Содержание
- 1 Расчет емкости
- 2 Что такое плоские конденсаторы
- 3 Схема подключения светодиода к сети 220 вольт
- 4 Что такое конденсатор?
- 5 Новое в журнале Правовед.ru
- 6 Недостатки встраивания холодильника
- 7 Стили
- 8 Основные формулы ёмкости
- 9 Мембранные расширительные баки для систем отопления Wester
- 10 Итак, как подобрать конденсатор для однофазного электродвигателя?
- 11 Как подобрать конденсатор
- 12 Пусковой конденсатор
- 13 Соединение конденсаторов
- 14 Основные причины «вздутия» конденсатора
- 15 Вычисление с помощью формул
- 16 Двор частного дома — красивые идеи обустройства. 110 реальных фото современного ландшафтного дизайна
- 17 Активное и реактивное сопротивления
Расчет емкости
Емкость конденсатора для электродвигателя рассчитывается исходя из схемы соединения обмоток – звездой или треугольником.
В обоих случаях применяется общая расчетная формула: Сраб = к х Iф/Uсети, к которой все параметры имеют следующие обозначения:
- к – является специальным коэффициентом. Его значение составляет 2800 для схемы «звезда» и 4800 для схемы «треугольник».
- Iф – номинальный ток статора, указанный на информационной табличке. При невозможности прочтения, выполняются измерения с помощью специальных измерительных клещей.
- Uсети – напряжение питающей сети, величиной в 220 вольт.
Подставив все необходимые значения, можно легко рассчитать, какая емкость будет у рабочего конденсатора (мкФ). Во время расчетов необходимо учитывать ток, поступающий к фазной обмотке статора. Он не должен превышать номинальное значение, точно так же, как нагрузка двигателя с конденсатором должна быть не выше 60-80% номинальной мощности, обозначенной на информационной табличке.
Что такое плоские конденсаторы
Определение
Конденсатор — это устройство для накопления заряда и энергии электрического поля.
Определение
Плоский конденсатор — конденсатор, который представляет собой две параллельные проводящие плоскости (обкладки), которые разделяет небольшой промежуток, заполненный диэлектриком. На обкладках сосредоточены равные по модулю и противоположные по знаку заряды.
Емкость конденсатора не слишком велика, но энергия при разрядке отдается почти мгновенно. Свойство конденсаторов быстро выдавать импульс большой мощности находит применение в лампах-вспышках для фотографирования, электромагнитных ускорителях, импульсных лазерах.
Примером может служить генератор Ван де Граафа, позволяющий создавать в лабораторных условиях напряжение в миллионы вольт, чтобы моделировать разряды молний. Также конденсаторы используют в радиотехнике.
Описание и технические характеристики
Конденсатор состоит из двух проводников, разделенных слоем диэлектрика.
Простейший конденсатор — две металлические пластины-обкладки, расположенные параллельно, с тонкой прослойкой воздуха между ними. Когда заряды пластин противоположны по знаку, электрическое поле оказывается сосредоточено внутри конденсатора и почти не взаимодействует с внешним миром, что позволяет накапливать на пластинах заряд.
Конденсатор обладает следующими техническими параметрами:
- номинальной и реальной емкостью — заявленной и фактической способностью накапливать заряд;
- удельной емкостью — отношением емкости к массе или объему диэлектрика;
- плотностью энергии;
- номинальным напряжением;
- полярностью — электролитические конденсаторы требуют корректной полярности напряжения для безопасной работы;
- электрическим сопротивлением изоляции диэлектрика;
- временем самостоятельной потери заряда;
- эквивалентным последовательным сопротивлением — внутренним электрическим сопротивлением диэлектрика, материала обкладок, выводов, контактов;
- эквивалентной последовательной индуктивностью и собственной частотой резонанса;
- температурным коэффициентом емкости — относительным изменением емкости при изменении температуры окружающей среды;
- диэлектрической абсорбцией — поглощением и сохранением части заряда при быстрой разрядке;
- пьезоэффектом — генерацией напряжения на обкладках при механических деформациях.
Схема подключения светодиода к сети 220 вольт
Светоиндикация – это неотъемлемая часть электроники, с помощью которой человек легко понимает текущее состояние прибора. В бытовых электронных устройствах роль индикации, выполняет светодиод, установленный во вторичной цепи питания, на выходе трансформатора или стабилизатора.
