Содержание
Виды и история открытия
К категории редкоземельных металлов (РЗМ) относятся 15 химических элементов. В таблице Менделеева они находятся под порядковыми номерами от 57 до 71. Схожие по своим химическим характеристикам, в это же время этим редкоземельным элементам присуще четко выраженная уникальность. Каждому свойственны свои технологические особенности.
Редкоземельные элементы имеют 2 семейства: иттербия и церия:
- Семейство Иттербия: Тулий, Гольмий, Иттербий, Гадолиний, Диспрозий, Тербий, Эрбий, Лютеций.
- В группу Церия входят: Самарий, Неодим, Лантан, Европий, Церий, Прометий, Празеодим
Такое деление производят на основании того, как растворяются выбранные компоненты в солях серных кислот.
Немного позже к списку добавились элементы: Иттрий, Скандий, Лантан, Лютеций. Таким образом список металлов редкоземельной группы состоит из 16 элементов.
Редкоземельные металлы обладают длинной историей открытия. Первое изучение «иттриевых земель» было проведено профессором химии Гандолином в 1790-х годах. В качестве объекта исследования он использовал минерал, найденный в горах Швеции. Позже этот вид горного образования получил название в его честь — гандолинит.
В 1840-х годах Мозандер выделил окись церия. Через 5 лет он же получил тербиевую и эрбиевую земли, используя при этом уже известный нам гандолинит. Последним из семейства редкоземельных металлов был открыт прометий. Его исследованием занимались Маринский и Гленденин, которые для своих экспериментов использовали осколки деления урана в ядерном реакторе.
Открытия редкоземельной группы металлов закончились лишь в середине 20 столетия, но эффективные промышленные методы их разделения развиваются до сих пор.
Самыми ценными и дорогими из списка редкоземельной группы являются:
- Тербий;
- Неодим;
- Европий;
- Лютеций.
Распространение редкоземельных металлов
Суммарное количество по массе редкоземельных элементов в недрах Земли равняется 0,01%, что относительно немало. Это больше, чем титан и свинец, вместе взятые. Наиболее часто встречаемыми из РЗМ являются церий, неодим и лантан.
На сегодня обнаружено примерно 240 минералов, в химическом составе которых можно найти редкоземельные металлы. В 62 из них суммарный процент РЗМ достигает 10%. По своей природе они представляют собой разного вида фториды, силикаты и фосфаты. Несмотря на такое огромное количество минералов для нужд производства годятся только некоторые из них. Главным образом это монацит, бастнезит, апатит и эвксенит.
Процент соотношения между отдельными редкоземельными металлами в горных образованиях достаточно изменчив. В монацитах и бастнезитах преобладают элементы цериевой подгруппы; в апатитах — иттриевой.
РЕСУРСЫ ЕСТЬ
Что же касается потенциального сырья, его в России достаточно: запасы РЗМ составляют 30% от мировых, то есть второе место по разведанным запасам и первое по прогнозным. РЗМ учтены в рудах 14 месторождений, причём преобладающая часть (60,2%) находится в апатит-нефелиновых рудах Кольского полуострова, при переработке которых РЗМ не извлекаются. Остальные запасы относятся к лопаритовым рудам Ловозёрского месторождения (14,2%), редкоземельно-апатитовым рудам Селигдарского месторождения в Якутии (22,8%) и, как попутные компоненты, редкометалльным рудам Улуг-Танзекского и нефтеносным песчаникам Ярегского месторождения.
— Месторождения в республике Саха очень перспективные, — говорит Андрей Селивановский, — но расположены они за полярным кругом, и строительство там комбината обойдётся в гигантскую сумму.
Месторождение на территории Якутии уникальное. Содержание редких земель в его рудах достигает феноменальных показателей в 12%. При этом разведанные запасы руды составляют 150 млн. т, а прогнозные едва ли не больше всех мировых. Более того, эти руды в значительных количествах содержат редкие металлы, в частности большие концентрации (около 5%) ниобия.
