Гистерезис

В электронике и электротехнике

Петля гистерезиса для триггера Шмитта имеет прямоугольный вид.

В электронике и электротехнике используются устройства, обладающие магнитным гистерезисом — различные магнитные носители информации, или электрическим гистерезисом, например, триггер Шмитта или гистерезисный двигатель.

Гистерезис используется для подавления шумов (быстрых колебаний, дребезга контактов) в момент переключения логических сигналов.

В электронных приборах всех видов наблюдается явление : после нагрева прибора и его последующего охлаждения до начальной температуры его параметры не возвращаются к начальным значениям. Из-за неодинакового теплового расширения кристаллов полупроводников, кристаллодержателей, корпусов микросхем и печатных плат в кристаллах возникают механические напряжения, которые сохраняются и после охлаждения. Явление теплового гистерезиса наиболее заметно в прецизионных источниках опорного напряжения, используемых в измерительных аналого-цифровых преобразователях. В современных микросхемах относительный сдвиг опорного напряжения вследствие теплового гистерезиса составляет порядка 10—100 ppm.

В почвоведении

Одно из них указывает на взаимосвязь приложенных усилий субъектом влияния и достигнутым результатом. Уровень затраченной субъектом просветительской и пропагандистской работы можно соотносить с уровнем «намагниченности» (степенью вовлеченности в новую идею) объекта-носителя общественного мнения, социальную группу, коллектив, социальную общность или общество в целом; при этом может обнаружиться некоторое отставание объекта от субъекта. Переубеждение, в том числе с предполагаемыми деструктивными последствиями, далеко не всегда проходит успешно. Оно зависит от собственных моральных ценностей, обычаев, традиций, характера предыдущего воспитания, от этических норм, доминирующих в обществе и т. д.

Второе обстоятельство связано с тем, что новый этап формирования общественного мнения можно соотносить с историей объекта, его опытом, его оценкой теми, кто ранее выступал объектом формирования общественного мнения. При этом можно обнаружить, что «точка отсчета» времени формирования общественного мнения смещается относительно прежней, что является характеристикой самой системы и ее текущего состояния.

Литература по теме

  • Раддай Райхлин Гражданская война, террор и бандитизм. Систематизация социологии и социальная динамика . Раздел «Борьба с толпой»
  • Капустин Валерий Сергеевич Введение в теорию социальной самоорганизации . Тема 11. Явление гистерезиса в формировании национальных форм и способов самоорганизации. Современные парадоксы и загадки «начала»

[править] Гладкие петли гистерезиса

Представление в виде суммы нерасщеплённой петли и кривой расщепления

Петлю гистерезиса (1) всегда можно представить в виде суммы двух параметрических кривых

Шаблон:Нумерованная формула где x_1(\alpha)=b_x\sin^n\alpha, y_1(\alpha)=b_y\sin\alpha – нерасщеплённая петля; x_2(\alpha)=a\cos^m\alpha, y_2(\alpha)=0 – кривая расщепления.

Представление в виде частотного спектра

Порождающая функция x(\alpha) легко раскладывается в ряд Фурье

Шаблон:Нумерованная формула где коэффициенты Фурье A_k, B_k для нечётных n определяются по алгебраическим формулам Шаблон:Нумерованная формула где C_{l}^{k} – биномиальный коэффициент (k, l – целые положительные числа); \textstyle C_{l}^{k}=l!/, если 0\le k\le l, иначе C_{l}^{k}=0 (также C_{l}^{k}=0, если k – действительное число).

При нечётных n амплитуда постоянной составляющей A_0 (k=0) и амплитуды A_k и B_k всех чётных гармоник (k=2, 4, 6,\dots ) в (3) равны нулю. Величина l задаётся равной наибольшей из степеней m и n. Функция floor в выражении для B_k – необязательна, она используется только для того, чтобы избежать появления комплексных чисел при чётных k.

Располагая коэффициентами Фурье A_k, B_k, порождающую функцию x(\alpha) можно также представить в виде Шаблон:Нумерованная формула где амплитуды Am_k и фазы \phi_k гармоник определяются по формулам

Представление порождающей функции x(\alpha) в виде частотного спектра (5) позволяет синтезировать петли гистерезиса требуемой формы, наклона и кривизны путём изменения амплитуд и фаз гармонических составляющих и путём добавления/исключения гармонических составляющих с определёнными значениями амплитуд и фаз.

