§ 18.7. способы получения металлов

Основные процессы

Основным процессом пирометаллургии является рудная плавка, которая проводится при таких высоких температурах, когда продукты химического взаимодействия расплавляются, образуя две жидкие фазы — металлическую или сульфидную и шлаковую. Различают восстановительную и окислительную плавки.

Определяющий процесс восстановительной рудной плавки — это восстановление оксидов металла с получением в конечном итоге расплава металла или его сплава с другими элементами. Типичной восстановительной плавкой является получение чугуна в доменных печах. Восстановительные процессы являются также главными при плавке марганцевых, окисленных никелевых, свинцовых, титановых руд.

Основными реагментами-восстановителями служат углерод, оксид углерода и водород. Оксид углерода образуется в самой печи при неполном горении углерода; основное количество водорода получается в результате разложения вдуваемого в печь природного газа.

Разновидностью восстановительных плавок является металлотермическое получение металлов, при котором в качестве восстановителя какого-то металла (Mn, Cr, V и др.) используется другой металл — с большим сродством к кислороду: Ca; Mg; Al, а также Si. Одним из достоинств металлотермического восстановления является получение металлов, не загрязненных углеродом или водородом.

Типичной окислительном рудной плавкой является переработка в шахтных печах богатых медных сульфидных руд. В ходе плавки окисляется основная доля серы сульфидных минералов, в результате чего выделяется значительное количество тепла. Основным целевым продуктом плавки является расплав сульфидов FeS и Cu2S — штейн.

Чугун и штейн рудных плавок являются, по-существу, полупродуктами, которые требуют дополнительной обработки. Такая обработка заключается в продувке расплавов воздухом или чистым кислородом, в результате чего содержащиеся в сплавах примеси окисляются и переходят либо в шлак (SiO2; MnO; FeO и др.), либо в газ (СО; SO2). Процесс называется конвертированием.

Аналогичным конвертированию является фьюминг-процесс — продувка газом шлаковых расплавов. Отличие его от конвертирования состоит в том, что металлический расплав продувают окислительным газом, а при фьюминговании шлака восстановительным. А во-вторых, продукты окисления металлического расплава — оксиды металлов — образуют вторую жидкую фазу — шлак, а продукты фьюмингования шлака — восстановленные легколетучие металлы (или сульфиды) в парообразном состоянии удаляются из реакционного пространства газовым потоком.

Промышленные способы получения металлов

Существует несколько способов получения металлов в промышленности. Их применение зависит от химической активности получаемого элемента и используемого сырья.

Некоторые металлы встречаются в природе в чистом виде, другие же требуют сложных технологических процедур для их выделения. Добыча одних элементов занимает несколько часов, другие же требуют многолетней обработки в особых условиях.

Общие способы получения металлов можно разделить на следующие категории: восстановление, обжиг, электролиз, разложение.

Есть также специальные методы получения редчайших элементов, которые подразумевают создание специальных условий в среде обработки.

Они используются довольно редко ввиду высокой дороговизны и отсутствия практического применения выделенных элементов. Поэтому остановимся подробнее на основных промышленных способах получения металлов. Они довольно разнообразны, но все основаны на использовании химических или физических свойств определенных веществ.

Описание

Это химические процессы, протекающие в металлургических агрегатах при высоких (800—2000°С) температурах. Поэтому пирометаллургию иногда называют «химией высоких температур». Часто химические реакции сопровождаются изменением агрегатного состояния реагирующих веществ: плавлением, возгонкой, испарением образующихся металлов или их соединений. В таких процессах взаимодействия могут протекать между твёрдой, жидкой (расплавы) и газообразной фазами в любых сочетаниях.

Пирометаллургическими процессами являются процессы агломерации металлургического сырья, плавки шихтовых материалов, изготовления сплавов, рафинирования металлов. В частности, это — обжиг, доменная плавка, мартеновская плавка, плавка в конвертерах, дуговых и индукционных печах.
Пирометаллургия — основа производства чугуна, стали, свинца, меди, цинка и др.

