Радиопередатчик на кт368 своими руками

Список элементов передатчика

Резисторы 

  • R1, R2 потенциометры 10 кОм
  • R3 820 кОм 
  • R4 4,7 кОм 
  • R5, R6, R7, R19 220 Ом
  • R8 1,5 кОм 
  • R9 15 кОм 
  • R10, R11 1 кОм
  • R12 33 кОм 
  • R13, R14 56 Ом 
  • R15, R16 68 кОм 
  • R17 47 Ом 
  • R18 270 Ом 
  • R20 10 кОм 

Конденсаторы

  • C1, C7, C16, C17, C19, C24, C29, C31 1 нФ 
  • C3, C4, C5, C8 10 мкФ электролитический
  • C6, C18, C30 220 мкФ электролитический
  • C9, C10, C20 10 нФ
  • C11 22 пФ
  • C12 47 пФ
  • C13 22 пФ
  • C14, C15 15 пФ
  • C21, C25, C26 65 пФ
  • C22 100 пФ
  • C23 5.6 пФ
  • C27, C28 2 пФ

Катушки

  • Катушки L1 6 витков, в 2 слоя, диаметр 5 мм, длина 5 мм 
  • Катушки L2 3 витка, диаметр 7 мм, длина 7 мм 
  • Катушки L3 4 витка, диаметр 5 мм, длина 7 мм 
  • Катушки L4 6 витков, диаметр 5 мм, длина 10 мм 

Диоды

  • D1 KV1310 
  • D2, D3 1N4148 
  • D4 обычный светодиод 
  • D5 1N4001 

Транзисторы

  • T1, T5 BC548 
  • T2, T3 BF494 
  • T4 2N4427 

Передатчик должен быть установлен в алюминиевом заземленном корпусе. Напряжение питания от 9 до 16 В. При напряжении питания 16 В максимальная выходная мощность составляет 1 Вт, при 12 В 600 мВт и при 9 В – 200 мВт.

Дроссель H1 должен лежать и быть перпендикулярным как минимум к катушке L3. Если мы сделаем его на резисторе, этого недостаточно – дополнительно нужно положить бобышки под ножки резистора. 

В качестве выходного транзистора для версии 1 Вт в этой схеме может работать хороший дешевый транзистор BFG35, который часто встречается в коротковолновых радиостанциях или кабельных усилителях ТВ. При мощности 1 Вт он будет только теплый, при том что радиатор – это просто кусок меди на плате 1 см2, к которой припаивается коллектор BFG35. 

   Обсудить статью FM ПЕРЕДАТЧИК НА 1W

Основные правила изготовления

Приёмник, изготовленный в домашних условиях, должен быть мобильным или возимым. Советские магнитолы VEF Sigma и «Урал-Авто», более современный Manbo S-202 – тому пример.

Приемник содержит минимум радиоэлементов. Это несколько транзисторов или одна микросхема, без учёта навесных деталей в схеме. Они не должны стоить дорого. Вещательный приёмник, обходящийся в миллион рублей, – почти фантастика: это не профессиональная рация для военных и спецслужб. Качество приёма должно быть приемлемым – без лишних шумов, с возможностью на КВ-диапазоне слушать весь мир в поездках по странам, а на УКВ – удаляться от передатчика на десятки километров.

Нужна шкала (или хотя бы разметка на ручке настройки), позволяющая прикинуть, какой диапазон и какая частота прослушивается. Многие радиостанции напоминают слушателям, на какой частоте производится вещание. Но повторять 100 раз в день, например, «Европа Плюс», «Москва 106,2» уже не в моде.

Приемник должен быть пыле- и влагозащищённым. Это обеспечит корпус, например, от мощной колонки, в которой есть резиновые вставки. Самому сделать такой корпус тоже можно, но он герметично закрыт почти со всех сторон.

Перестраиваемые ЧМ передатчики

Представленные на рисунке 4 и 5 схемы отличаются наличием цепей подачи дополнительного напряжения смещения на варикапы, входящие в контуры задающих генераторов. Величины напряжений смещения могут быть изменены с помощью специальных переменных резисторов. В соответствии с изменениями величин напряжений смещения изменяются емкости варикапов и соответственно частоты задающих генераторов ЧМ-передатчиков.