Наклонение петли поворотом системы координат

Необходимый наклон петли на угол \theta в точке расщепления a устанавливается с помощью следующих преобразований

Площадь петли

Площадь петли (7) вычисляется по формуле

Фазовые сдвиги


Рис. 2. Действие фазовых сдвигов на петлю гистерезиса Классическая: (а) наклонение с помощью фазового сдвига \Delta\alpha_1, плавное изменение кривизны с помощью фазового сдвига (б) \Delta\alpha_2, (в) \Delta\alpha_3

Фазовые сдвиги \Delta\alpha_1, \Delta\alpha_2, \Delta\alpha_3 позволяет плавно наклонять петлю гистерезиса в точке расщепления a на требуемый угол \theta, а также плавно изменять кривизну петли

Шаблон:Нумерованная формула где \hat{a}, \hat{b}_x – скорректированные параметры для a, b_x, соответственно.

Скорректированные параметры \hat{a}, \hat{b}_x находятся по формулам

Фазовый сдвиг \Delta\alpha_1 требуемый для наклонения петли в точке расщепления a (\alpha=0) на заданный угол \theta рассчитывается по формуле

На Рис. 2 показано влияние фазовых сдвигов \Delta\alpha на петлю гистерезиса Классическая.

Порождающая функция x(\alpha) в (9) также может быть представлена в виде (3) и (5). Коэффициенты Фурье A_k, B_k в этом случае определяются по формулам

Площадь петли

Площадь петли (9) вычисляется по формуле

Подставляя в (13) нулевые фазовые сдвиги \Delta\alpha_1=\Delta\alpha_2=\Delta\alpha_3=0, получаем формулу для вычисления площади петли (1)

Наклонение и искривление петли перекосом системы координат

Рис. 3. Наклонение петли гистерезиса Классическая путём перекоса системы координат на угол \theta в направлении оси x. Площадь всех петель одна и та же при любых углах перекоса \theta


Рис. 4. Изменение кривизны петли гистерезиса Классическая путём перекоса системы координат на угол \kappa в направлении оси y. Наклонение петли в точке расщепления на угол (а) \theta=15^\circ, (б) \theta=-15^\circ. Петли, наклонённые на любой угол \theta, у которых все остальные параметры одни и те же, имеют одинаковые площади

Петли гистерезиса можно наклонять путём перекоса системы координат на угол \theta в направлении оси x с помощью следующего преобразования (см. Рис. 3)

Дополнительный перекос системы координат на угол \kappa в направлении оси y

Шаблон:Нумерованная формула позволяет плавно изменять кривизну петли (см. Рис. 4).

Площадь петли

Площадь петли (16) вычисляется по формуле

Для минимизации погрешности аппроксимирующую петлю рекомендуется проводить, используя метод наименьших квадратов.

Гистерезис в электротехнике

Важными характеристиками сердечников электромагнитов и других электрических машин являются параметры намагничивания ферромагнитных материалов, из которых они изготавливаются. Исследовать эти материалы помогают петли ферромагнетиков. В данном случае прослеживается нелинейная зависимость внутренней магнитной индукции от величины внешних магнитных полей.

На процесс намагничивания (перемагничивания) влияет предыдущее состояние ферромагнетика. Кроме того, кривая намагничивания зависит от типа ферромагнитного образца, из которого состоит сердечник.

Если по катушке с сердечником циркулирует переменный ток, то намагничивания образца приводит к отставанию намагничивания. В результате намагничивания сердечника происходит сдвиг фаз в цепи с индуктивной нагрузкой. Ширина петли гистерезиса при этом зависит от гистерезисных свойств ферромагнетиков, применяемых в сердечнике.

Это объясняется тем, что при изменении полярности тока, ферромагнетик какое-то время сохраняет приобретённую ориентацию полюсов. Для переориентации этих полюсов требуется время и дополнительная энергия, которая израсходуется на нагревание вещества, что приводит к гистерезисным потерям. По величине потерь материалы подразделяются на магнитомягкие и магнитотвёрдые (см. рис. 3).

