Мигание светодиодом на ардуино. мигалка и маячок

Принцип действия светодиода

Работа светодиода

Подключая светодиод, узнайте минимум теории – портал ВашТехник готов помочь. Район p-n перехода за счет существования дырочной и электронной проводимости образует зону несвойственных толще основного кристалла энергетических уровней. Рекомбинируя, носители заряда высвобождают энергию, если величина равна кванту света, спай двух материалов начинает лучиться. Оттенок определен некоторыми величинами, соотношение выглядит так:

E = h c / λ; h = 6,6 х 10-34 – постоянная Планка, с = 3 х 108 – скорость света, греческой буквой лямбда обозначается длина волны (м).

Из утверждения следует: может быть создан диод, где разница энергетических уровней присутствует. Так изготавливаются светодиоды. В зависимости от разницы уровней, цвет синий, красный, зелёный. Редкие светодиоды обладают одинаковым КПД. Слабыми считают синие, которые исторически появились последними. КПД светодиодов сравнительно мал (для полупроводниковой техники), редко достигает 45%. Удельное превращение электрической энергии в полезную световую просто потрясающее. Каждый Вт энергии дает фотонов в 6-7 раз больше, нежели спираль накала в эквивалентных условиях потребления. Объясняет, почему светодиоды сегодня занимают прочную позицию в осветительной технике.

Создание мигалки на основе полупроводниковых элементов несравненно проще. Хватит сравнительно малых напряжений, схема начнет работать. Остальное сводится к правильному подбору ключевых и пассивных элементов для создания пилообразного или импульсного напряжения нужной конфигурации:

Амплитуда.
Скважность.
Частота следования.

Очевидно, подключение светодиода к сети 230 вольт выглядит негодной идеей. Присутствуют подобные схемы, но заставить мигать сложно, элементная база отсутствует. Светодиоды работают от гораздо более низких питающих напряжений. Самыми доступными считаются:

Простой светодиод

  • Напряжение +5 В присутствует в устройствах заряда телефонных аккумуляторов, iPad и других гаджетов. Правда, выходной ток невелик, и не нужно. Вдобавок, +5 В нетрудно найти на шине блока питания персонального компьютера. С ограничением тока проблемы устраним. Провод красного цвета, землю ищите на черном.
  • Напряжение +7…+9 Встречается на зарядных устройствах ручных радиостанций, в обиходе называемых рациями. Великое множество фирм, у каждой стандарты. Здесь бессильные дать конкретные рекомендации. Рации чаще выходят из строя в силу особенностей использования, лишние зарядные устройства обычно можно достать сравнительно дешево.
  • Схема подключения светодиода будет лучше работать от +12 вольт. Стандартное напряжение микроэлектроники, встретим во многих местах. Компьютерный блок содержит вольтаж -12 вольт. Изоляция жилы синяя, сам провод оставлен для совместимости со старыми приводами. В нашем случае может понадобиться, не окажись под рукой элементной базы питания +12 вольт. Комплементарные транзисторы найти, включить вместо исходных сложно. Номиналы пассивных элементов остаются. Светодиод включается обратной стороной.
  • Номинал -3,3 вольт на первый взгляд кажется невостребованным. Посчастливится достать на aliexpress RGB светодиоды SMD0603 4 рубля штука. Однако! Падение напряжения в прямом направлении не превышает 3 вольта (обратное включение не понадобится, но в случае неправильной полярности максимальный вольтаж составляет 5).

Устройство светодиода понятно, условия горения известны, приступим к реализации задумки. Заставим элемент мигать.

Обычный светодиод мигает

Схема мигающего светодиода

Схема, изображенная рисунком, использует для работы лавинный пробой транзистора. КТ315Б, используемый в качестве ключа, имеет максимальное обратное напряжения между коллектором и базой 20 вольт. Опасного в таком включении мало. У модификации КТ315Ж параметр составляет 15 вольт, гораздо ближе выбранному напряжению питания +12 вольт. Транзистор использовать не стоит.