Дальность работы каждого из приведенных ЧМ-передатчиков на Частоте 74 МГц с излучающей антенной 1 м и с УКВ-радиоприемником чувствительностью 10-15 мкВ составляет 150-200 м. С антеннами меньшей длины — дальность меньше. Поэтому при нежелательности излучения на столь значительное расстояние приведенное устройство должно быть соответствующим образом экранировано и снабжено короткой антенной.

Рис.4. Схема УКВ ЧМ-передатчика на биполярном транзисторе с электронной перестройкой частоты и с УНЧ на 1 транзисторе.

Элементы для схемы ЧМ-передатчика на рисунке 4:

  • R1=1к-10к, R2=500к-1.0 (требует подстройки), R3=3к-10к,
  • R4=20к, R5=50к-100к, R6=20к, R7=510, R8=6.2к, R9=20к;
  • С1=4.7мкФ-20мкФ, С2=0.2мкФ-1.0мкФ (неполярная емкость),
  • C3=4.7мкФ-20мкФ, С4=10, С5=1н-10н, С6=10-50, С7=20-30, С8=10-15, С9=1н-10н;
  • Т1 — КТ3102, КТ315 или любой другой НЧ- или ВЧ-транзистор с коэффициентом усиления более 100,
  • Т2 — КТ368, КТ361 или любой другой ВЧ-транзистор с граничной частотой не менее 300 МГц;
  • D1 — варикап Д901А,В, КВ102 или аналогичные;
  • L1 — дроссель, например, Д0.1 40-100 мкН; катушка L2 — бескаркасная, внутренний диаметр — 6 мм, диаметр провода — 0.8 мм, желательно посеребренный, L2 — 3+1 витка.

Рис.5. Схема УКВ ЧМ-передатчика на полевом транзисторе с изолированным затвором, с электронной перестройкой частоты и с УНЧ на 1 транзисторе.

Элементы для схемы ЧМ-передатчика на рисунке 5:

  • R1=1к-10к, R2=500к-1.0 (требует подстройки), R3=3к-10к, R7=360, R4=20к, R5=50к-100к, R6=20к;
  • С1=4.7мкФ-20мкФ, С2=0.2мкФ-1.0мкФ (неполярная емкость), С3=10, С4=20-30, С5=1н-10н, С6=1н-10н, С7=10-15;
  • Т1 — КТ3102, КТ315 или любой другой НЧ- или ВЧ-транзистор с коэффициентом усиления более 100, Т2 — КП305Ж,Е;
  • D1 — варикап Д901А,В, КВ 102 или аналогичные;
  • L1 — дроссель, например, Д0.1 40-100 мкН; катушка L2 — бескаркасная, внутренний диаметр — 6 мм, диаметр провода — 0.8 мм, желательно посеребренный, L2 — 3+1 витка.

Настройка (рисунок 5). Изменением величины резистора R2 установить напряжение на коллекторе транзистора Т1 равным половине напряжения питания, при 9В — это ЗВ-6В. Увеличение сопротивления в коллекторе транзистора Т1 ведет к увеличению коэффициента усиления каскада.

Однако не рекомендуется уменьшать коллекторный ток менее 0.5 мА, т.е. устанавливать R3 более 10к-15к.

При отсутствии генерации подстроить (подобрать) R7, не превышая допустимого предела максимального тока транзистора — 15 мА. Частота устанавливается конденсатором С4 и сжатием и/или растягиванием катушки L2. Для этой схемы также не рекомендуется увеличивать емкость конденсатора C3.

R4-R6 могут иметь другие номиналы, однако необходимо помнить, что уменьшение значений R4 н R6 без увеличения значения емкости С2 может привести к ослаблению низких частот, при 0.2мкФ и 20к нижняя частота передаваемого сигнала — не менее 40 Гц. Возможно использование в качестве С2 оксидного конденсатора, но при выборе деталей и настройке необходимо учитывать полярность напряжения на конденсаторе при крайних положениях переменного резистора R5.