В пирометаллургии часто применяется восстановление углеродом — в тех случаях, когда восстанавливаемые металлы не образуют устойчивых карбидов, помимо указанных выше, к таким металлам относятся германий, кадмий, олово и другие. В случаях образования восстанавливаемыми металлами устойчивых карбидов вместо восстановления углеродом часто применяется металлотермия.

Пирометаллургия — основная и наиболее древняя область металлургии. С давних времён до конца 19 столетия производство металлов базировалось почти исключительно на пирометаллургических процессах. На рубеже 19 и 20 столетий промышленное значение приобрела другая крупная ветвь металлургии — гидрометаллургия. Однако пирометаллургия продолжает сохранять господствующее положение как по масштабам производства, так и по разнообразию процессов.

В начале 20 столетия вместе с пламенными способами нагрева в металлургии начали использоваться разные виды электрического нагрева (дуговой, индукционный и др.); приблизительно в это же время в промышленности был внедрён электролиз расплавленных химических соединений (производство алюминия и других цветных металлов).

Во 2-й половине 20 столетия получили распространение плазменная плавка металлов, зонная плавка и электроогневая плавка. Металлургические процессы, основанные на использовании электрического тока, выделяют в самостоятельную область пирометаллургии — электрометаллургию.

Основные процессы

Основным процессом пирометаллургии является рудная плавка, которая проводится при таких высоких температурах, когда продукты химического взаимодействия расплавляются, образуя две жидкие фазы — металлическую или сульфидную и шлаковую. Различают восстановительную и окислительную плавки.

Определяющий процесс восстановительной рудной плавки — это восстановление оксидов металла с получением в конечном итоге расплава металла или его сплава с другими элементами. Типичной восстановительной плавкой является получение чугуна в доменных печах. Восстановительные процессы являются также главными при плавке марганцевых, окисленных никелевых, свинцовых, титановых руд.

Основными реагментами-восстановителями служат углерод, оксид углерода и водород. Оксид углерода образуется в самой печи при неполном горении углерода; основное количество водорода получается в результате разложения вдуваемого в печь природного газа.

Разновидностью восстановительных плавок является металлотермическое получение металлов, при котором в качестве восстановителя какого-то металла (Mn, Cr, V и др.) используется другой металл — с большим сродством к кислороду: Ca; Mg; Al, а также Si. Одним из достоинств металлотермического восстановления является получение металлов, не загрязненных углеродом или водородом.

Типичной окислительном рудной плавкой является переработка в шахтных печах богатых медных сульфидных руд. В ходе плавки окисляется основная доля серы сульфидных минералов, в результате чего выделяется значительное количество тепла. Основным целевым продуктом плавки является расплав сульфидов FeS и Cu2S — штейн.

Чугун и штейн рудных плавок являются, по-существу, полупродуктами, которые требуют дополнительной обработки. Такая обработка заключается в продувке расплавов воздухом или чистым кислородом, в результате чего содержащиеся в сплавах примеси окисляются и переходят либо в шлак (SiO2; MnO; FeO и др.), либо в газ (СО; SO2). Процесс называется конвертированием.

Аналогичным конвертированию является фьюминг-процесс — продувка газом шлаковых расплавов. Отличие его от конвертирования состоит в том, что металлический расплав продувают окислительным газом, а при фьюминговании шлака восстановительным. А во-вторых, продукты окисления металлического расплава — оксиды металлов — образуют вторую жидкую фазу — шлак, а продукты фьюмингования шлака — восстановленные легколетучие металлы (или сульфиды) в парообразном состоянии удаляются из реакционного пространства газовым потоком.

Добыча железных руд в промышленных масштабах

Добывать руду человечество начало очень давно, но чаще всего это было сырье низкого качества со значительными примесями серы (осадочные породы, так называемое «болотное» железо). Масштабы разработки и выплавки постоянно увеличивались. Сегодня выстроена целая классификация различных месторождение железистых руд.