Магнитный гистерезис в ферромагнетиках отображает зависимость вектора намагничивания от напряженности электрического поля (см. Рис. 3). Но не только изменение поля по знаку вызывает гистерезис. Вращение поля или (что, то же самое) магнитного образца, также сдвигает временные характеристики намагничивания.

Обратите внимание, что на рисунке изображены двойные петли. Такие петли характерны для магнитного гистерезиса

В однодоменных ферромагнетиках, которые состоят из очень маленьких частиц, образование доменов не поддерживается (не выгодно с точки зрения энергетических затрат). В таких образцах могут происходить только процессы магнитного вращения.

В электротехнике гистерезисные свойства используются довольно часто:

  • в работе электромагнитных реле;
  • в конструкциях коммутационных приборов;
  • при создании электромоторов и других силовых механизмов.

Явления диэлектрического гистерезиса

У диэлектриков отсутствуют свободные заряды. Электроны тесно связаны со своими атомами и не могут перемещаться. Другими словами, у диэлектриков спонтанная поляризация. Такие вещества называются сегнетоэлектриками.

Однако под действием электрического поля заряды в диэлектриках поляризуются, то есть изменяют ориентацию в противоположные стороны. С увеличением напряжённости поля абсолютная величина вектора поляризации возрастает по нелинейному принципу. В определённый момент поляризация достигает насыщённости, что вызывает эффект диэлектрического гистерезиса.

На изменение поляризации уходит часть энергии, в виде диэлектрических потерь.

Петля гистерезиса

На графике зависимости М от Н можно видеть:

  1. Из нулевого состояния, при котором М=0 и Н=0, с увеличением Н растет и М.
  2. Когда поле увеличивается, то намагниченность становится практически постоянной и равна значению насыщения.
  3. При уменьшении Н происходит обратное изменение, но вот когда Н=0, намагниченность М не будет равна нулю. Это изменение можно видеть по кривой размагничивания. И когда Н=0, М принимает значение, равное остаточной намагниченности.
  4. При увеличении Н в интервале -Нт… +Нт происходит изменение намагниченности вдоль третьей кривой.
  5. Все три кривые, описывающие процессы, соединяются и образуют своеобразную петлю. Она-то и описывает явление гистерезиса — процессы намагничивания и размагничивания.

Использование графического изображения гистерезиса для расчётов

Для наглядного эксперимента можно собрать простую схему, представленную ниже:

  • резистором R1 ограничивают переменный ток, проходящий через обмотку катушки;
  • с элемента R2 снимают напряжение для формирования картинки на экране осциллографа;
  • емкость конденсатора подбирают таким образом, чтобы 1/(w*С) получилось намного меньше R3.


Эксперимент

После подключения к осциллографу на экране можно наблюдать петлю гистерезиса. Это изображение с учетом реального масштаба можно использовать для расчетов и оценки характеристик созданной катушки. В следующем списке приведено соответствие отдельных отрезков рассмотренным выше параметрам:

  • ОА – коэрцитивная сила;
  • ОС – остаточная индукция;
  • ОД – индукция насыщения;
  • ОВ – магнитное поле.

К сведению. По установленной площади петли можно определить потери. Размер этой области соответствует работе, которая затрачена на компенсацию коэрцитивных сил. Эта энергия разогревает ферромагнетик и фактически расходуется впустую.

Как продаются и цены

Цены имеют очень большой разброс. От 30 рублей за 1000 штук 53 типа кампании Saturn, до 212 рублей за тот же объем от фирмы Bosh. Но, как говорилось выше, разница в металле, из которого изготавливают скобы. Она очень хорошо ощущается во время работы.