Монтаж (рисунок 5). Монтаж выполняется на 2-стороннем фольгированном стеклотектолите. Одна сторона (со стороны деталей) используется как общий про-иод и экран, другая — для печатных проводников схемы. Проводники, соединяющие детали, должны иметь минимальную длину.

Использование I-стороннего фольгированного стеклотекстолита и выполнение монтажа без учета данных рекомендаций (традиционным способом) может привести к самовозбуждению схемы (например, на инфранизких частотах) и даже к срыву генерации. Для повышения стабильности частоты целесообразно поместить задающий генератор или все устройство и экран. При этом частота генератора, возможно, несколько изменится (увеличится).

Других особенностей в монтаже и настройке данная схема не имеет.

Схема приемника

Для управления моделью радиолюбители довольно часто используют приемники, построенные по схеме сверхрегенератора. Это связано с тем, что сверхрегенеративный приемник, имея простую конструкцию, обладает очень высокой чувствительностью, порядка 10…20 мкВ.

Схема сверхрегенеративного приемника для модели приведена на рис. 3. Приемник собран на трех транзисторах и питается от батареи типа «Крона» или другого источника напряжением 9 В.

Первый каскад приемника представляет собой сверхрегенеративный детектор с самогаше-нием, выполненный на транзисторе VT1. Если на антенну не поступает сигнал, то этот каскад генерирует импульсы высокочастотных колебаний, следующих с частотой 60…100 кГц. Это и есть частота гашения, которая задается конденсатором С6 и резистором R3.

Рис. 3. Принципиальная схема сверхрегенеративного приемника радиоуправляемой модели.

Усиление выделенного командного сигнала сверхрегенеративным детектором приемника происходит следующим образом. Транзистор VT1 включен по схеме с общей базой и его коллекторный ток пульсирует с частотой гашения.

При отсутствии на входе приемника сигнала, эти импульсы детектируются и создают на резисторе R3 некоторое напряжение. В момент поступления сигнала на приемник продолжительность отдельных импульсов возрастает, что приводит к увеличению напряжения на резисторе R3.

Приемник имеет один входной контур L1, С4, который с помощью сердечника катушки L1 настраивается на частоту передатчика. Связь контура с антенной — емкостная.

Принятый приемником сигнал управления выделяется на резисторе R4. Этот сигнал в 10…30 раз меньше напряжения частоты гашения.

Для подавления мешающего напряжения с частотой гашения между сверхрегенеративным детектором и усилителем напряжения включен фильтр L3, С7.

При этом на выходе фильтра напряжение частоты гашения в 5… 10 раз меньше амплитуды полезного сигнала. Продетектированный сигнал через разделительный конденсатор С8 подается на базу транзистора VT2, представляющего собой каскад усиления низкой частоты, а далее на электронное реле, собранное на транзисторе ѴТЗ и диодах VD1, VD2.

Усиленный транзистором ѴТЗ сигнал выпрямляется диодами VD1 и VD2. Выпрямленный ток (отрицательной полярности) поступает на базу транзистора ѴТЗ.

При появлении тока на входе электронного реле, коллекторный ток транзистора увеличивается и срабатывает реле К1. В качестве антенны приемника можно использовать штырь длиной 70… 100 см. Максимальная чувствительность сверхрегенеративного приемника устанавливается подбором сопротивления резистора R1.

Передатчики с ЧМ

Подобно AM, ЧМ-радиовещание играет важную роль в течение уже многих лет. В США FM-радиовещание осуществляется в частотном диапазоне 88–108 МГц. В отличие от амплитудной модуляции, при частотной модуляции пропорционально амплитуде модулирующего сигнала меняется не амплитуда, а частота несущей. В общем виде частотная модуляция гармонической несущей синусоидальным сигналом показана на рис. 3.

Рис. 3. Пример частотной модуляции

Величину изменения частоты называют частотной девиацией. В ЧМ-радиовещании в США и Европе, а также в России максимально допустимая девиация частоты составляет ±75 кГц.