— А вот апатиты Кольского полуострова близко, и они вовсю используются, — продолжает мой собеседник, — из них делается лучшее в мире удобрение. По одной из технологий для получения из апатитов удобрений используется азотная кислота. При растворении в ней апатитов, процентов 80 редких земель переходят в раствор вместе с фосфором. И пропадают в полях. Но есть метод, мы принимали участие в его разработке, при котором после небольших изменений процесса переработки апатитов в удобрения можно организовать извлечение редких земель.
По другой технологии удобрение из апатитов делается посредством растворения в серной кислоте. При этом редкие земли в раствор не переходят, а остаются в отвале, который называется фосфогипсом и образует целые горы. На одном Воскресенском заводе фосфогипса 10–12 млн. т. Однако извлечь редкие земли из него куда сложнее, чем из раствора апатита в азотной кислоте. Это можно сделать, только если государство начнёт финансировать уничтожение отвалов фосфогипса. Заметим, что в апатите элементов среднетяжёлой подгруппы уже 8–9%, что совсем неплохо по мировым стандартам.
Ресурс редкоземельных металлов у России есть, находится он недалеко и уже разрабатывается. Осталось построить разделительное производство, войти в цепочку по переработке апатитов и можно восстановить своё третье место в мире по производству РЗМ.
Павел ОРЛОВ,
«Страна РОСАТОМ»
СПРАВКА
Название «редкоземельные элементы» исторически сложилось в конце 18 — начале 19 века, когда ошибочно считалось, что минералы, содержащие элементы двух подсемейств — цериевого (лёгкие — La, Се, Рг, Nd, Sm, Eu) и иттриевого (тяжёлые — Y, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu), редко встречаются в земной коре. В то же время по запасам сырья РЗМ не являются редкими, по суммарной распространённости они превосходят свинец в 10 раз, молибден — в 50 раз, вольфрам — в 165 раз.
Кроме того, РЗМ образуют тугоплавкие, практически не растворимые в воде оксиды. И с этим фактом связана вторая предпосылка для их наименования, ведь такие оксиды в начале 19 века и ранее назывались «землями».
В 1794 году финский химик Юхан Гадолин, исследуя рудные образцы вблизи шведского местечка Иттерби, обнаружил неизвестную до того «редкую землю», которую назвал по месту находки иттрий. Позже немецкий химик Мартин Клапрот разделил эти образцы на две «земли», для одной из которых он оставил имя иттрий, а другую назвал церий (в честь недавно открытой малой планеты Церера и по имени древнегреческой богини). Немного времени спустя шведский учёный Мосандер сумел выделить из того же образца ещё несколько «земель». Все они оказались оксидами новых элементов, получивших название «редкоземельные металлы». К 1907 году химики обнаружили и идентифицировали всего 14 таких элементов. На основе изучения рентгеновских свойств всем им были присвоены атомные номера от 57 (лантан) до 71 (лютеций), кроме 61. В целом на сегодня специалисты выделяют 16 редкоземельных элементов (в список добавились иттрий и скандий).
СПРАВКА
С распадом СССР мы лишились богатейшего источника сырья по иттрию и металлам иттриевой группы, добыча и производство которых были сосредоточены в Киргизии (Киргизский ГМК, месторождение «Кутессай»). Перспективная потребность России в РЗМ может быть удовлетворена за счёт нового предприятия на базе разведанных запасов Томторского месторождения. Его руды содержат в среднем 9–12% оксидов РЗМ, то есть являются их природным концентратом.
Свойства редкоземельных металлов
Редкоземельные металлы имеют серебристый или желтый окрас. Они поддаются механической обработке и проводят электрический ток. Свойства РЗМ могут изменяться при переходе веществ из металлического состояния в парообразное. При высоком давлении и большой разнице в энергии атомные радиусы уменьшаются, что приводит к увеличению плотности простых веществ.
Физические свойства
Плотность РЗЭ составляет 6000–7000 кг/м3. Температура плавления вещества равняется 900 °С. Переход веществ в газообразное состояние осуществляется при температуре от 3500 °С. Наибольшим захватом тепловых нейтронов обладают гадолиний, самарий и европий. При нагревании до высоких температур элементы становятся пластичными и легко поддаются прокатке или ковке.