Однако в быту используется и множество простых электронных конструкций, неимеющих преобразователя, индикатор в которых был бы нелишним дополнением. Например, вмонтированный в клавишу настенного выключателя светодиод, стал бы отличным ориентиром расположения выключателя ночью.
А светодиод в корпусе удлинителя с розетками будет сигнализировать о наличии его включения в электросеть 220 В.
Ниже представлено несколько простых схем, с помощью которых даже человек с минимальным запасом знаний электротехники сможет подключить светодиод к сети переменного тока.
Схемы подключения
Светодиод – это разновидность полупроводниковых диодов с напряжением и током питания намного меньшим, чем в бытовой электросети. При прямом подключении в сеть 220 вольт, он мгновенно выйдет из строя. Поэтому светоизлучающий диод обязательно подключается только через токоограничивающий элемент. Наиболее дешевыми и простыми в сборке является схемы с понижающим элементом в виде резистора или конденсатора.
Важный момент, на который нужно обратить внимание при подключении светодиода в сеть переменного тока – это ограничение обратного напряжения. С этой задачей легко справляется любой кремниевый диод, рассчитанный на ток не менее того, что течет в цепи
Подключается диод последовательно после резистора или обратной полярностью параллельно светодиоду.
Существует мнение, что можно обойтись без ограничения обратного напряжения, так как электрический пробой не вызывает повреждения светоизлучающего диода. Однако обратный ток может вызвать перегрев p-n перехода, в результате чего произойдет тепловой пробой и разрушение кристалла светодиода.
Вместо кремниевого диода можно использовать второй светоизлучающий диод с аналогичным прямым током, который подключается обратной полярностью параллельно первому светодиоду.
Отрицательной стороной схем с токоограничивающим резистором является необходимость в рассеивании большой мощности. Эта проблема становится особо актуальной, в случае подключения нагрузки с большим потребляемым током. Решается данная проблема путем замены резистора на неполярный конденсатор, который в подобных схемах называют балластным или гасящим.
Включенный в сеть переменного тока неполярный конденсатор, ведет себя как сопротивление, но не рассеивает потребляемую мощность в виде тепла.
В данных схемах, при выключении питания, конденсатор остается не разряженным, что создает угрозу поражения электрическим током. Данная проблема легко решается путем подключения к конденсатору шунтирующего резистора мощностью 0,5 ватт с сопротивлением не менее 240 кОм.
Расчет резистора для светодиода
Во всех выше представленных схемах с токоограничивающим резистором расчет сопротивления производится согласно закону Ома: R = U/I, где U – это напряжение питания, I – рабочий ток светодиода. Рассеиваемая резистором мощность равна P = U * I. Эти данные можно рассчитать при помощи онлайн калькулятора.
Важно. Если планируется использовать схему в корпусе с низкой конвекцией, рекомендуется увеличить максимальное значение рассеиваемой резистором мощности на 30%
Это нужно знать
Главное – это помнить о технике безопасности. Представленные схемы питаются от 220 В сети переменного тока, поэтому требуют во время сборки особого внимания.
Подключение светодиода в сеть должно осуществляться в четком соответствии с принципиальной схемой. Отклонение от схемы или небрежность может привести к короткому замыканию или выходу из строя отдельных деталей.
При первом включении, сборки рекомендуется дать поработать некоторое время, чтобы убедиться в ее стабильности и отсутствии сильного нагрева элементов.
Для повышения надёжности устройства рекомендуется использовать заранее проверенные детали с запасом по предельно допустимым значениям напряжения и мощности.
Собирать бестрансформаторные источники питания следует внимательно и помнить, что они не имеют гальванической развязки с сетью. Готовая схема должна быть надёжно изолирована от соседних металлических деталей и защищена от случайного прикосновения. Демонтировать её можно только с отключенным напряжением питания.
Небольшой эксперимент
Чтобы немного разбавить скучные схемы, предлагаем ознакомится с небольшим экспериментом, который будет интересен как начинающим радиолюбителям, так и опытным мастерам.
Что такое конденсатор?
Конденсатор состоит из двух проводящих пластин, расположенных очень близко друг к другу и разделённых диэлектриком. Применение постоянного напряжения к пластинам вызовет протекание тока и появление на обеих крышках одинаковых по модулю, но противоположных по знаку зарядов: отрицательных – на одной и положительных – на другой. Отключение источника питания приведёт к тому, что заряд не исчезнет моментально, игнорируя явление его постепенной утечки. Затем, если крышки детали подключены к какой-то нагрузке, например, к вспышке, конденсатор разрядится сам и вернёт всю накопленную в нём энергию во вспышку.