На рис. 4 показана структурная схема одной из возможных реализаций типового ЧМ-передатчика. В этом конкретном передатчике используется т. н. косвенный метод формирования ЧМ-модуляции. Сигнал несущей генерируется опорным кварцевым генератором. Этот сигнал усиливается буферным усилителем до уровня, требуемого для функционирования фазового модулятора. Параллельно принимается, например с микрофона, и усиливается звуковой сигнал, который поступает на фазовый модулятор. Звуковой сигнал и несущая образуют частотно-модулированный сигнал на выходе фазового модулятора.

Рис. 4. Структурная схема ЧМ-передатчика с использованием косвенного метода формирования сигнала

В приведенном на рис. 4 примере построения передатчика с частотной модуляцией сигнала кварцевый генератор выдает сигнал несущей с частотой ниже конечной несущей частоты передаваемого сигнала. Следовательно, промодулированный сигнал должен проходить через частотный множитель, за которым установлен смеситель, а затем еще один умножитель частоты. Необходимо не только умножить частоту сигнала до заданной, но и обеспечить требуемую девиацию частоты. Уже сформированный сигнал усиливается предусилителем, а затем мощность сигнала до его поступления в передающую антенну увеличивается до заданной в оконечном УМ. Передаваемый сигнал, в конечном итоге, достигает приемной антенны ЧМ-приемника, который и восстанавливает исходную информацию. Такое построение передатчика обеспечивает высокую стабильность средней частоты несущей, что достаточно сложно реализовать при использовании прямого метода частотной модуляции.

Принципы радиосвязи

Для радиосвязи нужны два отдельных прибора: передатчик и приёмник электромагнитных волн. Для понимания принципов их работы рассмотрим простейшие приборы, созданные немецким учёным Г.Герцем в 1886 году.

Вы видите устройство передатчика. Проволоку разрезали пополам, присоединив получившиеся отрезки к высоковольтному трансформатору. Размер воздушного промежутка между концами проволок установили таким, чтобы в нём часто проскакивали искры.

Искры – это электрический ток в воздухе. Поэтому в момент их проскакивания электроны с отрицательно наэлектризованной части проволоки устремлялись к её положительно наэлектризованной части. Это значит, что в проволоке возникал пульсирующий (переменный) ток, а вокруг неё – пульсирующее (переменное) электромагнитное поле.

Таким образом, проволоки представляют собой и передатчик, и передающую антенну. Электромагнитное поле распространяется электромагнитными волнами, поэтому может быть уловлено на расстоянии. Для этого требуется приёмник: два таких же отрезка проволоки, располагаемые параллельно антенне передатчика. Поскольку энергия волн передатчика распространяется во все стороны, а приёмник улавливает только небольшую их часть, искры в воздушном промежутке приёмника очень малы. Однако их можно видеть невооружённым глазом в темноте.

Передатчик и приёмник Герца не могли быть использованы для дальней радиосвязи. Причина этого – небольшая мощность радиоволн из-за невысокой частоты переменного тока, создаваемого искрами. Поэтому нужно было создать такой генератор тока высокой частоты, мощности которого хватило бы для радиопередач на расстоянии десятков и сотен километров. Когда эта задача была решена, стала возможна не только радиотелеграфная связь, когда слова (по буквам) передаются посредством коротких и длинных импульсов азбуки Морзе, но и радиотелефонная связь, передающая человеческий голос.

Принципиальная схема радиотелефонной связи показана на рисунке ниже. Во-первых, передатчик содержит высокочастотный генератор для обеспечения нужной мощности излучения. Именно он формирует так называемую несущую частоту, на которую настраивается приёмник. Во-вторых, передатчик содержит модулятор – устройство, изменяющее амплитуду или частоту несущей волны «в такт» с передаваемым голосом или музыкой. В-третьих, передатчик имеет передающую антенну.