РЗМ обладают магнитными свойствами. Они относятся к классу парамагнетиков. Магнитная восприимчивость соединений зависит от их температуры. Гадолиний, Диспрозий и Гольмий располагают ферромагнитными свойствами. Они могут увеличить свое магнитное поле в несколько раз при нагреве до критических температур. В естественной среде большая часть редкоземельных металлов являются сверхпроводниками. Переход сверхпроводящее состояние осуществляется при охлаждении веществ до температуры -268,15 °С. Величина данного показателя зависит от избыточного давления.
Механические свойства
Механические свойства РЗЭ находятся в зависимости от количества примесей, содержащихся в веществе: кислорода, серы, азота и углерода. Ими обладают большинство представителей иттриевой и цериевой подгрупп. Чистые металлы, в которых содержится меньше 1% примесей, имеют твердость 500 Мпа. Этот показатель зависит от температуры химического соединения. При охлаждении вещества до 800 °С твердость элемента составляет 30 МПа. Если понизить температуру вещества до 550 °С, то оно полностью размягчится, что обусловлено полиморфным превращением.
При температурах 20-800 °С повышается пластичность редкоземельных металлов. Во время нагревания внутренняя структура элементов переходит на кубическую модификацию. Во время растяжения РЗМ полностью разрушаются при давлении в 150 Мпа. При более низких значениях этого показателя соединения деформируются. Удельное растяжения металлов составляет не менее 12%.
Химические свойства
При взаимодействии с молекулами кислорода РЗЭ покрываются тонкой оксидной пленкой, защищающей металлы от физических деформаций и воздействия иных химических элементов. При высокой влажности вещества начинаются окисляться с большей интенсивностью и превращаются в щелочи. Данный химический процесс осуществляется при температурах до 250 °С. При дальнейшем нагревании в кислородной среде металлы начнут окисляться с выделением большого количества тепловой энергии.
Наибольшей реакционной способностью располагают скандий и иттрий. При нагревании до 400 °С они вступают в реакции с водородом, образуя гидриды. Полученные вещества имеют высокую плотность и могут взаимодействовать с солями. Церий обладает свойством пирофорности. При разрезании этого элемента на воздухе образуется множество искр. В этом случае выделяется до 220 ккал тепла.
Степень окисления редкоземельных соединений равняется +3. Поэтому эти способы образовывать тугоплавкие, твердые и крепкие оксиды. При взаимодействии с водой РЗМ образуют малорастворимые гидроксиды. Растворимость элементов зависит от ряда активности и свойств амфотерности. Из-за высокой активности металлов, соли редкоземельных соединений быстро растворяются в сильных кислотах, относящихся к минеральной группе химических веществ. При взаимодействии РЗМ с неметаллами VI – VII групп получаются галогены. РЗЭ могут вступать в реакцию с селеном, бромом, йодом при нагревании. Они инертны к большинству растворимых гидроксидов.
Нахождение в природе
Как правило, редкоземельные элементы встречаются в природе совместно. Они образуют весьма прочные окислы, галоидные соединения, сульфиды. Для лантаноидов наиболее характерны соединения трёхвалентных элементов. Исключение составляет церий, легко переходящий в четырёхвалентное состояние. Кроме церия четырёхвалентные соединения образуют празеодим и тербий. Двухвалентные соединения известны у самария, европия и иттербия. По физико-химическим свойствам лантаноиды весьма близки между собой. Это объясняется особенностью строения их электронных оболочек.