Обозначение конденсаторов
Конденсаторы – это пассивные компоненты, которые хранят электрический заряд. Эта простая функция применяется в различных случаях:
- При переменном токе.
- При постоянном токе.
- В аналоговых сетях.
- В цифровых цепях.
Примеры использования приборов: системы синхронизации, формирование сигнала, связь, фильтрация и сглаживание сигнала, настройка телевизоров и радиоприёмников.
Новое в журнале Правовед.ru
Недостатки встраивания холодильника
Стили
В ландшафтном дизайне количество стилей не менее велико, чем в интерьере. Но если говорить об оформлении водопада, то их перечень не так уж и велик. В принципе, все разнообразие можно свести к трем направлениям:
- Природный стиль. Подходит для всех стилей ландшафтного дизайна, использующих натуральный камень в естественном, колотом или галтованном виде. А конкретное направление задают с помощью малых архитектурных форм, растений и способа организации пространства — именно они подчеркивают исторические или этнические особенности дизайна. Это может быть любой европейский или азиатский стиль — например, английский, французский, китайский или японский. Из натурального камня выкладывают террасы для каскадов или скалу для «одиночного» водопада. Для этого можно использовать любой материал, который есть в продаже — известняк, песчаник, гранит или мрамор. Подойдет также крупная галька (окат) и валуны, которые можно найти на участке или неподалеку от него.
- Регулярный стиль. Если быть точным в терминах, то это классический каскадный фонтан с отделкой ярусов из шлифованных гранитных или мраморных плит. Хотя по сути и форме это не что иное, как водопад. Он такой же рукотворный, как и предыдущий вариант, но только без имитации природного происхождения.
- Современные урбанистические формы в стиле минимализма. Фактически это еще один вариант конструкции со строгими геометрическими линиями, но уже из искусственного камня — бетона или кирпича. Это может быть как каскадный фонтан с переливом по бетонным плитам и лоткам, так и небольшой декоративный водопад из стены, в основе которой монолитная железобетонная плита или кладка из кирпича.
- Средиземноморский или мавританский стиль. Еще один вид каскадного фонтана, но в этом случае используют серию округлых чаш, из которых вода перетекает в виде небольших водопадов. Может быть как отдельно стоящая конструкция, так и в настенном исполнении (по образу Бахчисарайского Фонтана).
Основные формулы ёмкости
Базовый расчёт конденсатора предполагает выявление зависимости емкости и заряда, удерживаемого на элементе, а также напряжением на пластинах.
C=QVC=QV
C – емкость, или объём в Фарадах Q – заряд, удерживаемый на пластинах в кулонах V – разность потенциалов между пластинами в вольтах
Это уравнение используется для расчета работы, необходимой для зарядки конденсатора и энергии, хранящейся в нем.
Формула энергии
W=∫Q0V dQW=∫0QV dQ
W=∫Q0qC dQW=∫0QqC dQ
W=12CV2
Важно! Необходимо знать, какое влияние конденсатор будет оказывать на любую цепь, в которой он работает. Он не только предотвращает прохождение постоянной составляющей тока сигнала, но и оказывает влияние на любой переменный сигнал
Реактивное сопротивление
В цепи постоянного тока помимо батареи может присутствовать резистор, который оказывает сопротивление току в цепи. То же справедливо и для схемы переменного тока с элементом, накапливающим заряд. Конденсатор с небольшой площадью пластины позволяет хранить только небольшое количество заряда, и это будет препятствовать протеканию тока. Конденсатор имеет определенное реактивное сопротивление, и оно зависит от его величины, а также от частоты срабатывания. Чем выше частота, тем меньше реактивное сопротивление.
Вам это будет интересно Особенности индуктивного сопротивления
Фактическое реактивное сопротивление можно вычислить по формуле:
Xc = 1 / (2 pi f C)
где
Xc – ёмкостное реактивное сопротивление в Омах. f – частота в Герцах. C – ёмкость в Фарадах.
