Содержание
- 1 Файлы
- 2 Лабораторный блок питания 30в 5а, результат
- 3 Детали.
- 4 Работы наших читателей
- 5 Схемы источников питания
- 6 Задать вопрос автору статьи, оставить комментарий
- 7 Лабораторный блок питания своими руками 1,3-30В 0-5А
- 8 Виды и особенности блоков питания
- 9 Достоинства электронных преобразователей
- 10 Изготовление корпуса
- 11 Аналоговый источник питания
- 12 Недостатки предлагаемых рынком моделей ЭТ
- 13 Приступаем к сборке
- 14 Как сайлентблоки влияют на управление автомобилем?
- 15 Многослойная конструкция
- 16 Устройство и принцип действия ЭТ
- 17 Где 12 вольт, а где 5? Разбираемся с цветовой маркировкой
- 18 Предупреждение
- 19 Как включить блок питания (БП) от компьютера без компьютера
- 20 Необычный блок питания
- 21 Схема блока питания
- 22 Индикатор для блока питания
- 23 Как правильно рассчитать число витков
Файлы
Схема достаточно проста для повторения даже начинающими радиолюбителями, но, если кого интересует готовая печатка, качайте файл — Регулируемый БП 24 В 5 А
Кроме схемы и печатки в архиве содержится файл таблица с графиком, визуально отражающий изменение харауеристики равномерности регулирования при введении в схему корректирующего резистора, может кому то будет интересно, или даже полезно. Там в красных ячейках можно задавать величину сопротивлений переменного и корректирующего резистора. Изменение характеристики визуально можно наблюдать по представленным в файле графикам.
Лабораторный блок питания 30в 5а, результат
Плата управления собранная на макетке.
Плата основного диодного моста.
Транзисторы установлены на радиатор от Cooler Master CMDK8, этот боксовый куллер способен рассеивать мощность до 95 Вт.
Внутри блока расположен 80мм дополнительный вентилятор, охлаждающий диодный мост и трансформатор, а также обдувающий радиатор транзисторов с тыльной стороны.
Все это добро засунуто в добротный радиолюбительский корпус, оставшийся со времен СССР. Вот таким вышел у нас лабораторный блок питания своими руками.
Подключение цифрового вольтамперметра избавило нас от измерительных стрелочных приборов.
Демонстрация работы:
В работе с максимальным током в 5 А транзисторы остаются теплыми благодаря хорошей системе охлаждения, температура основного диодного моста также в норме, т.к. там используются мощные диоды Шоттки и вентилятор, который охлаждает этот мост и трансформатор. При полной нагрузке все таки происходит небольшой нагрев трансформатора. Вес блока составил порядка 4 кг.
Уже изготовив данный блок, пришла идея, как можно немного переделать схему и получить этот лабораторный блок питания с нуля вольт. Но это уже будет другая история…
Детали.
В блоке питания использованы самые распространенные детали. Понижающий трансформатор Т1 можно использовать любой, обеспечивающий на вторичной обмотке переменное напряжение 14 – 18 Вольт при токе нагрузки 0,4 – 0,6 Ампер.
В оригинале статьи используется готовый трансформатор от кадровой развертки Советских телевизоров — типа ТВК-110ЛМ.
Диоды VD1 – VD4 могут быть из серии 1N4001 – 1N4007. Также подойдут диоды, рассчитанные на обратное напряжение не менее 50 Вольт при токе нагрузки не менее 0,6 Ампер.
Диод VD5 желательно германиевый из серии Д226, Д7 — с любым буквенным индексом.
Электролитический конденсатор любого типа, на напряжение не менее 25 Вольт. Если не будет одного с емкостью 2200 микрофарад, то его можно составить из двух по 1000 микрофарад, или четырех по 500 микрофарад.
Постоянные резисторы используются отечественного МЛТ-0,5, или импортного производства мощностью 0,5 Ватт. Переменный резистор номиналом 5 – 10 кОм.
Транзисторы VT1 и VT2 германиевые — любые из серии МП39 – МП42 с любым буквенным индексом.
Транзистор VT3 – из серии КТ814, КТ816 с любым буквенным индексом. Этот мощный транзистор обязательно устанавливается на радиатор.
Радиатор можно использовать самодельный, сделанный из пластины алюминия толщиной 3 – 5см и размером около 60х60мм.
Стабилитрон VD6 будем подбирать, так как у них идет большой разброс по напряжению стабилизации Uст. Возможно, даже придется составить из двух. Но это уже при наладке.
Вот основные параметры стабилитронов серии Д814 А-Д:
Миллиамперметр используйте такой, какой у Вас есть. Можно использовать индикаторы от старых приемников и магнитофонов. Одним словом – ставьте что есть. А можно даже вообще обойтись без прибора.