Основные типы промышленных месторождений

Все залежи руды делят на типы зависимо от происхождения породы, что в свою очередь позволяет выделить главные и второстепенные железнорудные районы.

Главные типы промышленных залежей железной руды

К ним относят следующие месторождения:

Залежи различных типов железной руды (железистые кварциты, магнитный железняк), образованной метаморфическим способом, что позволяет добывать на них очень богатые по составу руды. Обычно месторождения связаны с древнейшими процессами образования горных пород земной коры и залегают на образованиях называемых щитами.

Наиболее известные месторождения такого типа: Курская магнитная аномалия, Криворожский бассейн, озеро Верхнее (США/Канада), провинция Хамерсли в Австралии, и железнорудный район Минас-Жерайс в Бразилии.

Залежи пластовых осадочных пород. Эти месторождения образовались вследствие оседания богатых железом соединений, которые имеются в составе разрушенных ветром и водой минералов. Яркий образец железной руды в таких залежах – бурый железняк.

Наиболее известные и большие месторождения — это Лотарингский бассейн во Франции и Керченский на одноименном полуострове (Россия).

  • Скарновые месторождения. Обычно руда имеет магматическое и метаморфическое происхождение, пласты которой после образования были смещены в момент образования гор. То есть железная руда, располагающаяся слоями на глубине, была смята в складки и перемещена на поверхность во время движения литосферных плит. Такие залежи размещаются чаще в складчатых областях в виде пластов или столбов неправильной формы. Образовались магматическим способом. Представители таких месторождений: Магнитогорское (Урал, Россия), Сарбайское (Казахстан), Айрон-Спрингс (США) и прочие.
  • Титаномагнетитовые залежи руд. Их происхождение магматическое, чаще всего встречаются на выходах древних коренных пород – щитов. К ним относят бассейны и месторождения в Норвегии, Канаде, России (Качканарское, Кусинское).
  • В России за 2020 год открыто около сотни месторождений полезных ископаемых

К второстепенным месторождениям относят: апатит-магнетитовые, магно-магнетитовые, сидеритовые, железомарганцевые залежи, разрабатываемые на территории России, стран Европы, Кубы и прочих.

Металлургия тяжелых металлов

Получение меди

Основными этапами получения чистой меди являются выплавка черновой меди и ее дальнейшее рафинирование. Черновая медь добывается из руд, а низкая концентрация меди в уральских медных колчеданах и большие ее объемы не позволяют перенести производственные мощности с Урала. В качестве резерва выступают: медистые песчаники, медь-молибденовые, медь-никелевые руды.

Рафинирование меди и переплавка вторичного сырья производится на предприятиях, которые удалены от источников добычи и первичной плавки. Благоприятствует им низкая стоимость электричества, так как для получения тонны меди расходуется до 5 кВт энергии в час.

Металлургический завод

Утилизация сернистых газов с последующей переработкой послужила стартом для получения серной кислоты в химической промышленности. Из остатков апатитов производит фосфатные минеральные удобрения.

Получение свинца и цинка

Металлургия цветных металлов, таких как свинец и цинк, имеет сложную территориальную разобщенность. Добычу руды ведут на Северном Кавказе, в Забайкалье, Кузбассе и на Дальнем Востоке. А обогащение и металлургический передел проводится не только возле мест выемки руды, но и на других территориях с развитой металлургией.

Свинцовые и цинковые концентраты богаты на химическую элементную базу. Однако сырье имеет разное процентное содержание элементов, из-за чего не всегда цинк и свинец можно получить в чистом виде. Поэтому технологические процессы в районах различны:

  1. В Забайкалье получают только концентраты.
  2. На Дальнем Востоке получают свинец и цинковый концентрат.
  3. На Кузбассе получают цинк и свинцовый концентрат.
  4. На Северном Кавказе ведут передел.
  5. На Урале производят цинк.