Суммарное содержание редкоземельных элементов составляет более 100 г/т. Известно более 250 минералов, содержащих редкоземельные элементы. Однако к собственно редкоземельным минералам могут быть отнесены только 60 — 65 минералов, в которых содержание Ме2О3 превышает 5 — 8 %. Главнейшие минералы редких земель — монацит (Ce, La)PO4, ксенотим YPO4, бастнезит Ce[CO3](OH, F), паризит Ca(Ce, La)2[CO3]3F2, гадолинит Y2FeBe2Si2O10, ортит (Ca, Ce)2(Al, Fe)3Si3O12(O, OH), лопарит (Na, Ca, Ce)(Ti, Nb)O3, эшинит (Ce, Ca, Th)(Ti, Nb)2O6. Наиболее распространён в земной коре церий, наименее — тулий и лютеций. По правилам Комиссии по новым минералам и названиям минералов (КНМНМ) Международной минералогической ассоциации (IMA) минералы с большим количеством редкоземельного элемента (или близких к редкоземельным иттрия и скандия) в составе получают специальный суффикс, «уточнитель Левинсона», например, известны два минерала: гагаринит-(Y) с преобладанием иттрия и гагаринит-(Ce) с преобладанием церия.
Несмотря на неограниченный изоморфизм, в группе редких земель в определённых геологических условиях возможна раздельная концентрация редких земель иттриевой и цериевой подгрупп. Например, с щелочными породами и связанными с ними постмагматическими продуктами преимущественное развитие получает цериевая подгруппа, а с постмагматическими продуктами гранитоидов с повышенной щёлочностью — иттриевая. Большинство фторкарбонатов обогащено элементами цериевой подгруппы. Многие тантало-ниобаты содержат иттриевую подгруппу, а титанаты и титано-тантало-ниобаты — цериевую. Некоторая дифференциация редких земель отмечается и в экзогенных условиях. Изоморфное замещение редких земель между собой, несмотря на разницу в их порядковых номерах, обусловлено явлениями «лантаноидного сжатия»: с увеличением порядкового номера происходит достройка внутренних, а не внешних электронных орбит, в результате чего объём ионов не увеличивается.
Селективное накопление редкоземельных элементов в минералах и горных породах может быть обусловлено различиями в их радиусах ионов. Дело в том, что радиусы ионов лантаноидов закономерно уменьшаются от лантана к лютецию. Вследствие этого возможно преимущественное изоморфное замещение в зависимости от степени различия в размерах замещённых ионов редкоземельных элементов. Так, в скандиевых, циркониевых и марганцевых минералах могут присутствовать только редкие земли ряда лютеций — диспрозий; в урановых минералах преимущественно накапливаются минералы средней части ряда (иттрий, диспрозий, гадолиний); в ториевых минералах должны концентрироваться элементы цериевой группы; в состав стронциевых и бариевых минералов могут входить только элементы ряда европий — лантан.
Свойства и получение
Оксиды редкоземельных элементов. По часовой стрелке от центрального первого: празеодим, церий, лантан, неодим, самарий, гадолиний
Редкоземельные элементы проявляют между собой большое сходство химических и некоторых физических свойств, что объясняется почти одинаковым строением наружных электронных уровней их атомов. Редкоземельные элементы — металлы, их получают восстановлением соответствующих оксидов, фторидов, электролизом безводных солей и другими методами.
Химические свойства
Скандий, иттрий и лантаноиды имеют высокую реакционную способность. Химическая активность этих элементов особенно заметна при повышенных температурах. При нагревании до 300—400 °C металлы реагируют даже с водородом, образуя RH3 и RH2 (символ R выражает атом редкоземельного элемента). Эти соединения достаточно прочные и имеют солевой характер. При нагревании в кислороде металлы легко реагируют с ним, образуя оксиды: R2O3, CeO2, Pr6O11, Tb4O7 (лишь только Sc и Y при помощи образования защитной оксидной плёнки являются стойкими на воздухе, даже при нагревании до 1000 °C). Во время горения данных металлов в атмосфере кислорода выделяется большое количество тепла. При сгорании 1 г лантана выделяется 224,2 ккал тепла. Для церия характерной особенностью является свойство пирофорности — способность искриться при разрезании металла на воздухе.
Диоксид церия
Лантан, церий и другие металлы уже при обычной температуре реагируют с водой и кислотами-неокислителями, выделяя водород. Из-за высокой активности к атмосферному кислороду и воде куски лантана, церия, празеодима, неодима и европия следует хранить в парафине, остальные из редкоземельных металлов окисляются плохо (за исключением самария, который покрывается плёнкой оксидов, однако не полностью разъедается ей) и их можно хранить в нормальных условиях без противоокислительных веществ.