На этом хочу закончить. А Вы, если заинтересовала схема, подбирайте детали.В следующей части начнем рисовать и делать печатную плату с нуля, возможно, распаяем на ней детали.
Удачи!
Работы наших читателей
Ниже будем добавлять работы наших читателей, присылайте в комментах фото своих лабораторных блоков питания собранные по этой схеме, будем добавлять в статью, так станет интересней.
- Лабораторный блок питания своими руками прислал Алексей. Это его первая электронная подделка, пока не оформлен в корпус. Трансформатор: ТПП-312. Транзисторы: пара TIP36C. На выходе: ток до 7А.
Лабораторный блок питания собрал своими руками Виктор. Трансформатор: взял с бесперебойника. Транзисторы: пара TIP36C. На выходе: ток до 5А.
Корпус подошел от распределительной коробки, размер лабораторного БП 24х19х9,5 см, вес 4,5 кг. По затратам на все ушло около 900 рублей.
Лабораторный блок питания выдает напряжение 1.3… 25 вольт, максимальное честное напряжение 19,5 при нагрузке 5 ампер, это почти, то напряжение, которое выдает трансформатор до диодного моста и конденсаторов.
Самодельный лабораторный блок питания от Валерия. Трансформатор: ТПП-307: пара TIP36C. На выходе: ток до 3,6А. Из за проблем с трансформатором, выжать больше не получилось.
Еще один лабораторный блок питания от Алексея. Трансформатор: ТПП-312: Силовые транзисторы пара TIP36C. На выходе: ток до 5,5А. Из за небольшой ошибки в трассировке дорожек этот БП занял у Алексея очень много времени и сил.
Свой лабораторный блок питания, который собран по нашей схеме, прислал нам Сергей. Транзисторы: пара TIP36C. Трансформатор: перемотанный трансформатор от UPS. Отдельно хотелось отметить, что такой трансформатор без перемотки не хотел корректно работать в БП. Дополнительно Сергей модифицировал свой блок питания, а именно оснастив его системой автоматической регулировки оборотов вентилятора, снятой со старого компьютерного блока питания. Стоимость блока получилась примерно в 2700 руб.
Этот лабораторный блок питания мы получили от Александра. Во время сборки Александр не однократно сталкивался с различными проблемами, не смог подружить пару транзисторов и не сразу разобрался с питанием LM301. Но благополучно их решил и не стал опускать руки. Транзисторы: пара TIP36C. Трансформатор: ТПП 322. На выходе 30В и 5А.
Такой блок мы получили от Андрея. Выдает 19,5-20 В и 5 А. Порог установлен на 4,5 А. Хотя однако трансформатор может намного больше (32 В; 6 А). Добавлены последовательно к переменным резисторам еще по одному, номиналом 10% от базового. Транзисторы: пара TIP36C. Трансформатор: тороидальный от радиолы.
comments powered by HyperComments
Схемы источников питания
Для самостоятельного изготовления БП, потребуется наличие радиоэлементов, аккуратность и принципиальна схема. Выполнить аналоговый, самодельный блок питания, обычно не вызывает трудностей. В то время как изготовить регулируемый импульсный блок питания своими руками, будет сложно даже для подготовленного радиолюбителя.
Линейный блок питания
Самая дорогостоящая деталь такого источника напряжения будет трансформатор. Для простоты изготовления лучше поискать трансформатор вида тор. Остальные радиоэлементы не являются дефицитными и их всегда можно легко достать. Для того чтоб выполнить простой регулируемый источник питания понадобится:
- понижающий трансформатор;
- четыре выпрямительных диода или готовый диодный мост;
- электролитическая ёмкость 68—220 мкФ на 400 вольт;
- резистор 200 Ом;
- переменный резистор 6,8 кОм;
- интегральный стабилизатор LM 317.
Трансформатор выбирается со вторичной обмоткой около 25 вольт. При необходимости нужное количество витков потребуется смотать или домотать самостоятельно. Следует отметить, что при использовании диодного моста, выходное напряжение поднимется на величину равную произведению переменного напряжения на число 1.41. Вся схема собирается на плате из текстолита или навесным монтажом. Управление уровнем сигнала осуществляется изменением сопротивления построечного резистора. Такой блок питания сможет выдавать от 1,2 и до 37 вольт при токе 1,5 ампера.
Цифровой блок питания
Сделать самостоятельно такой БП совсем непросто. Для выполнения простого импульсного блока самостоятельно, в первую очередь понадобится изготовить печатную плату. Для этого в домашних условиях используется лазерно-утюжный метод (ЛУТ). После того как плата будет готова и закуплены радиодетали, потребуется правильно всё распаять.