Наиболее проста для понимания амплитудная модуляция. Высокочастотные колебания, созданные генератором, сначала имеют постоянную амплитуду (см. на рисунке слева). Модулятор меняет амплитуду несущей частоты «по форме» низкочастотного сигнала, поступающего от микрофона. Модулированный сигнал достигает приёмной антенны в виде волн с меняющейся амплитудой (см. на рисунке в центре).

Обратный процесс называется демодуляцией. Приёмная антенна улавливает волны сразу от множества передатчиков, работающих на разных частотах. Поэтому нужно отделить сигнал только от определённого передатчика, работающего на выбираемой нами несущей частоте. Для этого служит приёмный настроечный контур. Выделенный им сигнал «нашего» передатчика направляется в демодулятор – устройство, отделяющее полезный для слушателя низкочастотный сигнал от несущих колебаний. Именно этот сигнал и поступает в наушники или громкоговорители.

Для различных потребителей услуг радиосвязи используются разные диапазоны волн. Различают сверхдлинные, длинные, средние, короткие и ультракороткие радиоволны (см. таблицу).

Диапазон волн Частота волн Длина волн
Сверхдлинные менее 30 кГц более 10 км
Длинные 30 кГц – 300 кГц 10 км – 1 км
Средние 300 кГц – 3 МГц 1 км – 100 м
Короткие 3 МГц – 30 МГц 100 м – 10 м
Ультракороткие 30 МГц – 150 ГГц 10 м – 2 мм

Как устроен радиопередатчик?

Основой любого радиопередатчика является — задающий генератор несущей частоты.

Эта схема генератора,сама вполне может служить маломощным передатчиком(при наличии антенны).
Электромагнитные колебания генерируемой им частоты, сами по себе не несут никакой
полезной информации. Что бы появилась возможность ее передачи, необходимо изменить несущую частоту,
промодулировав ее полезным сигналом.

Применяются три вида модуляции — амплитудная, частотная и фазная.
При амплитудной модуляции меняется амплитуда несущей частоты, в такт с
амплитудой информационного сигнала.
Частотная модуляция обуславливает девиацию (отклонения) несущей частоты в такт с амплитудой
полезного сигнала.
При фазной модуляции, подобное происходит соответственно, с фазой колебаний несущей
частоты.

Процесс модуляции осуществляется с помощью различных электронных схем.
Например, для частотной модуляции необходимо воздействовать на такие параметры задающего
генератора, как емкость или индуктивность его колебательного контура.
Если подать на переход база — эмиттер транзистора переменное напряжение низкой частоты,
это вызовет изменение его емкости, с периодом поданной частоты.
Соответственно, произойдет частотная модуляция задающего генератора.

Если собрать подобную схему, используя самые распостраненные высокочастотные
транзисторы (например кт315), микрофон динамического типа, можно получить простейший радиомикрофон.
С катушкой L1, состоящей из одного витка одножильного провода диаметром 1-1,5 см, он будет
перекрывать радиовещательный диапазон FM.

Сигнал от такого устройства можно принимать на расстоянии от 50, до 150 метров, в зависимости
от чувствительности используемого приемника. Точная подстройка осуществляется конденсатором С5.
Устройства для прослушки — жучки, собирают по схожим схемам.
Если требуется большая дальность передачи, сигнал задающего генератора необходимо дополнительно усилить,
с помощью выходного усилителя мощности и подать на передающую антенну.

Диапазоны волн

Рассматривая принципы радиосвязи, отметим, что волны имеют разные диапазоны.

В настоящее время применяют средние, сверхдлинные, короткие, длинные, а также ультракороткие радиоволны.

Их достаточно широко используют в разнообразных сферах электроники:

  • радиосвязь;
  • телевидение;
  • радиовещание;
  • радиоразведка;
  • метеорология.

Принцип современной радиосвязи предполагает превращение звуковых колебаний в электрические виды с помощью микрофона. Сложность передачи такого сигнала состоит в том, что для осуществления радиосвязи требуются высокочастотные колебания, а звуковые волны имеют низкую частоту. Для решения проблемы используются мощные антенны. Для звуковой частоты накладывание колебаний осуществляется так, чтобы переносить сигнал на существенные расстояния.