Химическая активность редкоземельных металлов неодинакова. От скандия до лантана химическая активность возрастает, а в ряду лантан — лютеций — снижается. Отсюда следует, что наиболее активным металлом является лантан. Это обуславливается уменьшением радиусов атомов элементов от лантана до лютеция с одной стороны, и от лантана до скандия — с другой.
Эффект «лантаноидной контракции» (сжатия) приводит к тому, что следующие после лантаноидов элементы (гафний, тантал, вольфрам, рений, осмий, иридий, платина) имеют уменьшенные радиусы атомов на 0,2—0,3 Å отсюда и очень схожие их свойства со свойствами соответствующих элементов пятого периода.
В элементах — скандий, иттрий, лантан — d-оболочка предпоследнего электронного слоя только начинает образовываться, поэтому радиусы атомов и активность металлов в этой группе возрастают сверху вниз. Этим свойством группа отличается от других побочных подгрупп металлов, у которых порядок изменения активности противоположный.
Поскольку радиус атома иттрия (0,89 Å) близок к радиусу атома гольмия (0,894 Å), то по активности этот металл должен занимать одно из предпоследних мест. Скандий же из-за своей активности должен располагаться после лютеция. В этом ряду ослабляется действие металлов на воду.
Редкоземельные элементы чаще всего проявляют степень окисления +3. Из-за этого наиболее характерными являются оксиды R2O3 — твёрдые, крепкие и тугоплавкие соединения. Будучи основными оксидами, они для большинства элементов способны соединяться с водой и создавать основания — R(OH)3. Гидроксиды редкоземельных металлов малорастворимы в воде. Способность R2O3 соединяться с водой, то есть основная функция, и растворимость R(OH)3 уменьшаются в той же последовательности, что и активность металлов: Lu(OH)3, а особенно Sc(OH)3, проявляют некоторые свойства амфотерности. Так, кроме раствора Sc(OH)3 в концентрированном NaOH, получена соль: Na3Sc(OH)6·2H2O.
Поскольку металлы данной подгруппы активны, а их соли с сильными кислотами растворимы, они легко растворяются и в кислотах-неокислителях, и кислотах-окислителях.
Все редкоземельные металлы энергично реагируют с галогенами, создавая RHal3 (Hal — галоген). С серой и селеном они также реагируют, но при нагревании.
Лучшие столярные клеи на основе смолы
Востребованными остаются клеевые составы на основе органических смол. Их прочность и стойкость к влаге, нефтепродуктам, агрессивным веществам не вызывает сомнений. Самым популярным из них является эпоксидка. Только мастеру необходимо проветривать помещение и защищать кожу рук. Вот лучшие клеевые составы на основе смолы.
UHU PLUS ENDFEST 300
Рейтинг: 4.9
Химикам из Германии удалось создать самый прочный клей для дерева на основе эпоксидной смолы. Состав UHU PLUS ENDFEST 300 представляет собой двухкомпонентный продукт. С его помощью можно соединять самые разные материалы. Не рекомендуется использовать клей только для работы с полиэтиленом, полипропиленом и стеклом. За сверхпрочность эксперты отдали этому продукту первую строчку рейтинга. Готовится клеевой раствор достаточно просто, а время схватывания составляет 90 минут. Полностью шов полимеризуется через 12-24 ч.
Из достоинств клея профессионалы отмечают влагостойкость, высокую ударную прочность и долговечность шва. Но чтобы получить весь набор этих свойств, следует соблюдать пропорции при смешивании.
- высокая прочность;
- долговечность шва;
- универсальность;
- влагостойкость;
высокая цена.
