результате термического воздействия содержание серы сокращается в два раза. Сера окисляется и испаряется, а часть примесей (железа и других металлов) переходит в легкошлакуемое состояние, которое облегчит в дальнейшем плавку.


Обжиг руды для снижения уровня серы

Этот этап можно опустить, если порода богатая и содержит после обогащения 25–35% меди, его используют только для бедных руд.

Плавка на штейн

Технология плавки на штейн позволяет получить черновую медь, которая различается по маркам: от МЧ1 – самая чистая до МЧ6 (содержит до 96% чистого металла). В ходе процесса плавки, сырье погружается в специальную печь, в которой температура поднимается до 1450оС.


Технология переработки медной руды и получение черной меди

После расплавления массы она продувается сжатым кислородом в конвертерах. Они имеют горизонтальный вид, а дутье осуществляется через боковое отверстие. В результате продува сульфиды железа и серы окисляются и переводятся в шлак. Тепло в конвертере образуется за счет протекания раскаленной массы, он дополнительно не нагревается. Температура при этом составляет 1300оС.


Общая схема выплавки меди

На выходе из конвертера получают черновой состав, который содержит до 0,04% железа и 0,1% серы, а также до 0,5% прочих металлов:

  • олова;
  • сурьмы;
  • золота;
  • никеля;
  • серебра.

Такой черновой металл отливается в слитки массой до 1200 кг. Это так называемая анодная медь. Многие производители останавливаются на этом этапе, реализуют такие слитки. Но поскольку часто производство меди сопровождается добычей драгоценных металлов, которые содержатся в руде, то на обогатительных комбинатах используется технология рафинирования чернового сплава. При этом выделяются и сохраняются прочие металлы.

Рафинирование с использованием катодной меди

Технология получения рафинированной меди довольно простая. Ее принцип используют даже для чистки медных монет от окислов в домашних условиях. Схема производства выглядит следующим образом:


Слитки рафинированной меди

  • черновой слиток помещается в ванну с электролитом;
  • в качестве электролита используется раствор со следующим содержанием: сульфат меди – до 200 г/л;
  • серная кислота – 135–200 г/л;
  • коллоидные добавки (тиомочевина, столярный клей)– до 60 г/л;
  • вода.

температура электролита должна быть до 55оС;
помещаются в ванну пластины катодной меди – тонкие листы чистого металла;
подключается электричество. В это время происходит электрохимическое растворение металла. Частицы меди концентрируются на катодной пластине, а прочие включения оседают на дне и называются шлам.

Весь процесс электролиза протекает в течение 20–28 суток. За этот период вынимают катодную медь до 3–4 раз. Вес пластин получается до 150 кг.

Как это делается: добыча меди

В процессе рафинирования, на катодной меди могут образовываться дендриты – наросты, которые сокращают расстояние до анода. В результате чего снижается скорость и эффективность реакции. Поэтому, при возникновении дендритов, их незамедлительно удаляют.

Суточная потребность

Диетологи определили среднюю норму потребления меди для взрослых. В обычных условиях она составляет от 1,5 до 3 мг в день. А вот детская норма не должна выходить за пределы 2 мг ежесуточно. При этом малыши до года могут получать до 1 мг микроэлемента, дети до 3 лет – не более полутора миллиграммов. Дефицит меди крайне нежелателен для беременных, чья суточная норма составляет 1,5-2 мг вещества, так как купрум отвечает за правильное формирование сердца и нервной системы будущего малыша.

Некоторые исследователи убеждены, что темноволосые нуждаются в большей порции меди, чем блондины. Объясняют это тем, что у шатенов Cu более интенсивно расходуется на окрашивание волос. По этой же причине ранняя седина чаще бывает у темноволосых. Избежать депигментации поможет пища с высоким содержанием меди.

Увеличить суточную норму меди стоит людям с:

  • аллергиями;
  • остеопорозом;
  • ревматоидным артритом;
  • анемией;
  • болезнями сердца;
  • пародонтозом.

Интересные факты об алюминии

В социальных сетях

Конвертирование штейна

Конвертирование штейна осуществляется в медеплавильных конвертерах (рисунок 44) путем продувки его воздухом для окисления сернистого железа, перевода железа в шлак и выделения черновой меди.