Лавинный пробой нештатный режим p-n перехода. За счет превышения обратного напряжения между коллектором и базой происходит ионизация атомов ударами разогнавшихся носителей заряда. Образуется масса свободных заряженных частиц, увлекаемых полем. Очевидцы утверждают: для пробоя транзистора КТ315 требуется обратное напряжение, приложенное между коллектором и эмиттером, амплитудой 8-9 В.

Пара слов о работе схемы. В первоначальный момент времени начинает заряжаться конденсатор. Подключен на +12 вольт, остальная часть схемы оборвана — закрыт транзисторный ключ. Постепенно разница потенциалов повышается, достигает напряжения лавинного пробоя транзистора. Напряжение конденсатора резко падает, параллельно подключены два открытых p-n перехода:

  1. Транзисторный находится в режиме пробоя.
  2. Светодиод открыт за счет прямого включения.

В сумме напряжение составит порядка 1 вольта, конденсатор начинает разряжаться через открытые p-n переходы, только напряжение падает ниже 7-8 вольт, лафа кончается. Транзисторный ключ закрывается, процесс повторяется заново. Схеме присущ гистерезис. Транзистор открывается при более высоком напряжении, нежели закрывается. Обусловлено инерционностью процессов. Можно наблюдать, как работает светодиод.

Номиналы резистора, ёмкости определяют период колебаний. Конденсатор можно взять значительно меньше, включив меж коллектором транзистора и светодиодом небольшое сопротивление. Например, 50 Ом. Постоянная разряда резко увеличится, проверить светодиод визуально будет проще (возрастет время горения). Понятно, ток не должен быть слишком большим, максимальные значения берутся из справочников. Не рекомендуется вести подключение светодиодных светильников из-за низкой термостабильности системы и наличия нештатного режима транзистора. Хотим попрощаться с читателями портала ВашТехник, надеемся, обзор получился интересным, картинки доходчивыми, объяснения ясными, как день Божий.

Область применения

Светодиоды, функционирующие в мигающем ритме, применяются в различных областях:

  1. В развлекательной сфере, в игрушках, для украшения декора, в качестве гирлянд.
  2. Как индикация в бытовых и промышленных приборах.
  3. Светосигнализирующих устройствах.
  4. В элементах рекламы, вывесках.
  5. Информационных табло.

Обычный светодиод мигает

Схема мигающего светодиода

Схема, изображенная рисунком, использует для работы лавинный пробой транзистора. КТ315Б, используемый в качестве ключа, имеет максимальное обратное напряжения между коллектором и базой 20 вольт. Опасного в таком включении мало. У модификации КТ315Ж параметр составляет 15 вольт, гораздо ближе выбранному напряжению питания +12 вольт. Транзистор использовать не стоит.

Лавинный пробой нештатный режим p-n перехода. За счет превышения обратного напряжения между коллектором и базой происходит ионизация атомов ударами разогнавшихся носителей заряда. Образуется масса свободных заряженных частиц, увлекаемых полем. Очевидцы утверждают: для пробоя транзистора КТ315 требуется обратное напряжение, приложенное между коллектором и эмиттером, амплитудой 8-9 В.

Пара слов о работе схемы. В первоначальный момент времени начинает заряжаться конденсатор. Подключен на +12 вольт, остальная часть схемы оборвана — закрыт транзисторный ключ. Постепенно разница потенциалов повышается, достигает напряжения лавинного пробоя транзистора. Напряжение конденсатора резко падает, параллельно подключены два открытых p-n перехода:

  1. Транзисторный находится в режиме пробоя.
  2. Светодиод открыт за счет прямого включения.

В сумме напряжение составит порядка 1 вольта, конденсатор начинает разряжаться через открытые p-n переходы, только напряжение падает ниже 7-8 вольт, лафа кончается. Транзисторный ключ закрывается, процесс повторяется заново. Схеме присущ гистерезис. Транзистор открывается при более высоком напряжении, нежели закрывается. Обусловлено инерционностью процессов. Можно наблюдать, как работает светодиод.

Номиналы резистора, ёмкости определяют период колебаний. Конденсатор можно взять значительно меньше, включив меж коллектором транзистора и светодиодом небольшое сопротивление. Например, 50 Ом. Постоянная разряда резко увеличится, проверить светодиод визуально будет проще (возрастет время горения). Понятно, ток не должен быть слишком большим, максимальные значения берутся из справочников. Не рекомендуется вести подключение светодиодных светильников из-за низкой термостабильности системы и наличия нештатного режима транзистора. Хотим попрощаться с читателями портала ВашТехник, надеемся, обзор получился интересным, картинки доходчивыми, объяснения ясными, как день Божий.