Текущий расчет
Реактивное сопротивление конденсатора, рассчитанное по приведенной выше формуле, измеряется в Омах. Затем ток, протекающий в цепи, может быть рассчитан обычным способом с использованием закона Ома:
V = I Xc
Главный показатель конденсатора
Мембранные расширительные баки для систем отопления Wester
membrannye-rasshiritel’nye-baki-dlja-otoplenija-wester-wrv_, Общий вид сзади, увеличить membrannye-rasshiritel’nye-baki-dlja-otoplenija-wester-wrv_, Вид сверху, увеличить membrannye-rasshiritel’nye-baki-dlja-otoplenija-wester-wrv_, Вид снизу, увеличить membrannye-rasshiritel’nye-baki-dlja-otoplenija-wester-wrv_, Все объемы, увеличить |
Производитель: Wester HeatingЕмкость: 8, 12, 24, 35, 50, 80, 100, 120, 150, 200, 300, 500, 750, 1000, 1500, 2000, 2500, 3000, 5000, 10 000 литровПреддавление в воздушной полости: 1,5 барМакс. давление: 5,0 барРабочая температура: -10°C…+100°C — Предназначены для компенсации температурных расширений теплоносителя в замкнутых системах отопления. — Основные элементы бака — корпус из высококачественной стали, эластичная мембрана из каучука. — Давление в воздушной полости для баков от 8 до 150 литров — 1,5 бара, от 200 до 10 000 литров — бара. — Теплоноситель в системе отопления — вода с содержанием гликоля не выше 50%. — Расширительные баки комплектуются сменной мембраной. — Температурный режим работы — от -10 °С до +100 °С — Срок службы — 100 000 циклов. — Цвет корпуса — красный. |
Характеристики и цены >>> |
Наименование |
Стоимостьс НДС, руб. | В наличиина складе | |
---|---|---|---|
Мембранный бак для отопления Wester WRV8 |
991,00 |
Купить Мембранный бак для отопления Wester WRV8 |
|
Мембранный бак для отопления Wester WRV12 |
1 073,00 |
Купить Мембранный бак для отопления Wester WRV12 |
|
Мембранный бак для отопления Wester WRV18 |
1 173,00 |
Купить Мембранный бак для отопления Wester WRV18 |
|
Мембранный бак для отопления Wester WRV24 |
1 343,00 |
Купить Мембранный бак для отопления Wester WRV24 |
|
Мембранный бак для отопления Wester WRV35 |
2 199,00 |
Купить Мембранный бак для отопления Wester WRV35 |
|
Мембранный бак для отопления Wester WRV50 |
2 624,00 |
Купить Мембранный бак для отопления Wester WRV50 |
|
Мембранный бак для отопления Wester WRV80 |
3 832,00 |
Купить Мембранный бак для отопления Wester WRV80 |
|
Мембранный бак для отопления Wester WRV100 |
5 508,00 |
Купить Мембранный бак для отопления Wester WRV100 |
|
Мембранный бак для отопления Wester WRV150 |
8 325,00 |
Купить Мембранный бак для отопления Wester WRV150 |
|
Мембранный бак для отопления Wester WRV200 (top) |
12 367,00 |
Купить Мембранный бак для отопления Wester WRV200 (top) |
|
Мембранный бак для отопления Wester WRV300 (top) |
15 114,00 |
Купить Мембранный бак для отопления Wester WRV300 (top) |
|
Мембранный бак для отопления Wester WRV500 (top) |
29 572,00 |
Купить Мембранный бак для отопления Wester WRV500 (top) |
|
Мембранный бак для отопления Wester WRV750 |
67 580,00 |
Купить Мембранный бак для отопления Wester WRV750 |
|
Мембранный бак для отопления Wester WRV1000 |
90 664,00 |
Купить Мембранный бак для отопления Wester WRV1000 |
Итак, как подобрать конденсатор для однофазного электродвигателя?
Чаще всего значение общей емкости Сраб+Спуск (не отдельного конденсатора) таково: 1 мкФ на каждые 100 ватт.
Есть несколько режимов работы двигателей подобного типа:
- Пусковой конденсатор + дополнительная обмотка (подключаются на время запуска). Емкость конденсатора: 70 мкФ на 1 кВт мощности двигателя.
- Рабочий конденсатор (емкость 23-35 мкФ) + дополнительная обмотка, которая находится в подключенном состоянии в течение всего времени работы.
- Рабочий конденсатор + пусковой конденсатор (подключены параллельно).