Конвертеры имеют длину 6 – 10 м и наружный диаметр 3 – 4 м. Заливку расплавленного штейна, слив продуктов плавки и удаление газов осуществляют через горловину, расположенную в средней части корпуса конвертера. Для продувки штейна подается сжатый воздух через фурмы, расположенные по образующей конвертера. В одной из торцевых стенок конвертера расположено отверстие, через которое проводится пневматическая загрузка кварцевого флюса, необходимого для удаления железа в шлак.Процесс продувки ведут в два периода. В первый период в конвертер заливают штейн и подают кварцевый флюс. В этом периоде протекают реакции окисления сульфидов

2FeS + 3O2 = 2Fe + 2SO2,

2Cu2S + 3O2 = 2Cu2O + 2SO2

Образующаяся закись железа взаимодействует с кварцевым флюсом и удаляется в шлак

2FeO + SiO2 = (FeO)2·SiO2

По мере накопления шлака его частично сливают и заливают в конвертер новую порцию исходного штейна, поддерживая определенный уровень штейна в конвертере. Во втором периоде закись меди взаимодействует с сульфидом меди, образуя металлическую медь

2Cu2O + Cu2S = 6Cu + SO2

Таким образом, в результате продувки получают черновую медь, содержащую 98,4 – 99,4% Cu. Полученную черновую медь разливают в плоские изложницы на ленточной разливочной машине.

Применение медной руды

Рассматриваемый природный ресурс получил весьма широкое распространение. Как ранее было отмечено, его добыча проводится на протяжении нескольких десятилетий. Руда меди может иметь в составе достаточно большое количество полезных элементов, к примеру, золото и серебро. Поэтому ее распространение достаточно обширно.

Внешний вид медной руды

Применение добытой медной смеси связано с получением различных металлов. Выделяют две основные технологи производства меди:

  1. гидрометаллургическая;
  2. пирометаллургическая.

Второй метод предусматривает огневое рафинирование металла. За счет этого руда может обрабатываться практически в любом объеме. Кроме этого, воздействие огня позволяет выделять из породы практически все полезные вещества. Пирометаллургическая технология применяется для выделения меди из породы, которая имеет низкую степень обогащения металлом. Гидрометаллургический метод применяется исключительно для обработки окисленной и самородной породы, которые также имеют низкую концентрацию меди.

В заключение отметим, что медь сегодня включается практически во все сплавы. Ее добавление в качестве легирующего элемента позволяет изменить основные эксплуатационные качества.

Сибайское медноцинковоколчеданное месторождение

Данное месторождение является не только медным, но также цинковым и колчеданным. Располагается оно неподалеку от города Сибая, который находится в Башкортостане. Открытие данного месторождения произошло в 1913 году, но осваивать его стали лишь два десятилетия спустя.

С запада на восток Сибайское медноцинковоколчеданное месторождение ограничено разломами. Здесь руды добываются исключительно закрытым методом. В начале двадцатого века, на месторождении была построена шахта. Ее глубина превышает глубину четырех десятков метров.

Позднее, в 2004 году на месте Сибайского месторождения был сформирован филиал, который носит название «Учалинский ГОК».

Технология гидрометаллургического производства меди


Медная руда также может содержать золото

Этот способ не получил широкого распространения, поскольку, при этом можно потерять драгоценные металлы, содержащиеся в медной руде.

Его использование оправдано, когда порода бедная – содержит менее 0,3% красного металла.

Как получить медь гидрометаллургическим способом?

Вначале порода измельчается до мелкой фракции. Затем помещается в щелочной состав. Чаще всего используют растворы серной кислоты или аммиака. Во время реакции медь вытесняется железом.


Цементация меди железом

Оставшиеся после выщелачивания растворы солей меди проходят дальнейшую обработку – цементацию:

  • в раствор помещают железную проволоку, листы или прочие обрезки;
  • в ходе химической реакции железо вытесняет медь;
  • в результате металл выделяется в виде мелкого порошка, в котором содержание меди достигает 70%. Дальнейшее очищение происходит путем электролиза с использованием катодной пластины.

Свойства меди и место в жизни человека

В чистом состоянии, элемент таблицы Менделеева, именуемый Cu, встречается крайне редко. Это – пластичный металл с легким розовым оттенком. Человеку же он знаком под другим цветом: желто-красным, чаще коричнево-красным. Это связано с высокой окислительной способностью вещества. Попадая на воздух, медь покрывается тонкой оксидной пленкой, что и делает цвет металла ближе к красному.