Стали и чугуны

Эти сплавы получаются путем соединения железа и углерода (2%). При производстве легированных материалов к ним добавляются никель, хром, ванадий. Все обычные стали подразделяют на виды:

• малоуглеродистая (0,25 % углерода) используется для изготовления различных конструкций;

• высокоуглеродистая (более 0,55%) предназначена для производства режущих инструментов.

Различные марки легированных сталей применяются в машиностроении и другой продукции.

Сплав железа с углеродом, процентное содержание которого составляет 2-4%, называется чугуном. В состав этого материала входит и кремний. Из чугуна отливают различные изделия, обладающие хорошими механическими свойствами.

Описание

Это химические процессы, протекающие в металлургических агрегатах при высоких (800—2000°С) температурах. Поэтому пирометаллургию иногда называют «химией высоких температур». Часто химические реакции сопровождаются изменением агрегатного состояния реагирующих веществ: плавлением, возгонкой, испарением образующихся металлов или их соединений. В таких процессах взаимодействия могут протекать между твёрдой, жидкой (расплавы) и газообразной фазами в любых сочетаниях.

Пирометаллургическими процессами являются процессы агломерации металлургического сырья, плавки шихтовых материалов, изготовления сплавов, рафинирования металлов. В частности, это — обжиг, доменная плавка, мартеновская плавка, плавка в конвертерах, дуговых и индукционных печах.
Пирометаллургия — основа производства чугуна, стали, свинца, меди, цинка и др.

В пирометаллургии часто применяется восстановление углеродом — в тех случаях, когда восстанавливаемые металлы не образуют устойчивых карбидов, помимо указанных выше, к таким металлам относятся германий, кадмий, олово и другие. В случаях образования восстанавливаемыми металлами устойчивых карбидов вместо восстановления углеродом часто применяется металлотермия.

Пирометаллургия — основная и наиболее древняя область металлургии. С давних времён до конца 19 столетия производство металлов базировалось почти исключительно на пирометаллургических процессах. На рубеже 19 и 20 столетий промышленное значение приобрела другая крупная ветвь металлургии — гидрометаллургия. Однако пирометаллургия продолжает сохранять господствующее положение как по масштабам производства, так и по разнообразию процессов.

В начале 20 столетия вместе с пламенными способами нагрева в металлургии начали использоваться разные виды электрического нагрева (дуговой, индукционный и др.); приблизительно в это же время в промышленности был внедрён электролиз расплавленных химических соединений (производство алюминия и других цветных металлов).

Во 2-й половине 20 столетия получили распространение плазменная плавка металлов, зонная плавка и электроогневая плавка. Металлургические процессы, основанные на использовании электрического тока, выделяют в самостоятельную область пирометаллургии — электрометаллургию.

Пирометаллургия в Энциклопедическом словаре:

Взаимодействие с кислородом

Мно­гие ме­тал­лы могут всту­пать в ре­ак­цию с кис­ло­ро­дом. Обыч­но про­дук­та­ми этих ре­ак­ций яв­ля­ют­ся ок­си­ды, но есть и ис­клю­че­ния, о ко­то­рых вы узна­е­те на сле­ду­ю­щем уроке. Рас­смот­рим вза­и­мо­дей­ствие маг­ния с кис­ло­ро­дом.

Маг­ний горит в кис­ло­ро­де, при этом об­ра­зу­ет­ся оксид маг­ния:

2Mg + O2 = 2Mg+2O-2

Рис. 1. Го­ре­ние маг­ния в кис­ло­ро­де

Атомы маг­ния от­да­ют свои внеш­ние элек­тро­ны ато­мам кис­ло­ро­да: два атома маг­ния от­да­ют по два элек­тро­на двум ато­мам кис­ло­ро­да. При этом маг­ний вы­сту­па­ет в роли вос­ста­но­ви­те­ля, а кис­ло­род – в роли окис­ли­те­ля.