Работа схемы заключается в использовании микросхемы TL 494. Встроенный в неё генератор подаёт поочерёдно на транзисторы VT1, VT2 работающие в ключевом режиме, импульсы с частотой 30 кГц. Транзисторы соединены с управляющим трансформатором TR1, который управляет VT3, VT4. Конденсаторы С3, С4 являются фильтром питания.
Цепочка R7, C8 формирует питающее напряжение для микросхемы в первый момент включения, после разряда С8 питание уже подаётся через третью обмотку трансформатора TR2. Стабилитрон VD2 и ёмкость C6 предназначены для формирования сигнала, обеспечивающего работу микросхемы. Напряжение с третьего вывода трансформатора, через диоды Шотки и С9, С10, подаётся на вход радиоустройства.
Собрав источник напряжения, изучив его работу, в дальнейшем выполнить ремонт импульсных блоков питания телевизоров своими руками не составит труда. Да и такой же ремонт БП в компьютерных системах или зарядных устройствах, будет легко осуществим самостоятельно.
При самостоятельном изготовлении приборов необходимо соблюдать осторожность и помнить об электробезопасности при работе с сетью переменного тока 220 вольт. Как правило, верно выполненный БП из исправных деталей не потребует настройки и сразу начинает работать
Задать вопрос автору статьи, оставить комментарий
Лабораторный блок питания своими руками 1,3-30В 0-5А
Немножко подумав, мы сделали свою интерпретацию данного блока питания. Повысили емкость входных конденсаторов, убрали элементы измерительной головки и добавили парочку защитных диодов. Применения в этой схеме КТ818 было абсолютно неоправданно, он безбожно грелся и безвозвратно издох, пока его не заменили парой недорогих транзисторов TIP36C, которые включили параллельно.
Настройку блока питания необходимо проводить в несколько этапов:
Первое включение производится без LM301 и транзисторов. Регулятором Р3 проверяем, как регулируется напряжение. За регулировку напряжения отвечают LM317, Р3, R4 и R6, С9.
Если регулировка напряжения производиться нормально, тогда к схеме подключаем транзисторы. Пару транзисторов покупать лучше с одной партии, с максимально близким hFE. Для нормальной работы параллельно включенных транзисторов, в цепи эмиттера должны находиться балансировочные резисторы R7 и R8. Номинал R7 и R8 необходимо подбирать, сопротивление должно быть максимально низким, но достаточным, что бы ток проходящий через Т1 был равен току проходящим через Т2. На данном этапе к выходу БП можно подключать нагрузку, но ни в коем случае не стоит устраивать КЗ – транзисторы моментально выйдут из строя, забрав с собой и LM317.
Следующим этапом станет установка LM301
Важно убедиться, что на 4-й ножке операционного усилителя присутствует -6 В. Если там +6 В, то необходимо внимательно осмотреть, как у Вас включен диодный мост BR2 и правильно ли подключен конденсатор С2
Питание LM301 (7я ножка) МОЖНО брать с выхода БП.
Вся дальнейшая настройка сводиться к подгону Р1 под максимальный рабочий ток блока питания. Как видим, настроить лабораторный блок питания своими руками будет совсем не трудно, главное не допустить ошибки при монтаже.
Используемые нами основные компоненты:
- Трансформатор ТПП 306-127/220-50. Позволяет выжать с каждой 20 вольтовой обмотки по 2,56 А, включив их параллельно получим 5,12 А. Остальные обмотки идут на питание операционного усилителя, вентилятора и цифрового вольтамперметра;
- Стабилизатор — LM317К;
- Транзисторы — TIP36C;
- Операционный усилитель — LM301AN;
- Конденсаторы электролитические – номинал см. схему, максимальным напряжением до 50В;
- Диоды BR2 – 1N1007;
- Диоды BR1 — MBR20100CT;
- Резисторы R1 – 33 Ом, 2Вт;
- Резисторы R5, R7, R8 – 0,1 Ом, 5Вт;
- Остальные резисторы мощностью — 0,25Вт;
- Резисторы Р1 – многооборотный подстроечный 470 кОм;
- Предохранитель F2 – самовосстанавливающейся предохранитель от Littelfuse на 7А/30В.
Виды и особенности блоков питания
Встречаются два типа блоков питания:
- Импульсный;
- Линейный.
Блок импульсного типа может рождать помехи, которые буду отражаться на настройке приемников и других передатчиков. Блок питания линейного типа может оказаться неспособным для выдачи необходимой мощности.