Первобытная тяга человека к меди основывалась на свойстве пластичности, позволяющей придавать этому металлу требуемую форму путем несложной обработки. Медь легко поддается гравировке, нанесению резьбы, оставаясь при этом достаточно прочным. Современная ценность меди, как металла – высокие показатели проводимости: электрической и тепловой. Подобная информация позволяет выделить основные направления поиска этого цветного металла в виде отходов и лома.

Удельный вес меди, составляющий округленно 8.9 г/см 3 , также полезен сборщику металлолома. Зная объем собранного лома, в частности проводов, жил, легко рассчитать его оценочный вес.

В какие места стоит заглянуть

Поисковики меди, которые отличают этот сплав от других, знают точные места, где можно встретить этот металл. Одним из популярных мест — это свалка, далеко не из приятных мест, но все что там — ничье. Не будет и претензий, если только уже место не занято «мусорной мафией». На свалке можно найти вышедшую из строя бытовую технику и приборы.

Списанный кабель, поврежденный трансформатор можно найти на электростанциях обслуживания и строительных площадках. Зачастую сотрудники станции и сами не против подзаработать. Поэтому попытайтесь войти в контакт с работником станции и предложите свою небольшую цену за найденный трансформатор. И он в накладе не будет и заработать можно неплохо.

Минеральная база для извлечения металла

Сырьем для добычи медной руды являются естественные образования минералов, в которых металлический компонент содержится в количестве, необходимом для экономически выгодной промышленной разработки.

Сырье для добычи медной руды.

Рудные месторождения представлены силикатными, карбонатными, сульфатными соединениями, оксидами, образовавшимися в зоне окисления.

Среди разведанных минералов для промышленной разработки можно выделить:

  • халькопирит;
  • халькозин;
  • борнит;
  • куприт;
  • самородная медь;
  • брошантит;
  • азурит;
  • кубанит;
  • малахит;
  • хризотил.

В руде концентрация металла составляет 0,3–5%, а в минералах показатель концентрации составляет 22–100% (самородный металл). Месторождения меди находятся в генетической взаимосвязи с другими ценными компонентами, которые добываются как дополнительные химические элементы к основному процессу.

Среди попутных компонентов встречаются:

  • платаноиды;
  • серебро;
  • золото;
  • теллур;
  • галлий;
  • молибден;
  • висмут;
  • никель;
  • титан;
  • цинк.

Руда для извлечения меди содержит мышьяк, сурьму, реже ртуть. В зависимости от вида попутных химических элементов различают типы месторождений, среди которых главное значение имеют:

  • медно-никелевый;
  • медно-колчеданный;
  • медистых песчаников и сланцев;
  • медно-порфировый.

Скарновые месторождения металла и кварцево-сульфидные образования имеют подчиненное значение. В перспективе в качестве сырья для промышленного производства металла рассматриваются железомарганцевые конкреции, находящиеся в донных отложениях Мирового океана.

Немного истории

В какой местности медь в древние времена начала добываться и использоваться человеком впервые, археологам, к сожалению, выяснить не удалось. Однако доподлинно известно, что именно этот металл люди начали обрабатывать и применять в повседневной жизни самым первым.

Известна медь человеку стала еще в каменном веке. Некоторые найденные археологами самородки этого металла несут на себе следы обработки каменными топорами. Первоначально люди использовали медь в основном только в качестве украшений. При этом применял для изготовления таких изделий человек в древние времена исключительно найденные им самородки этого металла. Позднее люди научились обрабатывать и содержащую медь руду.

Представление о том, как добывают Cu и как его обрабатывают, имели многие народы древности. Подтверждений тому археологами было найдено множество. После того как человек научился делать сплавы меди с цинком, начался бронзовый век. Собственно само название «медь» придумали когда-то древние римляне. В эту страну такой металл привозили в основном с острова Кипр. Поэтому римляне и назвали его aes cyprium.

Технологии производства

Добытая руда имеет низкую концентрацию меди. Для получения одной тонны металла в среднем понадобится 200 тонн руды. Для его извлечения современная металлургическая промышленность применяет следующие технологии:

  • гидрометаллургическая;
  • пирометаллургическая;
  • электролиз.