Скобы для строительного степлера — основные характеристики и обозначения у разных производителей

Математические модели гистерезиса

Появление математических моделей гистерезисных явлений обуславливалось достаточно богатым набором прикладных задач (прежде всего в теории автоматического регулирования), в которых носители гистерезиса нельзя рассматривать изолированно, поскольку они являлись частью некоторой системы. Создание математической теории гистерезиса относится к 60-м годам XX-го века, когда в Воронежском университете начал работать семинар под руководством М. А. Красносельского , «гистерезисной» тематики. Позднее, в 1983 году появилась монография , в которой различные гистерезисные явления получили формальное описание в рамках теории систем: гистерезисные преобразователи трактовались как операторы, зависящие от своего начального состояния как от параметра, определённые на достаточно богатом функциональном пространстве (например, в пространстве непрерывных функций), действующие в некотором функциональном пространстве. Простое параметрическое описание различных петель гистерезиса можно найти в работе (замена в данной модели гармонических функций на прямоугольные, треугольные или трапецеидальные импульсы позволяет также получить кусочно-линейные петли гистерезисы, которые часто встречаются в дискретной автоматике, см. пример на Рис. 2).

Что влияет на петлю гистерезиса?

Казалось бы, гистерезис – это больше внутренний эффект, который не виден на поверхности материала, но он сильно зависит не только от типа самого материала, но и от качества и вида его механической обработки. Например, железо переходит в насыщение при напряженности равной 1 э, а сплав магнико достигает своей критической точки только при 580 э. Чем больше дефектов на поверхности материала, тем требуется больше напряженность магнитного поля, чтобы вывести его в насыщение.

В результате намагничивания и размагничивания в материале выделяется тепловая энергия, которая равна площади петли гистерезиса. Также к потерям в ферромагнетике можно отнести действие вихревых токов и магнитной вязкости вещества. Это обычно наблюдается при изменении частоты магнитного поля в большую сторону.

В зависимости от характера поведения ферромагнетика в среде с магнитным полем, различают статический и динамический гистерезис. Первый наблюдается при номинальной частоте напряжения, но с ее ростом площадь графика увеличивается, что приводит и к росту потерь.

Обозначение сварных соединений на чертежах

В электронике и электротехнике

Петля гистерезиса для триггера Шмитта имеет прямоугольный вид.

В электронике и электротехнике используются устройства, обладающие магнитным гистерезисом — различные магнитные носители информации, или электрическим гистерезисом, например, триггер Шмитта или гистерезисный двигатель.

Гистерезис используется для подавления шумов (быстрых колебаний, дребезга контактов) в момент переключения логических сигналов.

В электронных приборах всех видов наблюдается явление : после нагрева прибора и его последующего охлаждения до начальной температуры его параметры не возвращаются к начальным значениям. Из-за неодинакового теплового расширения кристаллов полупроводников, кристаллодержателей, корпусов микросхем и печатных плат в кристаллах возникают механические напряжения, которые сохраняются и после охлаждения. Явление теплового гистерезиса наиболее заметно в прецизионных источниках опорного напряжения, используемых в измерительных аналого-цифровых преобразователях. В современных микросхемах относительный сдвиг опорного напряжения вследствие теплового гистерезиса составляет порядка 10—100 ppm.

Другие способы обнаружения

Кроме приборов для обнаружения скрытой электропроводки есть и другие варианты, как ее найти. Один из них – это нормы проведения монтажа:

  • все линии проводятся только вертикально и горизонтально;
  • от розеток и включателей провода укладываются вертикально;
  • от пола или потолка траса проводится на расстоянии 15 см.

Но, как показывает практика, не везде эти существующие нормы выполняются. Часто встречаются схемы, где был использован принцип, чем короче, тем лучше. Так что провода укладывались вкось и поперек.

Лет 30-40 назад электрики в поисках ответа на вопрос, как определить проводку в стене, пробовали использовать портативный радиоприемник. Его во включенном виде подносили к месту предполагаемого нахождения электропроводки. И если он начинал шуметь, то предположения подтверждались. То есть, таким образом, найденная проводка находилась именно в том месте.

Точно в таком же порядке можно использовать микрофон, подключенный к тому же радиоприемнику или другому принимающему устройству. Микрофоном водили по стене. Как только появлялся шум или треск, значит, под штукатуркой находится кабель под напряжением. У двух этих вариантов один минус – высокая погрешность (до 15 см).

Обнаружение скрытой проводки можно провести обычным компасом. Для поиска проводки необходимо нагрузить участок, к примеру, включить в розетку электрический чайник. Затем пройти компасом по стене. Где его стрелка начнет отклоняться, здесь и лежат провода. Кстати, компас – один из самых точных указателей для скрытой проводки.