Видео-опыт: “Горение магния”

Обратите внимание!!! Серебро, золото и платина с кислородом не реагируют. 2

Взаимодействие с галогенами, образуются галогениды

2. Взаимодействие с галогенами, образуются галогениды

Для ме­тал­лов ха­рак­тер­на ре­ак­ция с га­ло­ге­на­ми. Про­дук­том такой ре­ак­ции яв­ля­ет­ся га­ло­ге­нид ме­тал­ла, на­при­мер, хло­рид.

Рис. 2. Го­ре­ние калия в хлоре

Калий сго­ра­ет в хлоре  об­ра­зо­ва­ни­ем хло­ри­да калия:

2К + Cl2 = 2K+1Cl-1

Два атома калия от­да­ют мо­ле­ку­ле хлора по од­но­му элек­тро­ну. Калий, по­вы­шая сте­пень окис­ле­ния, иг­ра­ет роль вос­ста­но­ви­те­ля, а хлор, по­ни­жая сте­пень окис­ле­ния,- роль окис­ли­те­ля

3. Взаимодействие с серой

Мно­гие ме­тал­лы ре­а­ги­ру­ют с серой с об­ра­зо­ва­ни­ем суль­фи­дов. В этих ре­ак­ци­ях ме­тал­лы также вы­сту­па­ют в роли вос­ста­но­ви­те­лей, тогда как сера будет окис­ли­те­лем. Сера в суль­фи­дах на­хо­дит­ся в сте­пе­ни окис­ле­ния -2, т.е. она по­ни­жа­ет свою сте­пень окис­ле­ния с 0 до -2. На­при­мер, же­ле­зо при на­гре­ва­нии ре­а­ги­ру­ет с серой с об­ра­зо­ва­ни­ем суль­фи­да же­ле­за (II):

Fe + S = Fe+2S-2

Рис. 3. Вза­и­мо­дей­ствие же­ле­за с серой

Видео-опыт: “Взаимодействие цинка с серой”

Ме­тал­лы также могут ре­а­ги­ро­вать с во­до­ро­дом, азо­том и дру­ги­ми неме­тал­ла­ми при опре­де­лен­ных усло­ви­ях.

4. Взаимодействие с водой

Металлы по — разному  реагируют с водой:

Помните!!!

Алюминий реагирует с водой подобно активным металлам, образуя основание:

Видео-опыт: “Взаимодействие натрия с водой”

Раскалённое железо реагирует с водяным паром, образуя смешанный оксид — железную окалину Fe3O4 и водород: 3Fe+4H+12O−2 → Fe+2O−2⋅Fe+32O−2+ 4H2

5. Взаимодействие с кислотами

Металлы особо реагируют с серной концентрированной  и азотной кислотами:

H2SO(конц.) + Me = соль + H2O + Х

Щелочные 

и щелочноземельные

Fe, Cr, Al

Металлы

до водорода

 Сd-Pb

Металлы после

водорода (при t)

Au, Pt

 X

1)пассивируются на холоде;

 S↓

могут H2S илиSO2

H2SO4 (разб) + Cu ≠

Внимание!

Pt, Au + H2SO4 (конц.) →реакции нет

Al, Fe, Cr + H2SO4 (конц.)  холодная→ пассивация

Почему используют именно сплавы?

Технику производят из металлических материалов с многочисленными свойствами. Чистейшие и полученные различные способами металлы содержат в себе небольшие следы примесей, но не обладают нужными характеристиками. Чтобы добиться необходимых эксплуатационных свойств, используют сплавы. Они обладают необходимыми физическими свойствами и позволяют производить огромное количество разнообразных изделий. Сплавами называют однородные макроскопические материалы, которые являются двух- и многокомпонентными. Основная доля химических элементов приходится именно на металлы.