Если вы размышляете: как подобрать конденсатор к электродвигателю 220в, стоит исходить из пропорций, приведенных выше. Тем не менее, нужно обязательно проследить за работой и нагревом двигателя после его подключения. Например, при заметном нагревании агрегата в режиме с рабочим конденсатором, следует уменьшить емкость последнего. В целом, рекомендуется выбирать конденсаторы с рабочим напряжением от 450 В.
Как выбрать конденсатор для электродвигателя – вопрос непростой. Для обеспечения эффективной работы агрегата нужно чрезвычайно внимательно рассчитать все параметры и исходить из конкретных условий его работы и нагрузки.
Как подобрать конденсатор
Конденсаторы для трехфазного двигателя нужны достаточно большой емкости — речь идет о десятках и сотнях микрофарад. Однако конденсаторы электролитические для этой цели не годятся. Они требуют подключения однополярного, то есть специально для них придется городить выпрямитель из диодов и сопротивлений. Кроме того, со временем в электролитических конденсаторах высыхает электролит и они теряют емкость. Поэтому если будете ставить такой на двигатель, необходимо делать на это скидку, а не верить тому, что на них написано. Ну и еще одно за ними числится: электролитические конденсаторы имеют свойство иногда взрываться.
Поэтому задачу, как выбрать конденсатор под трехфазный двигатель, часто решают в несколько этапов
Сначала подбираем приблизительно. Надо рассчитать емкость конденсатора по простейшему соотношению как 7 мкФ на каждые 100 ватт мощности. То есть 700 ватт дает нам 49 мкФ первоначально. Емкость выбираемого пускового конденсатора берется в диапазоне 1–3-кратного превышения емкости рабочего конденсатора. Выберите 2*50 = 100 мкФ — будет само то. Ну, для начала можно взять побольше, потом подобрать конденсаторы, ориентируясь на работу двигателя. От емкости конденсаторов зависит реальная мощность движка. Если ее мало, двигатель при тех же оборотах потеряет мощность (обороты не зависят от мощности, а только от частоты напряжения), так как ему будет не хватать тока. При чрезмерной емкости конденсаторов у него будет перегрев от избытка тока.
Нормальная работа двигателя, без шума и рывков — это неплохой критерий правильно выбранного конденсатора. Но для большей точности можно сделать расчет конденсаторов по формулам, а такую проверку оставить на потом в качестве окончательного подтверждения успешности результатов подбора конденсаторов.
Однако надо все-таки подключить конденсаторы.
Пусковой конденсатор
Ознакомьтесь также с этими статьями
- Напыляемый пенополиуретан (ППУ)
- Складной стол своими руками
- Расчет сечения кабеля по мощности
- Силиконовый герметик
Стоит отметить, что на небольших электродвигателях, используемых для бытовых нужд, например, для электроточила на 200-400 Вт, можно не использовать пусковой конденсатор, а обойтись одним рабочим конденсатором, я так делал уже не раз — рабочего конденсатора вполне хватает. Другое дело, если электродвигатель стартует со значительной нагрузкой, то тогда лучше использовать и пусковой конденсатор, который подключается параллельно рабочему конденсатору нажатием и удержанием кнопки на время разгона электродвигателя, либо с помощью специального реле. Расчет емкости пускового конденсатора осуществляется путем умножения емкостей рабочего конденсатора на 2-2.5, в данном калькуляторе используется 2.5.
При этом стоит помнить, что по мере разгона асинхронному двигателю требуется меньшая емкость конденсатора, т.е. не стоит оставлять подключенным пусковой конденсатор на все время работы, т.к. большая емкость на высоких оборотах вызовет перегрев и выход из строя электродвигателя.
Соединение конденсаторов
В электрических цепях нередко производят подключения, состоящие из нескольких конденсаторов, имеющих разные типы соединений.
Последовательное соединение
Если левая пластина первого конденсатора несет заряд со знаком «плюс», правая из-за электростатической индукции получит его со знаком «минус». При этом он будет смещен от левой обкладки второго конденсатора, что, в свою очередь, положительно зарядит ее и т. д.
Последовательное соединение конденсаторных элементов
Напряжение, приложенное к общей емкости конденсаторов, будет складываться из напряжений на каждом из них:
а для всей батареи последовательных элементов:
то q/С = q/С1 + q/С2 + q/С3.
Количество электричества в последовательной цепи одинаково, значит допустимо разделить обе части уравнения на q.