Еще один вариант, как узнать, где расположен провод в стене, это использовать слуховой аппарат для слабослышащих в режиме «телефон». С его помощью можно обнаруживать частоту 50 герц. Конечно, прослушивание проводится под нагрузкой.

Домашние мастера предлагают огромный выбор различных самодельных приборов, с помощью которых можно провести поиск обрыва скрытой электрической проводки.

Другие свойства

Кроме магнитного гистерезиса, также различают гальвономагнитный и магнитострикционный эффекты
. В этих процессах наблюдается изменение электрического сопротивления за счет механической деформации материала. Сегнетоэлектрики под действием деформационных сил способны вырабатывать электрический ток, что объясняется пьезоэлектрическим гистерезисом. Также существует понятие электрооптического и двойного диэлектрического гистерезиса. Последний процесс имеет обычно наибольший интерес, так как сопровождается двойным графиком в зонах, приближающихся к точкам насыщения.

Гистерезис определение относится не только к ферромагнетикам, применяемым в электронике. Такой процесс может происходить и в термодинамике
. Например, при организации отопления от газового или электрического котла. Регулирующим компонентом в системе является терморегулятор. Но только контролируемой величиной является температура воды в системе.

При ее снижении до заданного уровня котел включается, начиная подогрев до заданной величины. После чего выключается и процесс повторяется в цикле. Если снять показания температуры при нагреве и остывании системы при каждом цикле включения и выключения отопления, то получиться график в виде петли гистерезиса, который и получил название гистерезис котла.

В таких системах гистерезис выражается в температуре
. Например, если он составляет 4°С, а температура теплоносителя установлена 18°С, то котел выключится, когда она достигнет значения 22°С. Таким образом, можно настроить любой приемлемый температурный режим в помещениях. А терморегулятор является, по сути, датчиком температуры или термостатом, который включает или выключает отопления при достижении нижнего и верхнего порога, соответственно.

Чтобы лучше понять, что такое магнитный гистерезис, нужно разобраться, где и при каких условиях он возникает.

Сохраняемость (способность сохранять остаточный магнетизм)

Предположим, что у нас есть электромагнитная катушка с высокой напряженностью поля из-за тока, протекающего через нее, и что материал ферромагнитного сердечника достиг своей точки насыщения, максимальной плотности потока. Если мы теперь откроем переключатель и удалим ток намагничивания, протекающий через катушку, мы ожидаем, что магнитное поле вокруг катушки исчезнет, ​​когда магнитный поток уменьшится до нуля.

Однако магнитный поток не исчезает полностью, поскольку материал электромагнитного сердечника все еще сохраняет часть своего магнетизма, даже когда ток прекращает течь в катушке. Эта способность к катушке, чтобы сохранить часть своего магнетизма внутри сердечника после процесса намагничивания остановилось называются сохраняемость или остаточной намагниченности, в то время как величина плотности потока все еще остается в ядре, называется остаточным магнетизмом B R .

Причиной этого является то, что некоторые из крошечных молекулярных магнитов не возвращаются к совершенно случайному образцу и все же указывают в направлении исходного поля намагничивания, давая им своего рода «память». Некоторые ферромагнитные материалы обладают высокой удельной удерживаемостью (магнитной твердостью), что делает их превосходными для изготовления постоянных магнитов.

В то время как другие ферромагнитные материалы имеют низкую способность удерживать (магнитно-мягкие), что делает их идеальными для использования в электромагнитах, соленоидах или реле. Один из способов уменьшить эту остаточную плотность потока до нуля — изменить направление тока, протекающего через катушку, путем изменения значения H, напряженности магнитного поля, отрицательной. Этот эффект называется коэрцитивной силой H C .

Если этот обратный ток увеличивается еще больше, то плотность потока будет также увеличиваться в обратном направлении, пока ферромагнитный сердечник не достигнет насыщения снова, но в обратном направлении от предыдущего. Снижая ток намагничивания I снова до нуля создаст аналогичную величину остаточного магнетизма, но в обратном направлении.