Сплавы отличаются собственной структурой. Все сплавы состоят из следующих компонентов:

  • основы — один либо большее количество металлов;
  • добавки — модифицирующие либо легирующие в небольшом количестве;
  • примеси — остаточные вещества природного, случайного либо технологического характера.

Конкретный состав уже обусловлен сплавом и конкретным производимым конечным изделием.

Гостовские параметры длины

Производят стальные равнополочные уголки длиной от 3 до 12 м. Можно изготавливать профили и свыше 12 м. В продольном направлении изделия отпускаются:

  • мерной и кратной мерной длины;
  • немерной длины;
  • длины, ограниченной в пределах немерной.

При производстве учитывают допустимые смещения по длинам. Четырехметровый стальной горячекатаный профиль — отклонение +30 мм, изделия 4-6 м — отклонение +50 мм, уголок свыше 6 м — смещение по длине +70 мм. Для более габаритной продукции разрешено смещение не более чем на 5 мм на каждый следующий метр. При этом кривизна профиля колеблется строго в рамках от 0.2 до 0.4%.

Основные процессы[править | править код]

Основным процессом пирометаллургии является рудная плавка, которая проводится при таких высоких температурах, когда продукты химического взаимодействия расплавляются, образуя две жидкие фазы — металлическую или сульфидную и шлаковую. Различают восстановительную и окислительную плавки.

Определяющий процесс восстановительной рудной плавки — это восстановление оксидов металла с получением в конечном итоге расплава металла или его сплава с другими элементами. Типичной восстановительной плавкой является получение чугуна в доменных печах. Восстановительные процессы являются также главными при плавке марганцевых, окисленных никелевых, свинцовых, титановых руд.

Основными реагментами-восстановителями служат углерод, оксид углерода и водород. Оксид углерода образуется в самой печи при неполном горении углерода; основное количество водорода получается в результате разложения вдуваемого в печь природного газа.

Разновидностью восстановительных плавок является металлотермическое получение металлов, при котором в качестве восстановителя какого-то металла (Mn, Cr, V и др.) используется другой металл — с большим сродством к кислороду: Ca; Mg; Al, а также Si. Одним из достоинств металлотермического восстановления является получение металлов, не загрязненных углеродом или водородом.

Типичной окислительном рудной плавкой является переработка в шахтных печах богатых медных сульфидных руд. В ходе плавки окисляется основная доля серы сульфидных минералов, в результате чего выделяется значительное количество тепла. Основным целевым продуктом плавки является расплав сульфидов FeS и Cu2S — штейн.

Чугун и штейн рудных плавок являются, по-существу, полупродуктами, которые требуют дополнительной обработки. Такая обработка заключается в продувке расплавов воздухом или чистым кислородом, в результате чего содержащиеся в сплавах примеси окисляются и переходят либо в шлак (SiO2; MnO; FeO и др.), либо в газ (СО; SO2). Процесс называется конвертированием.

Аналогичным конвертированию является фьюминг-процесс — продувка газом шлаковых расплавов. Отличие его от конвертирования состоит в том, что металлический расплав продувают окислительным газом, а при фьюминговании шлака восстановительным. А во-вторых, продукты окисления металлического расплава — оксиды металлов — образуют вторую жидкую фазу — шлак, а продукты фьюмингования шлака — восстановленные легколетучие металлы (или сульфиды) в парообразном состоянии удаляются из реакционного пространства газовым потоком.

Принципиальные схемы производства металлов

Металлургическим процессом называется получение металлов, сплавов, химических соединений металлов, а также металлосодержащих промежуточных продуктов.

Исходным сырьем для производства большинства металлов являются руды, для переработки которых разрабатывают технологическую схему металлургического передела, т.е. последовательность и оптимальные условия процессов, при которых достигаются наиболее высокие технико-экономические показатели по себестоимости и качеству металла.