Открывать полный загадок мир радиоэлектроники, не имея специализированного образования, рекомендуется начинать со сборки простых электронных схем. Уровень удовлетворения при этом будет выше, если положительный результат будет сопровождаться приятным визуальным эффектом. Идеальным вариантом являются схемы с одним или двумя мигающими светодиодами в нагрузке. Ниже приведена информация, которая поможет в реализации наиболее простых схем, сделанных своими руками.

Область применения

Мигающие светодиоды со встроенным генератором нашли применение в построении новогодних гирлянд. Собирая их в последовательную цепь и устанавливая резисторы с небольшим отличием по номиналу, добиваются сдвига в мигании каждого отдельного элемента цепи. В итоге получается прекрасный световой эффект, не требующий сложного блока управления. Достаточно только подключить гирлянду через диодный мост.

Мигающие светоизлучающие диоды, управляемые током, применяются в качестве индикаторов в электронной технике, когда каждому цвету соответствует определённое состояние (вкл./выкл. уровень заряда и пр.). Также из них собирают электронные табло, рекламные вывески, детские игрушки и прочие товары, в которых разноцветное мигание вызывает интерес у людей.

Умение собирать простые мигалки станет стимулом к построению схем на более мощных транзисторах. Если приложить немного усилий, то с помощью мигающих светодиодов можно создать множество интересных эффектов, например – бегущую волну.

Читайте так же

Лишены возможности купить готовый мигающий светодиод, где внутрь колбы встроены необходимые элементы для осуществления нужной функции (осталось подключить батарейку) — попробуйте собрать авторскую схему. Понадобится немногое: рассчитать резистор светодиода, задающий совместно с конденсатором период колебаний в цепи, ограничить ток, выбрать тип ключа. По некоторым причинам экономика страны работает на добывающую отрасль, электроника закопана глубоко в землю. С элементной базой напряг.

Программа и скетч мигающего светодиода

Давайте теперь рассмотрим программу, которую мы загрузили из примеров и проанализируем.

Пример программы мигалки Blink

Во-первых, давайте пока уберем большой блок комментарий – они обозначены в Arduino IDE серым цветом. На данном этапе они немного мешают нам, хотя они крайне важны и вы всегда должны писать комментарии к своим программам.

Программа Blink без комментариев

Если вы обратите внимание на блок loop, то именно в нем и сосредоточены наши команды, управляющие светодиодом:

Функции setup и loop в коде программы Blink

digitalWrite – это название функции, которая отвечает за подачу напряжения на пин. Подробнее о ней можно прочитать в отдельной статье о digitalWrite.

LED_BUILDIN – это название внутреннего светодиода. В большинстве плат за этим названием прячется цифра 13. Для плат Uno, Nano можно смело писать 13 вместо LED_BUILDIN.

HIGH – условное название высокого уровня сигнала. Включает светодиод. Можно заменить цифрой 1.

LOW – условное обозначение низкого уровня сигнала. Выключает светодиод. Можно заменить цифрой 0.

delay – функция, которая останавливает выполнение скетча на определенное время. Крайне нежелательно использовать ее в реальных проектах, но в нашем простом примере она отработает замечательно. В скобках мы указываем цифру – это количество микросекунд, которые нужно ждать. 1000 – это 1 секунда. Подробнее можно прочитать в нашем материале о delay() .

// LED_BUILTIN - встроенная константа, определяющая номер пина. В Arduino Uno и Nano это 13 пин.

void setup() {
  pinMode(LED_BUILTIN, OUTPUT); // Установка пина в режим OUTPUT
}

// Этот блок команд выполняется постоянно
void loop() { 
  digitalWrite(LED_BUILTIN, HIGH); // Включение светодиода
  delay(1000);                     // Задержка
  digitalWrite(LED_BUILTIN, LOW);  // Выключение светодиода
  delay(1000);                     // Задержка

  // Когда программа дойдет до этого места, она автоматически продолжится сначала
}

Как только программа дойдет до конца, контроллер перейдет в начало блока loop и будет выполнять все команды заново. И так раз за разом, целую вечность (пока есть свет). Наш светодиод мигает без остановки.