Современные принципы радиосвязи и телевидения базируются на радиопередающем устройстве. Он имеет генератор высокой частоты, который преобразует постоянное напряжение в высокочастотные гармонические колебания. Несущая частота должна быть постоянной величиной.

Принципы радиосвязи и телевидения предполагают определенное строение генератора. Он преобразовывает полученные сообщения в электрический сигнал, который и используется для процесса модуляции постоянной частоты. Выбор такого устройства основывается на физической природе транслируемого сигнала, В случае звука для этого используется микрофон, для передачи картинки применяют передающую телевизионную трубку. Модулятор необходим для проведения процесса перевода сигнала высокой частоты в ту величину, которая соответствует звуковому сигналу с передаваемой информацией. Также используются один либо два каскада для усиления модулированного сигнала. Излучающая антенна предназначена для выброса в окружающее пространство электромагнитных волн.

Пятёрка лучших FM-трансмиттеров с AliExpress

LESHP F43

Максимально простой модулятор, который подключается к смартфону через традиционный 3,5-миллиметровый аудиовыход и питается от прикуривателя. Он не поддерживает соединение через Bluetooth, поэтому в связке с проводами в салоне выглядит достаточно громоздко. Но это оправдано стоимостью.

BT06 CarKit DC12-24V

Многофункциональный модулятор с неоновой подсветкой и целым набором из дополнительных возможностей, в числе которых вход для AUX и поддержка карт памяти SD. На его корпус выведены кнопки для изменения частоты радиовещания, что будет актуально в случае помех от стационарных станций.

Baseus Energy Column

Максимально компактный и стильный модулятор от именитого бренда, который всегда радует качеством и разумной стоимостью. Он поддерживает подключение по Bluetooth, а также USB-накопители. Гаджет самостоятельно ищет наиболее свободную радиоволну и предлагает настроиться на нее.

Xiaomi Roidmi 3s

Подобный пост не мог обойтись без Xiaomi. Данный гаджет похож на предыдущий, но выглядит еще более минималистично. Он не поддерживает USB-накопители, но настраивается с помощью мобильного приложения. Конечно, он работает с любым напряжением и может заряжать ваши гаджеты.

Hyundai KDsafe

Продвинутый модулятор с выносным цветным экраном и обилием возможностей. Он поддерживает AUX, а также USB-накопители. На его корпусе есть все необходимые элементы для контроля воспроизведения. Есть функция «Свободные руки» и отдельная кнопка для приема входящего вызова.

Каким образом FM-трансмиттер получает питание внутри салона

В зависимости от конкретной модели, FM-трансмиттеры обычно можно запитать двумя способами: через USB, а также через прикуриватель. В первом случае понадобится источник питания — к примеру, автомобильный блок. Во втором случае гаджет может содержать один или пару USB и заряжать другие девайсы.

Когда речь заходит об использовании FM-трансмиттеров, которые устанавливаются напрямую в прикуриватель, важно изучить, с каким напряжением они работают. Легковые автомобили обычно выдают 12 В, а вот грузовики иногда комплектуются и розетками на 24 В. Хорошим модуляторам по плечу оба варианта

Хорошим модуляторам по плечу оба варианта.

Разработка коммуникационного протокола

Проблема, с которой мы сталкивались в представленном выше эксперименте в том, что радиочастотный канал заполняют другие сигналы, поэтому TX модуль принимает что-то даже если TX модуль выключен. Следовательно, нам нужен способ различать наши сигналы и чужие. Мы можем различить появление нужной передачи 0 и 1, направив пакет тонов различной длительности. После многочисленных экспериментов был выбран 250 мксек период для последовательной передачи данных. А 0 и 1 сигналы устанавливаются 150 мксек и 200 мксек, соответственно. Таким образом 1 байт, отправленный TX модулем предшествует 400 мксек синхронизирующего импульса. На рисунке ниже показана осциллограмма, отправления байта 00110100.