Существуют сотни разнообразных технологических схем получения металлов, но принципиальная сущность всех схем одна – отделение металла от пустой породы и сопутствующих элементов. Весь комплекс операций, входящих в технологические схемы, целесообразно разделить на четыре стадии, в каждой из которых решается определенная задача:

  • первая стадия – получение рудного концентрата механическими способами (дробление, измельчение, обогащение);
  • вторая стадия – получение “химического” концентрата (обжиг, спекание-разложение, растворение, осаждение, плавка и пр.);
  • третья стадия – получение “чернового” металла или его химического соединения (хлорирование, ректификация, экстракция, возгонка);
  • четвертая стадия – получение чистого металла (химические и физические методы очистки).

На первой стадии процесса происходит отделение рудного минерала от пустой породы методами обогащения, в результате которых руда разделяется на две части: концентрат, куда переходит основное количество рудного минерала, и хвосты, состоящие главным образом из пустой породы.

На второй стадии схемы производят удаление оставшегося количества пустой породы химико-металлургическими методами. Итогом этой стадии является получение либо химического соединения данного металла, либо металлического сплава.

На третьей стадии в одних схемах получают «черновой металл (загрязненный примесями), в других – чистое химическое соединение металла, которое является исходным материалом для получения чистого металла на последней стадии.

На четвертой стадии получают чистый металл восстановлением соответствующего химического соединения или путем очистки «чернового» металла.

Получение металлов – задача трудная, и она существенно усложняется при переработке бедного или полиметаллического сырья. Наиболее сложные технологические схемы характерны для получения цветных металлов.

Пирометаллургия

Пирометаллургия является наиболее старым и распространенным видом металлургии тяжелых металлов.

Пирометаллургия занимает ведущее место в металлургии. Она охватывает способы получения металлов из руд с помощью реакций восстановления, проводимых при высоких температурах. В качестве восстановителей применяют уголь, активные металлы, оксид углерода ( II), водород, метан.

Пирометаллургия объединяет методы, основанные на восстановлении металлов из руд при высоких температурах с помощью угля или оксида углерода ( II); иногда в этих целях используют алюминий, кремний и водород.

Пирометаллургия занимает ведущее место в металлургии. Она охватывает способы получения металлов из руд с помощью реакций восстановления, проводимых при высоких температурах. В качестве восстановителей применяют уголь, активные металлы, оксид углерода ( II), водород, метан.

Пирометаллургия занимает ведущее место в металлургии. Она охватывает способы получения металлов из руд с помощью реакций восстановления, проводимых при высоких температурах.

Пирометаллургия занимает ведущее место в металлургии. Она охватывает способы получения металлов из руд с помощью реакций восстановления, проводимых при высоких температурах. В качестве восстановителей применяют уголь, активные металлы, оксид углерода ( II), водород, метан. Так, например, уголь и оксид углерода ( II) восстанавливают медь из.

Пирометаллургия объединяет методы, основанные на восстановлении металлов из руд при высоких температурах с помощью углерода или оксида углерода ( II); иногда в этих целях используют алюминий, кремний и водород.

Пирометаллургия занимает ведущее место в металлургии. Она охватывает способы получения металлов из руд с помощью реакций восстановления, проводимых при высоких температурах. В качестве восстановителей применяют уголь, активные металлы, оксид углерода ( II), водород, метан. В основе этого метода лежит реакция восстанов-ния металла из его оксида.

Пирометаллургия объединяет методы, основанные на восстановлении металлов из руд при высоких температурах. Чаще всего оно осуществляется при помощи углерода или окиси углерода, но иногда в этих же целях используют алюминий и водород.

Пирометаллургия — металлургия, процессы, проводимые при высоких темп — pax.

Пирометаллургия имеет целый ряд недостатков, как наличие ртутных паров, представляющих опасность для обслуживающего персонала, сравнительно высокая стоимость оборудования ( большие капитальные затраты), сравнительно высокая стоимость получаемой ртути.