Проект “Маячок” с мигающим светодиодом

В этом проекте мы с вами практически повторим предыдущий, но при этом добавим самую настоящую схему. Подключим светодиод и токоограничивающий резистор. Чтобы не повторяться, отправим вас за подробным описанием в статью о правильном подключении светодиода к плате Ардуино.

Вам понадобится:

  • Плата Arduino Uno или Nano
  • Макетная плата для монтажа без пайки
  • Резистор номиналом 220 Ом
  • Светодиод
  • Провода для соединения

Сложность:  простой проект.

Что мы узнаем:

  • Как подключить светодиод к ардуино.
  • Повторим процедуру загрузки скетча в микроконтроллер.

Для монтажа элементов мы будем использовать макетную плату. Если вы еще не очень хорошо понимаете, что это такое, то рекомендуем предварительно ознакомиться с отдельной статьей, посвященной макетным платам.

Соедините все элементы согласно следующей схемы для Arduino UNO. Для Arduino Nano светодиод подключается по той же схеме – к пину 13.

Схема подключения мигающего светодиода к Ардуино

Если вы не меняли программу с предыдущего шага, то можно считать, что все сделано. Подключаем плату к компьютеру – светодиод должен немного помигать хаотично, а затем с точно установленным периодом.

Если вы еще не загружали программу, то вам надо повторить ту же последовательность действий, что и для работы со встроенным светодиодом. Загружаем пример, затем программу в контроллер и наблюдаем за результатом.

Попробуйте внести изменения в программу. Сделайте так, чтобы маячок мигал медленней и быстрее (чаще). Добейтесь того, чтобы частота мигания стала такой, что мигание света стало бы незаметным.

Обычные светодиоды и семы мигалок на их основе

Начинающий радиолюбитель может собрать мигалку и на простом одноцветном светоизлучающем диоде, имея минимальный набор радиоэлементов. Для этого рассмотрим несколько практических схем, отличающихся минимальным набором используемых радиодеталей, простотой, долговечностью и надежностью.

Первая схема состоит из маломощного транзистора Q1 (КТ315, КТ3102 или аналогичный импортный аналог), полярного конденсатора C1 на 16В с емкостью 470 мкФ, резистора R1 на 820-1000 Ом и светодиода L1 наподобие АЛ307. Питается вся схема от источника напряжения 12В.

Приведенная схема работает по принципу лавинного пробоя, поэтому база транзистора остаётся «висеть в воздухе», а на эмиттер подаётся положительный потенциал. При включении происходит заряд конденсатора, примерно до 10В, после чего транзистор на мгновение открывается с отдачей накопленной энергии в нагрузку, что проявляется в виде мигания светодиода. Недостаток схемы заключается в необходимости наличия источника напряжения 12В.

Вторая схема собрана по принципу транзисторного мультивибратора и считается более надёжной. Для её реализации потребуется:

  • два транзистора КТ3102 (или их аналога);
  • два полярных конденсатора на 16В емкостью 10 мкФ;
  • два резистора (R1 и R4) по 300 Ом для ограничения тока нагрузки;
  • два резистора (R2 и R3) по 27 кОм для задания тока базы транзистора;
  • два светодиода любого цвета.

В данном случае на элементы подаётся постоянное напряжение 5В. Схема работает по принципу поочередного заряда-разряда конденсаторов С1 и С2, что приводит к открыванию соответствующего транзистора. Пока VT1 сбрасывает накопленную энергию С1 через открытый переход коллектор-эмиттер, светится первый светодиод. В это время происходит плавный заряд С2, что способствует уменьшению тока базы VT1. В определённый момент VT1 закрывается, а VT2 открывается и светится второй светодиод.