PIC программа для TX модуля здесь. Программа начинается примерно через 2 сек задержка, которая необходима для предотвращения отправки случайных данных сразу после включения питании. TX модуль питается от одной батареи АА, чье напряжение поднимается до 3.3 В микросхемой MAX756.

Передающая часть

Приемник является чуть более сложным. Он также работает на MAX756, которое преобразует 1,5 В АА батареи в 5 В. На 330 Ом резисторе падает напряжение до 3 В. Можно, конечно, поставить MAX756 в 3,3 В режиме, но нам нужно 5 В для запитки других устройств, подключенных к модулю приемника.

Приёмная часть

Приемная программа реализована в виде конечного автомата с двумя состояниями. State0 является стартовой. В этом состоянии мы дожидаемся синхронизации импульсов. Вначале компаратор PIC указывает на передачу. После этого мы измеряем длину полученного импульса. Если она значительно ниже – его игнорируют и схема остаётся в том же состоянии в ожидания очередного импульса. Пороговое значение установлено экспериментально и является оптимальным.

Как только нужный синхроимпульс получен, двигаемся к state1. В этом состоянии мы получаем 8 бит и можем скомпоновать их в байте. Переход в это состояние возможен только если передатчик посылает достаточно долго синхронизирующий сигнал. После измерения длины полученного импульса мы сравниваем ее с порогом. Если импульс слишком короткий, удаляем его и возвращаем обратно state0. В противном случае, проверяем длительность импульса против другого уровня, чтобы различить его между 0 и 1. В результате полученный бит хранится в виде с-бита в регистре статуса и используя сдвиг влево включаем его в байт. После приема 8 бит мы вернемся к state0 и процесс повторяется.

Чтобы проверить, что действительно получен байт, который был послан передатчиком, заставим мигать светодиод соответствующее число раз (4 раза в текущей настройке). После этого ждем около 2 сек и возвращаем обратно state0 получать очередной байт.

Как создать радиоволну с телефона: понадобится FM-трансмиттер

FM-трансмиттер также иногда называют FM-модулятором. Это — особенный гаджет, который умеет преобразовывать поступающий на него цифровой аудиосигнал в аналоговый вид и передавать его через радиоволны. Именно такое устройство, за которое не просят слишком много денег, понадобится для решения задачи материала — после активации модулятора на магнитоле достаточно будет лишь необходимую частоту радио выбрать.

FM-трансмиттер — отличный способ использовать современные стриминговые сервисы вместе с любыми магнитолами, которые оборудованы радио. Они могут быть кассетными или дисковыми: лично я не видел ни одной мультимедийной системы без радио даже в отечественных моделях родом из 80-х.

I/Q‑сигналы

Синфазные/квадратурные (I/Q) сигналы составляют основу сложных методов модуляции. Эти сигналы I/Q определяются как пара сигналов, которые отличаются по фазе на 90°. Синфазный (I) сигнал является опорным, а квадратурный (Q) сигнал сдвинут на 90° по фазе от сигнала I.

Косинусоидальная и синусоидальная функции, как известно из тригонометрии, различаются по фазе на 90°. В рассматриваемом случае косинусоидальная функция считается сигналом I, а синусоидальная функция представляет Q‑сигнал

При суммировании косинусоидального и синусоидального сигналов с равными амплитудами получается синусоида, сдвинутая по фазе на 45° от сигнала I. Комбинирование сигналов I и Q является важной концепцией, применяемой в сложных типах модуляции

На рис. 7 представлен пример квадратурной модуляции с фазовой манипуляцией QPSK (quadrature phase shift keying), в которой используются сигналы I/Q, а также несущий радиочастотный сигнал. Эти квадратурные I‑ и Q‑сигналы фактически являются цифровыми битовыми потоками. Из таблицы на рис. 7 видно, что фазовый сдвиг выходного сигнала определяется значениями I и Q. Такой вид QPSK имеет всего четыре состояния.