Пирометаллургия занимает ведущее место в металлургии. Она охватывает способы получения металлов из руд с помощью реакций восстановления, проводимых при высоких температурах. В качестве восстановителей применяют уголь, активные металлы, оксид углерода ( II), еодород, метан.

Пирометаллургия объединяет методы, основанные на восстановлении металлов из руд при высоких температурах. Чаще всего оно осуществляется при помощи углерода или окиси углерода, но иногда в этих же целях используют алюминий и во — Дород.

Схема флотационного аппарата.

Пирометаллургия — древнейшая по времени возникновения, до сих пор является важнейшей отраслью металлургии. Извлечение металлов из руд осуществляется при высоких температурах.

3.4. Восстановление металлов более активными металлами

Более активные металлы вытесняют из оксидов менее активные.  Активность металлов можно примерно оценить по электрохимическому ряду металлов:

Восстановление металлов из оксидов другими металлами — распространенный способ получения металлов. Часто для восстановления металлов применяют алюминий и магний.  А вот щелочные металлы для этого не очень подходят – они слишком химически активны, что создает сложности при работе с ними.

Например, цезий взрывается на воздухе.

Алюмотермия – это восстановление металлов из оксидов алюминием.

Например: алюминий восстанавливает оксид меди (II) из оксида:

3CuO + 2Al  =  Al2O3 + 3Cu

Магниетермия – это восстановление металлов из оксидов магнием.

CuO + Mg = Cu + MgO

Железо можно вытеснить из оксида с помощью алюминия:

2Fe2O3 + 4Al → 4Fe + 2Al2O3

При алюмотермии образуется очень чистый, свободный от примесей углерода металл.

Активные металлы вытесняют менее активные из растворов их солей.

Например, при добавлении меди (Cu) в раствор соли менее активного металла – серебра (AgNO3) произойдет химическая реакция:

2AgNO3 + Cu = Cu(NO3)2 + 2Ag

Медь покроется белыми кристаллами серебра.

При добавлении железа (Fe) в  раствор соли меди (CuSO4) на железном гвозде появился розовый налет металлической меди:

CuSO4  + Fe = FeSO4 + Cu

При добавлении цинка в раствор нитрата свинца (II) на цинке образуется слой металлического свинца:

Pb(NO3)2  + Zn = Pb + Zn (NO3)2

Виды сплавов

Несмотря на такое многообразие сплавов, наибольшее значение для людей играют те, основу которых составляет железо и алюминий. Именно они чаще всего встречаются в повседневной жизни. Виды сплавов бывают различными. Причем их разделяют по нескольким критериям. Так применяются различные способы изготовления сплавов. По данному критерию их делят на:

• Литые, которые получены путем кристаллизации расплава смешанных компонентов.

• Порошковые, созданные при помощи прессования смеси порошков и последующего спекания при высокой температуре. Причем зачастую компонентами таких сплавов являются не только простые химические элементы, но и их различные соединения, такие как карбиды титана или вольфрама в твердых сплавах. Их добавление в тех или иных количествах изменяет свойства металлических материалов.

Способы получения сплавов в виде готового изделия или заготовки разделяют на:

• литейные (силумин, чугун);

• деформируемые (стали);

• порошковые (титан, вольфрам).

Подведение итогов

Металлы, которые используются в производстве различных изделий, не являются чистыми. Большинство добывают в виде руды. Она изымается в карьеры чаще всего подрывным способом и доставляется на перерабатывающий металлургический комбинат. Конкретный метод обработки зависит от разновидности руды. Получаемый в результате металл может быть условно чистейшим, поскольку содержит некоторое количество примесей. Это не делает его пригодным для производства конечных изделий, поскольку материал еще не обладает всеми необходимыми эксплуатационными свойствами. Для изготовления металлической продукции используют сплавы.

Оцените статью
Рейтинг автора
5
Материал подготовил
Андрей Измаилов
Наш эксперт
Написано статей
116
Добавить комментарий