Вторая схема имеет сразу несколько преимуществ:

  1. Она может работать в широком диапазоне напряжений начиная от 3В. Подавая на вход более 5В, придётся пересчитать номиналы резисторов, чтобы не пробить светодиод и не превысить максимальный ток базы транзистора.
  2. В нагрузку можно включать 2–3 светодиода параллельно или последовательно, пересчитав номиналы резисторов.
  3. Равное увеличение ёмкости конденсаторов ведёт к увеличению длительности свечения.
  4. Изменив ёмкость одного конденсатора, получим несимметричный мультивибратор, в котором время свечения будет различным.

Иногда вместо мигающих светодиодов радиолюбитель наблюдает обычное свечение, то есть оба транзистора частично приоткрыты. В таком случае нужно либо заменить транзисторы, либо запаять резисторы R2 и R3 с меньшим номиналом, увеличив, тем самым, ток базы.

Кроме рассмотренных принципиальных схем, существует великое множество других несложных решений, которые вызывают мигание светодиода

Начинающим радиолюбителям стоит обратить внимание на недорогую и широко распространенную микросхему NE555, на которой также можно реализовать данный эффект. Её многофункциональность поможет собирать и другие интересные схемы

Как сделать гирлянду из светодиодов

Для изготовления
гирлянды, периодически мигающей с заданным ритмом, потребуются следующие
компоненты и набор инструмента:

  1. Светодиоды на 20 мАч.
  2. Проводка площадью сечения 0,5-0,25 мм2.
  3. Трансформатор на 6 вольт.
  4. Резистор на 100 Ом.
  5. Паяльная станция с наконечником небольшого сечения, припой, канифоль.
  6. Нож с острым лезвием.
  7. Герметик на силиконовой основе.
  8. Фломастер.

Алгоритм сборки:

  1. Определиться
    точно с промежутками между мигающими элементами.
  2. Подготовить
    провод и обозначить фломастером отметины под светодиоды.
  3. На местах
    отметок сделать срезы изоляции острым ножом.
  4. Далее на
    оголенные участки нанести канифоль с припоем.
  5. Припаять
    электроды диодов к этим местам.
  6. Нанести
    силиконовый герметик на оголенные участки для обеспечения электроизоляции.

По завершении
подсоединяется блок питания и обычный резистор. Устройство включается в сеть и
проверяется на работоспособность.

Светодиодная мигалка — мультивибратор

  • Принцип работы мультивибратора
  • Мультивибратор в своем исполнении

Здравствуйте дорогие друзья и все читатели моего блога popayaem.ru. Сегодняшний пост будет о простом но интересном устройстве. Сегодня мы рассмотрим, изучим и соберем светодиодную мигалку, в основе которой лежит простой генератор прямоугольных импульсов — мультивибратор.

Все это будет дальше по тексту, а пока я хочу рассказать небольшом изменении на блоге.

Заходя на свой бложик, мне всегда хочется сделать что-нибудь эдакое, что-то такое , что сделает сайт запоминающимся. Так что представляю вашему вниманию новую  «секретную страницу» на блоге.  

Эта страница отныне носит название — «».

Вы наверное спросите: «Как же ее найти?»  А очень просто!

Вы наверное заметили, что на блоге появился некий отслаивающийся уголок с надписью «Скорей сюда».

 Причем стоит только подвести курсор мыши к этой надписи , как уголок начинает еще больше отслаиваться, обнажая надпись — ссылку «».

Эта ссылка ведет на секретную страницу, где вас ждет небольшой, но приятный сюрприз — подготовленный мной подарок. Более того, в дальнейшем на этой странице будут размещаться  полезные материалы, радиолюбительский софт и что-нибудь еще — пока еще не придумал. Так что, периодически заглядывайте за уголок — вдруг я что-то там припрятал.

 Ладно, немножко отвлекся, теперь продолжим…

Вообще схем мультивибраторов существует много, но наиболее популярная и обсуждаемая это схема нестабильного симметричного мультивибратора. Обычно ее изображают таким образом.

Вот к примеру эту мультивибраторную мигалку я спаял гдето   год назад из подручных деталек и как видите  — мигает. Мигает несмотря на корявый монтаж, выполненный на макетной плате.

Эта схема рабочая и неприхотливая. Нужно лишь определиться как же она работает?