Затем путем постоянного изменения направления тока намагничивания через катушку с положительного направления на отрицательное направление, как в случае с источником переменного тока, можно создать петлю магнитного гистерезиса ферромагнитного сердечника.

Физический процесс при гистерезисе

Чтобы подробно понять процесс гистерезиса, необходимо досконально изучить следующие понятия:

  • Магнитное поле – это среда, которая создается линиями магнитной индукции, образованными током, протекающим по проводнику или созданные строго направленными магнитными моментами в постоянном магните.
  • Вектор магнитной индукции – величина, указывающая направление распространения магнитного поля, обозначается большой буквой В.
  • Намагниченность – состояние вещества, при котором в нем еще остались направленные магнитные диполи. В физике и электротехнике обозначается буквой М.
  • Напряженность магнитного поля – величина, характеризующая разницу между В и М, обозначается буквой Н.

Что касается материалов, в которых лучше всего наблюдается эффект гистерезиса, то таковыми являются именно ферромагнетики. Это смесь химических элементов, которая способна намагничиваться за счет направленности магнитных диполей, поэтому обычно в составе имеются такие металлы, как:

  • железо;
  • кобальт;
  • никель;
  • соединения на их основе.

Чтобы увидеть гистерезис, на катушку с сердечником из ферромагнетика необходимо подать переменное напряжение. При этом от величины его график намагничивания сильно зависеть не будет, потому как эффект зависит напрямую от свойства самого материала и величины магнитной связи между элементами вещества.

Основополагающим моментом при рассмотрении понятия гистерезиса в электронике является как раз магнитная индукция В, созданная вокруг катушки при подаче напряжения. Она определяется по стандартной формуле, как произведение магнитной диэлектрической проницаемости вещества к сумме напряженности и намагниченности поля.

Чтобы понять общий принцип эффекта гистерезиса, необходимо воспользоваться графиком. На нем видна петля намагничивания из состояния полной размагниченности. Участок можно обозначить цифрами 0-1. При достаточной величине напряжения и длительности воздействия магнитного поля на материал график доходит до крайней своей точки по указанной траектории. Процесс осуществляется не по прямой, а по кривой с определенным изгибом, который характеризует свойства материала. Чем больше в веществе магнитных связей между молекулами, тем быстрее он выходит в насыщение.

После снятия напряжения с катушки напряженность магнитного поля падает до нуля. Это участок на графике 1-2. При этом материал за счет направленности магнитных моментов остается намагниченным. Но величина намагниченности несколько ниже, чем при насыщении. Если такой эффект наблюдается в веществе, то оно относится к ферромагнетикам, способным накапливать в себе магнитное поле за счет сильных магнитных связей между молекулами вещества.

Со сменой полярности напряжения, подводимого к катушке, процесс размагничивания продолжается по той же кривой до состояния насыщения. Только в этом случае магнитные моменты диполей будут направлены в обратную сторону. С частотой сети процесс будет периодически повторяться, описывая график, получивший название – петля магнитного гистерезиса.

При многократном намагничивании ферромагнетика меньшей, чем при насыщении напряженностью, то можно получить семейство кривых, из которых можно построить общий график, характеризующий состояние вещества от полного размагниченного до полного намагниченного.

Примеры существования гистерезиса в разных условиях

Пример 1

Условие: поясните, как именно можно проиллюстрировать роль доменов в поляризации сегнетоэлектрика с помощью явления гистерезиса.

Решение

Сегнетоэлектрик обладает нелинейными свойствами из-за наличия в нем доменов

Нам важно такое свойство, как нелинейная зависимость между поляризацией P→ и напряженностью внешнего поля E→:. P→=χE→εE→

P→=χE→εE→

Здесь χE→ — показатель, выражающий диэлектрическую восприимчивость, который также зависит от напряженности внешнего поля. Именно эта зависимость ведет к гистерезису в электрическом поле.