TITEBOND ORIGINAL WOOD GLUE
Рейтинг: 4.8
Много хвалебных отзывов от столяров и мебельщиков получил однокомпонентный клей для дерева TITEBOND ORIGINAL WOOD GLUE. Он представляет собой эмульсию на базе алифатической смолы. Эксперты называют этот состав лучшим специализированным продуктом для профессиональной деятельности. Особенно прочным получается соединение деталей с шипами и пазами. Эмульсия после высыхания становится влагостойкой, шов превосходно выдерживает ударную нагрузку. Благодаря глубокому проникновению клея удается связать структуру, как натуральной древесины, так и стружечно-волокнистых элементов.
Профессионалы лестно отзываются об удобстве пользования, быстром отвердении шва. Только расход эмульсии достаточно большой (180 г/кв. м), да и рабочее время составляет всего 5-10 минут. Материал достоин второго места в рейтинге.
- высокое качество;
- влагостойкость;
- прочность;
- большой расход;
- небольшое рабочее время.
КЛЕЙ ЭДП ЭПОКСИДНЫЙ
Рейтинг: 4.7
По самой привлекательной цене реализуется на отечественном рынке клей для дерева ЭДП ЭПОКСИДНЫЙ. Это один из самых востребованных составов у любителей и профессионалов. С его помощью можно создавать новые узлы или ремонтировать старую мебель. Характерными особенностями популярной эпоксидки является хорошая адгезия, высокая прочность, влагостойкость. Смолистая основа позволяет вводить дополнительно различные наполнители. В процессе полимеризации усадки не происходит. Состав не рекомендуется применять для тех предметов, которые будут контактировать с продуктами питания.
Эксперты отдали проверенному годами клею только третью строчку рейтинга из-за длительного времени высыхания. К тому же оставляет желать лучшего удобство применения.
Металлы, составляющие группу редкоземельных
По состоянию на 2019 г., в список редкоземельных металлов входят следующие химические элементы:
- Скандий: назван в честь Скандинавии.
- Иттрий: получил наименование в честь населенного пункта Иттербю, расположенного на территории современной Швеции.
- Лантан: в переводе с греческого языка наименование этого элемента означает «таинственный, скрытный».
- Церий: назван в честь римской богини Цереры и одноименной карликовой планеты в солнечной системе.
- Празеодим: в переводе с греческого языка наименование этого элемента обозначает «зеленый близнец».
- Прометий: назван в честь древнегреческого мифического персонажа Прометея.
- Неодим: в переводе с греческого языка означает «новый близнец».
- Самарий: получил наименование в честь минерала самарскит.
- Европий: назван в честь одноименной части света.
- Гадолиний: получил наименование в честь финского химика Юхана Гадолина.
- Диспрозий: в переводе с греческого языка наименование этого элемента означает «труднодоступный».
- Гольмий: назван в честь столицы Швеции – Стокгольма.
- Эрбий: получил наименование в честь шведской деревни Иттербю.
- Лютеций: назван в честь старинного названия столицы Франции, используемого древними римлянами.
- Иттербий: получил наименование в честь населенного пункта Иттербю.
- Тулий: получил наименование в честь сказочного острова Туле, описанного в скандинавской мифологии.
- Тербий: назван в честь деревни Иттербю.
Термин «редкоземельные» образован от словосочетания «редкие земли». Он объединяет химические элементы по следующим признакам:
- Вещества редко встречаются в естественной среде. В нынешнее время только 2% редкоземельных металлов добываются в земной коре. Извлечение металлов в большинстве случаев осуществляется из отходов производства минеральных удобрений. Добыча осуществляется с применением инновационных технологий.
- При взаимодействии с кислородом элементы образуют тугоплавкие, нерастворимые оксиды, называемые «землями».
- Представляют собой серебристо-белые металлы, тускнеющие при взаимодействии с воздухом в результате образования оксидной пленки.
Редкоземельный металл лантан является одним из самых дорогих химических элементов. При взаимодействии с алюминием он образует вещества с повышенной интенсивностью поглощения углерода и азота. Благодаря низкой активности по отношению к H2, его можно применять для изоляции водорода от окружающих газов.
Редкоземельные соединения отличаются между собой по химической активности. Этот параметр возрастает от скандия до лантана. До лютеция химическая активность снижается до минимальных значений. Это явления обусловлено постепенным снижением расстояния между атомами и энергетическими уровнями.