Принцип работы мультивибратора

Если собрать эту схемку на макетной плате и замерить напряжение мультиметром между эмиттером и коллектором, то что мы увидим? Мы увидим, что напряжение на транзисторе то поднимается почти до напряжения источника питания, то падает до нуля. Это говорит о том, что транзисторы в этой схеме работают в ключевом режиме. Замечу , что когда один транзистор открыт, второй обязательно закрыт.

Переключение транзисторов происходит следующим образом.

Когда один транзистор открыт, допустим VT1, происходит разрядка конденсатора C1. Конденсатор С2 — напротив спокойно заряжается базовым током через R4.

Конденсатор C1 в процессе разрядки держит базу транзистора VT2 под отрицательным напряжением — запирает его. Дальнейшая разрядка доводит конденсатор C1 до нуля и далее заряжает его в другую сторону.

И вся эта свистопляска продолжается по в режиме нон стоп, пока питание не вырубишь.

Мультивибратор в своем исполнении

Сделав однажды мультивибраторную мигалку на макетке, мне захотелось ее немножко облагородить — сделать нормальную печатную плату для мультивибратора и заодно сделать платку для светодиодной индикации. Разрабатывал я их в программе Eagle CAD, которая не намного сложнее Sprintlayout но зато имеет жесткую привязку к схеме.

Печатная плата мультивибратора слева. Схема электрическая справа.

Печатная плата. Схема электрическая.

Рисунки печатной платы с помощью лазерного принтера я распечатал на фотобумаге. Затем в полном соответствии с народной технологией ЛУТ вытравил платки. В итоге после напайки деталей получились вот такие платки.

Честно говоря , после полного монтажа и подключения питания случился небольшой баг. Набранный из светодиодов знак плюса не перемигивал. Он просто и ровно горел будто мультивибратора и нет вовсе.

Пришлось изрядно понервничать. Замена четырехконечного индикатора на два светодиода исправляло ситуацию, но стоило вернуть все на свои места — мигалка не мигала.

Оказалось, что два светодиодных плеча сомкнуты перемычкой, видимо когда залуживал платку немного переборщил с припоем. В итоге светодиодные «плечики» горели не по переменке а синхронно. Ну ничего, несколько движений паяльником исправили ситуацию.

Результат того, что получилось я запечатлел на видео:

По моему получилось не плохо.

Как сделать мигающий светодиод — РАДИОСХЕМЫ

Всем привет, сегодня мы рассмотрим мигалку на одном транзисторе. Можно сказать это первые шаги в радиоэлектронике, ведь первое, что я решил собрать, была мигалка на транзисторе. Схема очень простая и состоит из четырёх деталей: транзистор n-p-n проводимости (не знаете — поищите в гугле, почитайте что за штука) в моем случае им был bc547, конденсатор электролитический на 470 мкФ (микрофарад), резистор 1,8 килоом и светодиод зеленого свечения.

Собрать не так просто — нужна знать, где у светодиода и конденсатора плюс и минус. У светодиода проверяется полярность подключивши его к источнику питания 5-10 вольт через резистор на 100 Ом.

У конденсатора проще, так как на корпусе есть линия белая, жёлтая, синяя — с той стороны у него минус, а с обратной плюс.

Распиновку транзистора используемого вами, лучше посмотреть в интернете, в моем случае такая:

О радиодеталях кое-что узнали, теперь рассмотрим схему. Ничего сложного в ней нет. Начинаем паять. Зачищаем жало паяльника от грязи и окисла.

Теперь рассмотрим детали, которые я выпаял из плат. Чтоб опознать номинал сопротивления используйте декодер цветовой маркировки резисторов.

Припаиваем светодиод до транзистора.

Потом припаиваем конденсатор, внимательно смотрим на распиновку транзистора и полярность светодиода, конденсатора. Резистор не имеет полярности — его можно запаять любой стороной.

Наше устройство в сборе. Подпаиваем проводки и тестируем, рабочее напряжение 8-18 вольт.

Готовые мигающие светодиоды

Мигающие светодиоды от различных производителей по сути представляют собой функционально завершенные, готовые к применению в различных областях схемы. По внешним параметрам они мало чем отличаются от стандартных лед-устройств. Однако в их конструкцию внедрена схема генераторного типа и сопутствующих ему элементов.