Пирометаллургический метод обогащения породы использует для переработки халькопирит. Эта распространенная технология использует два этапа работы. Первое – окислительный обжиг, так называемая флотация. Получаемый черновой концентрат содержит 10–35% чистого вещества. Затем производят рафинирование меди и добавление купороса к раствору. В результате выделяют цветной металл почти стопроцентной чистоты.

При гидрометаллургическом способе происходит выщелачивание металла, затем добавляется серная кислота. В итоге получают раствор, в котором выделяется медь и различные металлы, могут быть драгоценные. Эта технология применима для производства меди из бедных пород.

Для окислительного обжига минералов с высоким содержанием серы нагревают руду до 700–8000 градусов, при этом количество серы уменьшается вдвое. Получается сплав сульфидов. Боковой обдув в конвекторе позволяет получить черновую медь 91%. Для более высокой чистоты металла происходит электролитическое рафинирование, получают 99% состав.

В промышленности этот элемент в чистом виде практически не применяется. Больше всего известны сплавы:

  • латунь – сплав с цинком;
  • бронза – с оловом;
  • различные баббиты – сплав со свинцом;
  • мельхиор – в состав добавлен никель;
  • дюраль – соединение с алюминием;
  • ювелирные сплавы, где добавляется золото в различных процентных соотношениях.

В чем содержится медь

Особое внимание стоит уделить старым ламповым телевизорам. Монтажные провода, дроссель и трансформатор – вот главные источники меди, содержащиеся в них

Массивные, медленно нагревающиеся телевизоры вполне могут содержать до 1.5 килограмм меди. Поэтому два-три разобранных прибора уже дадут неплохой улов.

Полупроводниковый телевизор дает меньшую прибыль, но и их обходить стороной не следует – в каждом может содержаться до 500 грамм меди.

Полупроводниковый телевизор

Старый холодильник – настоящий клад. Его компрессор может принести от 1 до 1.5 килограмм меди. Правда, заветный металл заключен в корпус из железа, который придется распилить, чтобы добраться до цели. Если повезет, то может попасться модель с медным змеевиком. Это даст ещё почти килограмм цветного металла.

Компрессор холодильника разобранный

Не стоит оставлять без внимания любые электродвигатели – в них всегда содержится медь. Причем, чем мощнее двигатель, тем больше в нем меди (примерно, 1 кг металла на 1 кВт энергии). Но с корпусом вручную справиться также не получится.

Электродвигатель не так-то просто разобрать и изъять с него медь

Посмотрите видео “Как вытащить медь из обмотки”:

Люминесцентные лампы также могут порадовать поисковика. В каждой содержится арматура весом на 100-300 грамм, в зависимости от модели. Конечно, не слишком много. Зато многие компании, после ремонта в офисе или на предприятии, выбрасывают эти лампы целыми коробками. Обнаружив клад на 20-30 таких ламп, можно неплохо нажиться.

Ну а трансформатор можно назвать настоящей мечтой любого собирателя меди. Из списанного устройства можно добыть несколько сотен килограмм ценного металла и даже больше

Конечно, такие сокровища попадаются крайне редко – они привлекают особо пристальное внимание многих людей, поэтому чаще всего попадаются уже выпотрошенные коробки. Но заглянуть лишний раз всё равно стоит

Вот такой трансформатор – это действительно удача, но врядли его можно найти бесхозным

Глупо надеяться, что каждая поездка будет приносить по несколько десятков или сотен килограмм меди. Но всё-таки, даже нахождение нескольких килограмм за полдня не слишком напряженной работы может стать приятным подспорьем и пополнением семейного бюджета. Тем более, что для этого нужно проявить лишь наблюдательность и упорность. Наверняка вскоре вы станете специалистом по поиску и сбору меди.

Добыча медных руд в мире

Медные рудники не сосредоточены в определенных географических зонах, а обнаружены в разных странах. В Америке в штатах Невада и Аризона разрабатывают месторождения халькозина. На Кубе распространены залежи оксида меди — куприта. В Перу ведется добыча хлорида меди.

Источников обогащенных руд в мире почти не осталось, медь добывается уже несколько сотен лет, поэтому все богатые рудники давно уже разработаны. В промышленности приходится применять низкосортные минералы (до 0,5% меди).