В научной литературе редкоземельные металлы имеют следующие обозначения:
- TR: аббревиатура, обозначающая “редкие земли” (Terrae rarae).
- REE: сокращение английского словосочетания Rare-earth elements (редкоземельные элементы).
- REM: сокращение английского словосочетания Rare-earth metals (редкоземельные металлы).
В российских учебниках редкоземельные элементы обозначаются аббревиатурами РЗЭ или РЗМ.
Борьба за месторождения
Эксперты считают, что за месторождения редкоземельных металлов будет идти такая же конкурентная борьба, как и за углеводороды.
В 2013 году британская частная компания SRE Minerals заявила, что на территории КНДР, в провинции Пхёнан-Пукто, находится одно из крупнейших в мире месторождений редкоземельных элементов. Компания подписала с северокорейским правительством соглашение о его разработке на 25 лет. Также предусмотрено строительство перерабатывающего завода. По предварительным оценкам, запасы РЗЭ в этом районе превышают 200 млн тонн. Стоимость таких объёмов сырья исчисляется триллионами долларов.
Также по теме
Индустрия без подзаряда: почему взлёт цен на кобальт угрожает производству смартфонов и электрокаров
Производство электрокаров, смартфонов и высокотехнологичных гаджетов может оказаться под угрозой. Всё дело в стремительном удорожании…
В 2014 году несколько российских компаний, включая НПО «Мостовик», начали переговоры с властями КНДР о сотрудничестве. Российская сторона должна была взяться за модернизацию и реконструкцию железнодорожной сети КНДР, получив в обмен доступ к разработке полезных ископаемых в стране. Речь, в первую очередь, шла о добыче редкоземельных элементов и строительстве горно-обогатительных комбинатов. Совместный проект, в который планировалось вложить более $25 млрд, получил название «Победа».
Ещё один регион, располагающий большими запасами редкоземельных элементов, — Африка. Одна только ЮАР занимает шестое место в мире по запасам редкозёмов.
Такие сырьевые богатства не могли не привлечь иностранцев. В конце 2017 года британская компания Rainbow Rare Earths начала добычу редкоземельных элементов на руднике Gakara в Бурунди.
В 2016 году власти другой африканской страны, Зимбабве, предложили России сотрудничество в сфере добычи редкоземельных металлов. С такой инициативой выступил министр шахт и развития горно-рудной промышленности страны Уолтер Чидаква.
Однако и Россию, и другие страны на африканском континенте теснит Китай: Пекин уже давно активно развивает своё экономическое присутствие в Африке.
Ещё один регион, где могут столкнуться интересы крупных держав, — Афганистан. Эта страна — настоящая кладовая минерального сырья, включая редкоземельные металлы. Речь, в частности, идёт о празеодиме — этот металл применяют для улучшения свойств ряда сплавов и изготовления специальных стёкол. Также в Афганистане можно добывать церий, неодим, лантан и самарий. Работы по разведке афганских недр начали ещё советские специалисты, продолжили искать РЗЭ здесь уже американцы в 2000-х годах.
- Джелалабад, Афганистан
- AFP
Недавно Дональд Трамп и президент Афганистана Ашраф Гани договорились о добыче редкоземельных металлов американскими компаниями на территории республики. Американский лидер решил поколебать монополию КНР на рынке редкозёмов, и развитие зарубежных проектов играет приоритетную роль в этой стратегии, считают эксперты.
Соглашение с Канберрой также закономерно для Вашингтона, ведь страны близки в политическом отношении, а Австралия располагает богатыми запасами природных ресурсов, включая РЗЭ.
Важную роль на рынке редкоземельных элементов играет и Казахстан, богатый разнообразными природными ресурсами. Как пояснил Бельчук, за право разрабатывать казахстанские месторождения борются компании из Японии, Южной Кореи, Китая.