Среди главных преимуществ готовых мигающих светодиодов выделяются:

  1. Компактность, прочность корпуса, все компоненты в одном корпусе.
  2. Большой диапазон напряжения питающего тока.
  3. Многоцветное исполнение, широкое разнообразие ритмов переключения оттенков.
  4. Экономичность.

Схемы использования

Самый простой вариант схемы, выпускаемых сегодня мигалок на базе светодиодов, изготовление которых возможно своими силами радиолюбителям, включает:

  1. Транзистор малой мощности.
  2. Конденсатор полярного типа на 16 вольт и 470 микрофарад.
  3. Резистор.
  4. Лед-элемент.

При накоплении заряда осуществляется лавинообразный его пробой с открытием транзисторного модуля и свечением диода. Устройство такого типа часто используется в елочной гирлянде. Недостатком схемы является необходимость применения особого источника питания.

Обычные светодиоды и семы мигалок на их основе

Начинающий радиолюбитель может собрать мигалку и на простом одноцветном светоизлучающем диоде, имея минимальный набор радиоэлементов. Для этого рассмотрим несколько практических схем, отличающихся минимальным набором используемых радиодеталей, простотой, долговечностью и надежностью.

Первая схема состоит из маломощного транзистора Q1 (КТ315, КТ3102 или аналогичный импортный аналог), полярного конденсатора C1 на 16В с емкостью 470 мкФ, резистора R1 на 820-1000 Ом и светодиода L1 наподобие АЛ307. Питается вся схема от источника напряжения 12В.

Приведенная схема работает по принципу лавинного пробоя, поэтому база транзистора остаётся «висеть в воздухе», а на эмиттер подаётся положительный потенциал. При включении происходит заряд конденсатора, примерно до 10В, после чего транзистор на мгновение открывается с отдачей накопленной энергии в нагрузку, что проявляется в виде мигания светодиода. Недостаток схемы заключается в необходимости наличия источника напряжения 12В.

  • два транзистора КТ3102 (или их аналога);
  • два полярных конденсатора на 16В емкостью 10 мкФ;
  • два резистора (R1 и R4) по 300 Ом для ограничения тока нагрузки;
  • два резистора (R2 и R3) по 27 кОм для задания тока базы транзистора;
  • два светодиода любого цвета.

В данном случае на элементы подаётся постоянное напряжение 5В. Схема работает по принципу поочередного заряда-разряда конденсаторов С1 и С2, что приводит к открыванию соответствующего транзистора. Пока VT1 сбрасывает накопленную энергию С1 через открытый переход коллектор-эмиттер, светится первый светодиод. В это время происходит плавный заряд С2, что способствует уменьшению тока базы VT1. В определённый момент VT1 закрывается, а VT2 открывается и светится второй светодиод.

Вторая схема имеет сразу несколько преимуществ:

  1. Она может работать в широком диапазоне напряжений начиная от 3В. Подавая на вход более 5В, придётся пересчитать номиналы резисторов, чтобы не пробить светодиод и не превысить максимальный ток базы транзистора.
  2. В нагрузку можно включать 2–3 светодиода параллельно или последовательно, пересчитав номиналы резисторов.
  3. Равное увеличение ёмкости конденсаторов ведёт к увеличению длительности свечения.
  4. Изменив ёмкость одного конденсатора, получим несимметричный мультивибратор, в котором время свечения будет различным.

Иногда вместо мигающих светодиодов радиолюбитель наблюдает обычное свечение, то есть оба транзистора частично приоткрыты. В таком случае нужно либо заменить транзисторы, либо запаять резисторы R2 и R3 с меньшим номиналом, увеличив, тем самым, ток базы.

Кроме рассмотренных принципиальных схем, существует великое множество других несложных решений, которые вызывают мигание светодиода

Начинающим радиолюбителям стоит обратить внимание на недорогую и широко распространенную микросхему NE555, на которой также можно реализовать данный эффект. Её многофункциональность поможет собирать и другие интересные схемы

Подводим итоги

Оцените статью
Рейтинг автора
5
Материал подготовил
Андрей Измаилов
Наш эксперт
Написано статей
116
Добавить комментарий