Рассчитать емкость элементов, собранных в последовательную цепь, можно по формуле:
1/С = 1/С1 + 1/С2 + 1/С3 + …
Важно! Величина, обратная суммарной емкости конденсаторных элементов, соединенных в последовательную цепь, составляет сумму обратных величин емкостей отдельных компонентов
Параллельное соединение
Когда емкость конденсаторов мала, они включаются параллельно. Как рассчитать общую емкость такой цепи, определяется теми же зависимостями, но с учетом того, что напряжение на конденсаторных пластинах будет одинаковым:
Параллельное соединение конденсаторных элементов
Количество электричества на каждом конденсаторе составит:
q1 = V x C1, q2 = V x C2, q3 = V x C3.
Общий заряд конденсаторной батареи:
q = q1 + q2 + q3 = V/C1 + V/C2 + V/C3 = V x (C1 + C2 + C3), а С = С1 + С2 + С3.
Важно! При параллельном соединении конденсаторных элементов каждый из них подключен на полное напряжение электроцепи, а общая емкость суммируется. В сети есть сайты, имеющие калькулятор для расчета конденсатора при разных конфигурациях электросхемы, а также позволяющих определить емкость, задавая свои структурные параметры, как для плоских, так и для цилиндрических элементов
В сети есть сайты, имеющие калькулятор для расчета конденсатора при разных конфигурациях электросхемы, а также позволяющих определить емкость, задавая свои структурные параметры, как для плоских, так и для цилиндрических элементов.
Основные причины «вздутия» конденсатора
Можно правильно выбрать конденсатор, впаять его, и через пару дней обнаружить, что он вновь вышел из строя. Основной причиной быстрой поломки этих элементов является перегрев при:
- недостаточной вентиляции корпуса и его перегреве свыше +45°С;
- установке блока питания недостаточной мощности; она должна быть на 10-15% больше, чем та, которую компьютер использует в момент высшей производительности; в противном случае в цепи возникают токовые нагрузки и, как следствие, перегрев элементов.
Выход из строя конденсатора возможен также при:
несоблюдении полярности электролитических элементов при припайке;
механических повреждениях устройства.
Вычисление с помощью формул
Вычисление номинальной емкости элемента требуется в 2 случаях:
- Конструкторы электронной аппаратуры рассчитывают параметр при создании схем.
- Мастера при отсутствии конденсаторов подходящей мощности и емкости используют расчет элемента для подбора из доступных деталей.
RC цепи рассчитывают с применением величины импеданса — комплексного сопротивления (Z). Rа — потери тока на нагревание участников цепи. Ri и Rе — учитывают влияние индуктивности и ёмкости элементов. На выводах резистора в RC цепи напряжение Uр обратно пропорционально Z.
Тепловое сопротивление увеличивает потенциал на нагрузке, а реактивное уменьшает. Работа конденсатора на частотах выше резонансных, когда растет реактивная составляющая комплексного сопротивления, приводит к потерям напряжения.
Частота резонанса обратно пропорциональна способности накапливать заряд. Из формулы для определения Fр вычисляют, какие значения Ск (емкости конденсатора) требуются для работы цепи.
Для расчета импульсных схем используют постоянную времени цепи, определяющую воздействие RC на структуру импульса. Если знают сопротивление цепи и время заряда конденсатора, по формуле постоянной времени вычисляют емкость. На истинность результата влияет человеческий фактор.
Мастера используют параллельные и последовательные соединения конденсаторов. Формулы расчета обратны формулам для резисторов.
Последовательное соединение делает емкость меньше меньшей в соединении элементов, параллельная схема суммирует величины.
Двор частного дома — красивые идеи обустройства. 110 реальных фото современного ландшафтного дизайна
Активное и реактивное сопротивления
Хотя активное и реактивное сопротивления очень похожи. Даже значения обоих параметров измеряются в Омах, но они не совсем одинаковы. В результате этого невозможно сложить их вместе непосредственно. Вместо этого их нужно суммировать «векторно». Другими словами, необходимо округлить каждое значение, а затем сложить их вместе и выделить квадратный корень из этого числа:
Xtot2 = Xc2 + R2
В данной статье были подробно описаны основные компоненты, устройство и принцип работы конденсаторов, а также приведены базовые формулы, предназначенные для того, чтобы посчитать полезный объём прибора. Для более глубокого ознакомления необходимо внимательно рассмотреть типы данных деталей и их практические особенности в различных схемах и устройствах.