Вернемся к иллюстрации, представленной выше. Если взять небольшие поля, например, отрезок OA1, то на нем будет видно, что поляризация зависит от напряженности линейно, поскольку домены в ней еще не участвуют. На A1A также поляризация показывает быстрый рост с увеличением напряженности поля, поскольку процесс переориентации доменов вдоль внешнего поля идет постепенно. После этого мы видим линейное возрастание поляризации, уже не связанное с доменной структурой, которое происходит за счет индуцирования процесса полем. Если мы уменьшим напряжение, то от точки А первичный процесс пойдет в обратном порядке. В сегнетоэлектрике остается поляризация, значит, какое-то время он пытается сохранить прежнюю ориентацию доменов. Если же мы приложим поле с обратным направлением, то поляризация упадет до , а если будем продолжать повышать напряженность, то домены переполяризуются (изменят знак), после чего произойдет насыщение A’D’.

Ответ: Насыщение означает, что все домены сориентируются по полю, но в противоположном направлении.

Пример 2

Условие: на рисунке представлена схема опыта с осциллографом. Два конденсатора (один с обычным диэлектриком между обкладками, второй с сегнетоэлектриком) подключены к генератору, создающему гармонически меняющуюся разность потенциалов на обкладках. Расстояния между обкладками и их площадь одинаковы. Поясните, почему в ходе опыта можно наблюдать гистерезис.

Рисунок 2

Решение

Разность потенциалов, указанная в первоначальном условии, будет распределяться между двумя конденсаторами. Обозначим расстояние между обкладками буквой d и запишем выражения, с помощью которых выражается напряженность полей в конденсаторах:

E=σε1ε и ES=σsεsε.

Здесь σ, σS – показатель поверхностной плотности распределения зарядов на обкладках, εS – диэлектрическая проницаемость сегнетоэлектрика, а ε1 – проницаемость обычного диэлектрического материала.

Конденсаторы на схеме соединены последовательно, значит, заряды на их обкладках будут равными. Данные конденсаторы имеют одинаковую площадь, значит:

σ=σS.

Запишем, чему будут равны разности потенциалов между обкладками:

U=Ed=σdε1ε и Us=Usd=σdεSε.

Вычислим соотношение USU:

USU=γdεSεγdε1ε=ε1εS.

Если мы подадим на горизонтальную пластину осциллографа напряжение величиной U, а на вертикальную – US, то можно будет записать следующее:

tg φ=USU=ε1εEεsεE

Рисунок 3

Ответ: Следовательно, при изменениях напряженности на экране осциллографа появится кривая с абсциссой точек в определенном масштабе εSE и ординатой εε1E=D. Это и будет нужная нам кривая гистерезиса.

Всё ещё сложно?
Наши эксперты помогут разобраться

Все услуги

Решение задач

от 1 дня / от 150 р.

Курсовая работа

от 5 дней / от 1800 р.

Реферат

от 1 дня / от 700 р.

Определение понятия

У слова «Гистерезис» греческие корни, оно переводится как запаздывающий или отстающий. Этот термин используется в разных сферах науки и техники. В общем смысле понятие гистерезис отличает различное поведение системы при противоположных воздействиях.

Это можно сказать и более простыми словами. Допустим есть какая-то система, на которую можно влиять в нескольких направлениях. Если при воздействии на неё в прямом направлении, после прекращения система не возвращается в исходное состояние, а устанавливается в промежуточном — тогда чтобы вернуть в исходное состояние нужно воздействовать уже в другом направлении с какой-то силой. В этом случае система обладает гистерезисом.

Иногда это явление используется в полезных целях, например, для создания элементов, которые срабатывают при определённых пороговых значениях воздействующих сил и для регуляторов. В других случаях гистерезис несёт пагубное влияние, рассмотрим это на практике.

Другие свойства

Кроме магнитного гистерезиса, также различают гальвономагнитный и магнитострикционный эффекты. В этих процессах наблюдается изменение электрического сопротивления за счет механической деформации материала. Сегнетоэлектрики под действием деформационных сил способны вырабатывать электрический ток, что объясняется пьезоэлектрическим гистерезисом. Также существует понятие электрооптического и двойного диэлектрического гистерезиса. Последний процесс имеет обычно наибольший интерес, так как сопровождается двойным графиком в зонах, приближающихся к точкам насыщения.

Оцените статью
Рейтинг автора
5
Материал подготовил
Андрей Измаилов
Наш эксперт
Написано статей
116
Добавить комментарий