ИСТОРИЯ КИТАЙСКОГО УСПЕХА
Экспансия Китая на рынок редких земель 30 лет назад, ещё в 1981 году, когда было открыто и освоено гигантское коренное бастнезитовое месторождение Баян-Обо, потенциал которого оценивался в 36 млн. т оксидов РЗМ. Для сравнения — все мировые запасы исчисляются 88 млн. т.
— Не знаю, миф это или правда, — рассказывает нашей газете начальник лаборатории отделения «Редкие металлы» ВНИИХТ, один из теперь уже немногих в нашей стране экспертов по редкоземельной продукции Андрей Селивановский, — но Ден Сяопину приписывают такие слова: «У нас нет нефти, зато у нас есть редкие земли».
И действительно, в КНР со всей серьёзностью подошли к добыче востребованного сырья. Это стало истинно народным делом.
— Однажды, в 1990‑х, наш институт посетил гость из Китая, — продолжает Андрей Селивановский, — и мы спросили, как у них обстоят дела с редкими землями. Он ответил: в нашей деревне неплохо. Оказалось, это была не шутка.
Некоторая доля суммарных редкоземельных концентратов была выведена из-под государственного контроля. Причина в том, что часть редкоземельных руд Китая — это, по сути, глины. Содержание целевого сырья в них очень мало, а сами глины рассредоточены по обширной территории. Промышленная переработка в этом случае нерентабельна. И вот что было придумано: в крестьянские дворы по всей стране завозились глина и необходимые реактивы, к примеру сульфат натрия и щавелевая кислота. Люди помещали глину в бочки, разводили водой, размешивали палкой или мотором, добавляли сульфат натрия, затем фильтровали раствор, засыпали в него щавелевую кислоту и собирали осадок солей РЗМ с чистотой около 75%. Эти соли сдавали на частные предприятия, естественно, за деньги. Там соли очищали от примесей и получали чистый суммарный редкоземельный концентрат в виде оксидов. Продукт сбывали государству. Разделение же суммарных концентратов на элементы полностью находилось в руках государства. Со временем заводы тоже перешли к частным владельцам, но контроль производства и жёсткое наблюдение за распределением по-прежнему осуществлялись сверху. Страна постоянно наращивала разделительные мощности, чтобы продавать за рубеж как можно больше дорогих отдельных элементов и как можно меньше дешёвого суммарного концентрата. Разница в цене между ними весьма значительная. Суммарные концентраты сегодня стоят в районе 40 долларов за килограмм, а раздельные редкоземельные элементы — от 30 долларов за килограмм самария до 10 тыс. долларов за килограмм лютеция.
С конца 80‑х годов прошлого века Китай регулярно поставлял всему миру редкие земли на самых выгодных условиях. В 90‑х благодаря демпингу Китая цены на сырьё упали в два-четыре раза. Дело и в том, что выделение редкоземельных металлов из породы — процесс не только дорогой, но и экологически «грязный», а в КНР про экологию и экологические законы тогда ещё никто толком не слышал. В результате из-за китайского демпинга большинство рудников со сравнительно высокой себестоимостью добычи повсеместно стали закрываться. В том числе, месторождение «Маунтин Пасс» (Калифорния, США), где запасы полезных компонентов составляли несколько миллионов тонн и которое с середины 60‑х до середины 80‑х оставалось основным источником редкоземельного сырья в мире. СССР, добывавший до 1986 года 8 тыс. т редких земель в год, не стал исключением. Прекратили деятельность разделительные заводы во Франции и Штатах. Китай превратился в почти полного монополиста — по добыче, обогащению, первичной переработке, сепарации с получением индивидуальных элементов и конечных соединений. А в последние годы страна ощутимо увеличила использование редких земель в собственных высокотехнологичных производствах.
— Если посмотреть на графики по добыче и использованию РЗМ в Китае, — подытоживает Андрей Селивановский, — можно увидеть, что к 2012–2014 году обе кривые должны сравняться. Экспорт сойдёт на нет.
Все эти годы и у нас, и на Западе некоторые специалисты продолжали настаивать на том, что редкие земли — стратегическое сырьё и что необходимо их производить самим. Однако данная сфера долгое время оставалась вне поля зрения большинства государств.