Рис. 7. Простое представление модуляции QPSK

Существует также много других методов модуляции, но их описание выходит за рамки этой статьи

Однако понятно, что сигнал несущей может модулироваться путем управления амплитудой сигналов I/Q. Это важное обстоятельство в понимании особенностей функционирования многих современных передатчиков

Заметим, что для передачи большего числа битов используется метод квадратурной амплитудной модуляция QAM (quadrature amplitude modulation). Эта разновидность амплитудной модуляции сигнала, как и QPSK, представляет собой сумму двух несущих колебаний одной частоты, сдвинутых по фазе относительно друг друга на 90°. Каждое из них модулировано по амплитуде своим модулирующим сигналом. Число передаваемых битов определяется порядком квадратурной модуляции. В случае QPSK с двумя битами на символ передаются четыре состояния, в 16 QAM (четырех битов на символ) — 16 состояний, в 64 QAM (шесть битов на символ) — 64 состояния. На рис. 8 сравниваются эти виды модуляции для передачи цифровых сигналов.

Рис. 8. Примеры квадратурной модуляции

FM трансмиттер на 5 километров

Предлагаемый передатчик вещательного диапазона действительно очень устойчивый, имеет сложную, но качественную и продуманную схемотехнику, и использует стандартные FM-частоты 88 – 108 МГц. Его радиус действия составляет реальные 5 км. Схема включает в себя стабильный генератор питающийся через стабилизатор LM7809 – это 9 В стабилизированный источник питания, на транзисторе Т1 и элемент перестройки частоты потенциометр 10К. Мощность ВЧ выхода этого передатчика около 1 Вт. Пара варикапов MV2019 функционируют в качестве переменных конденсаторов.

Транзисторы Т2 и Т3 тут в качестве буферного каскада, где Т2 в качестве усилителя напряжения и Т3 – тока. Этот буфер необходим для стабилизации частоты проводя хорошую развязку между генератором и усилителем мощности ВЧ. Транзистор Т4 – предварительный усилитель, что позволяет подвести достаточную мощность к транзистору оконечника Т5. Как показано на схеме, Т4 имеет подстроечный конденсатор в коллекторе, это выставит резонансный контур по минимуму нежелательных гармоник. Катушки L2 и L3 должны быть под углом 90 градусов одна к другой, что позволяет предотвратить паразитные связи. 

Заключительный каскад ФМ передатчика – мощный СВЧ транзистор не менее одного ватта мощности. Использовать нужно транзисторы 2N3866, 2N3553, KT920A, 2N3375, 2SC1970 или 2SC1971. Не забывайте поставить эффективный радиатор для транзистора Т5, потому что он при работе становится слегка теплым. Для схемы потребуется 12В/1А источник питания.

Моточные данные катушек:

  • L1 = 5 витков на 4 мм каркасе
  • L2 = 6 витков на 6 мм каркасе
  • L3 = 3 витка на 7 мм каркасе
  • L4 = 6 витков на 6 мм каркасе
  • L5 = 4 витка на 7 мм каркасе

Всё мотается проводом около миллиметра в диаметре. Транзисторы T1 = T2 = T3 = T4 = BF199, T5 = 2N3866 или 2SC1971, BLY81, 2N3553.

Из газобетона

Если говорить о домах, построенных из газобетона, то они отличаются достаточно высокой прочностью и долговечностью, что является значимым фактором. Кроме этого, имеются и другие преимущества. К ним причисляются:

  • Морозостойкость.
  • Низкая стоимость.
  • Небольшой расход кладочного раствора.
  • Паропроницаемость.

Касательно недостатков, то они тоже есть, но их мало. Среде них можно отметить такие:

  1. Нужно обрабатывать специальными пропитками, чтобы уменьшить риск впитывания влаги, которая в результате может привести к образованию плесени.
  2. Потребуется дополнительно осуществлять утепление стен.
  3. Также понадобится производить отделочные работы внешних и внутренних стен.

Учитывая все преимущества и недостатки, выбор материала для строительства всегда остается за владельцем земельного участка.

Оцените статью
Рейтинг автора
5
Материал подготовил
Андрей Измаилов
Наш эксперт
Написано статей
116
Добавить комментарий