Интересно!
По объёму мирового производства, медь находится на третьем месте после железа и алюминия.

Страны лидеры по запасам и добыче медной руды

В список стран, богатых медными рудами, входят: Чили, Америка, Китай, Казахстан, Польша, Индонезия, Замбия. Доля РФ в мировой добыче руды составляет 9% (это третье место после Чили и США). По запасам минерала лидирует Чили, в которой находится 33% от мирового объема меди.

Самыми крупными рудниками считаются:

Рудник Чукикамата (Чили). Разработки ведутся более 100 лет, в течение этого периоды было разработано 26 млн. тонн металла;

Рудник Эскондида (Чили). Добыча осуществляется с 1990 года;

Рудник Грасберг (Индонезия).

Недавно были обнаружены крупные рудники в Перу (Антамина), в Бразилии (Салобу), Казахстане (Нурказган).

Эксперты утверждают, что объем экономически рентабельной меди составляет более 400 млн. тонн. по всему миру.

Окисленная медная руда

Окисленные медные руды плохо подвергаются обогащению, поэтому их перерабатывают преимущественно гидрометаллургическими способами.

Окисленные медные руды ( медный блеск, лазурит, малахит) с содержанием меди от 15 до 45 % брикетировали с добавками глины, слабо обжигали, после чего выщелачивали раствором Ре2 ( 8О4) з и подвергали электролизу со свинцовыми анодами. Отработанный раствор, обогащенный кислотой, вновь возвращался на выщелачивание.

Окисленные медные руды плохо подвергаются обогащению, поэтому их перерабатывают преимущественно гидрометаллургическими способами.

Бедные окисленные медные руды или смешанные окисленносуль-фидные руды трудно подвергаются обогащению и их перерабатывают гидрометаллургическим путем. Технологический процесс состоит из трех операций: выщелачивания руды, приготовления электролита и электролиза. Для выщелачивания руды применяют либо метод перколяции, либо кучное выщелачивание, подземное выщелачивание или выщелачивание пульпы в агитаторах. Полученные растворы подвергают очистке обработкой их известняком. При этом железо и алюминий выделяются в виде гидроксидов, которые адсорбируют примеси мышьяка, сурьмы и фосфора. Для удаления примесей азотной кислоты и других часть раствора выводят в отвал, предварительно выделив из него медь цементацией. К чистому раствору CuSO4 добавляется H2S04, и электролит направляют на электролиз с нерастворимым анодом, в качестве которого применяют сплавы свинца с серебром или сурьмой. Катодами являются медные листы, полученные в матричных ваннах. Электролизеры работают по каскадной схеме.

Различают сернистые и окисленные медные руды. Медь встречается в природе и в самородном виде.

Марки меди и содержание примесей.

Для переработки окисленных медных руд применяют гидрометаллический метод, который заключается в выщелачивании меди из руды и осаждении ее из раствора.

Медь получают из сульфидных и окисленных медных руд. Около 80 % меди добывают из сульфидных руд и примерно 20 % — из окисных.

Медь получают из сульфидных и окисленных медных руд. Около 80 % меди добывают из сульфидных руд и примерно 20 % — из окисных.

Для производства меди используют сульфидные и окисленные медные руды.

Прожилки асбеста в породе. Баженовское месторождение. Урал.

Зеленые силикаты никеля сходны с окисленными медными рудами — землистым малахитом, хризоколлой, от которых отличаются окраской, характером агрегатов и химическими реакциями.

Разработаны также сорбционные процессы для извлечения меди из окисленных медных руд и растворов после кучного или подземного выщелачивания с использованием ионообменных материалов, которые также позволяют получать медь в виде катодов или порошков.

В настоящее время практикуется получение меди путем растворения подземных окисленных медных руд в разбавленной серной кислоте с дальнейшим выделением меди из раствора электролизом.

В древние времена выплавка меди базировалась на использовании исключительно богатых окисленных медных руд ( с содержанием меди не ниже 20 %) благодаря чрезвычайной простоте технологической переработки этих руд.

Оцените статью
Рейтинг автора
5
Материал подготовил
Андрей Измаилов
Наш эксперт
Написано статей
116
Добавить комментарий