Как правильно сделать лабораторный блок питания, от которого можно будет заряжать АКБ, и питать, чувствительны платы схем? Если взять простой блок питания линейного типа на 1,3-30 В, и мощностью тока не более 5 А, то получится хороший стабилизатор напряжения и тока.
Воспользуемся классической схемой для сборки блока питания своими руками. Она сконструирована на стабилизаторах LM317, которые регулируют напряжение в диапазоне 1,3-37В. Их работа совмещена с транзисторами КТ818. Это мощные радиодетали, которые способны пропустить большой ток. Защитную функцию схемы обеспечивают стабилизаторы LM301.
Достоинства электронных преобразователей
К числу основных достоинств устройств, построенных на основе ЭТ, относят следующие особенности работы схемы:
- выходной трансформатор блока питания не запустится без подсоединения к нему нагрузки – перейдет в активный режим, если только к нему подключен светильник с лампочкой;
- помимо щадящего режима работы элементов электронной схемы это свойство ЭТ позволяет экономить на расходуемой электроэнергии;
- в изделии легко реализуется система защиты от опасных перегрузок и коротких замыканий.
В качестве образца, используемого для самодельного изготовления блока питания на таком трансформаторе, нередко берутся более сложные полумостовые схемы. Обычно они построены на базе драйверов типа IR2153 или подобных ему электронных компонентов. В качестве дополнительной опции в них предусмотрен индикаторный светодиод, сигнализирующий о наличии высокочастотных колебаний.
Изготовление корпуса
Для изготовления корпуса блока питания идеально подойдут алюминиевые уголки и пластины. Сначала необходимо сделать своеобразный скелет конструкции, который впоследствии можно обшить листами из алюминия подходящей формы. Для уменьшения веса блока питания можно в качестве обшивки использовать более тонкий металл. Изготовить блок питания 12В своими руками из таких подручных материалов несложно.
Идеально подойдет корпус от микроволновой печи. Во-первых, металл достаточно тонкий и легкий. Во-вторых, если сделать все аккуратно, то лакокрасочное покрытие не повредится, поэтому внешний вид останется привлекательным. В-третьих, размер обшивки микроволновой печи довольно большой, что позволяет сделать практически любой корпус.
Аналоговый источник питания
Такие источники напряжения характеризуются надёжностью в работе и простотой изготовления. Недостатками являются размеры и вес, а также высокое ценообразование.
Ключевыми элементами линейного источника напряжений являются:
- сетевой фильтр;
- трансформатор.
Для получения постоянного напряжения после трансформатора добавляется диодный мост и электролитический конденсатор.
Трансформаторы применяются различного исполнения, единственно их первичная обмотка должна быть рассчитана на подключение к сети 220 вольт. По виду они бывают понижающими и повышающими. Сам трансформатор представляет собой электротехническое изделие, состоящее из двух частей. Сердечника, собранного из стали или феррита, и обмоток, выполненных в виде витков из проводникового материала. Для получения на выходе меньшего уровня сигнала, чем на входе, количество витков во вторичной обмотке делается меньше. Таким образом, изменяя это соотношение можно получить любое напряжение.
Сетевой фильтр предотвращает попадание помех в сеть от работающего оборудования и наоборот. Обычно представляет собой ёмкостно-индуктивную цепочку.
Принцип работы БП
Схема трансформаторного блока питания работает следующим образом. Напряжение сети проходит через фильтр, а с него попадает на первичную обмотку трансформатора. При прохождении по ней переменного тока, образовывается переменное магнитное поле. Этот поле пронизывает сердечник и все обмотки, в которых появляется ЭДС. Если к вторичной обмотке подсоединена нагрузка, то под действием ЭДС через неё начинает протекать переменный ток.
Для получения напряжения постоянной величины, сигнал со вторичной обмотки трансформатора передаётся на выпрямительный узел. Это устройство собранно на четырёх диодах, включённых по мостовой схеме, и электролитического конденсатора. С электролита и снимается постоянное напряжение, предназначенное для питания приборов.
Недостатки предлагаемых рынком моделей ЭТ
В дешевых моделях отсутствует специальная защита от перегруза
Несмотря на экономичную и хорошо отработанную схему блоки питания на ЭТ имеют целый ряд недостатков, к которым принято относить:
- отсутствие в простейших китайских моделях специальной защиты от перегруза;
- вызванная этим необходимость обязательной доработки схемы;
- во многих рыночных образцах отсутствует входное фильтрующее устройство, что вынуждает добавлять в нее сглаживающий электролитический конденсатор (он ставится после «мощного» дросселя).
К перечисленным недостаткам обычно относят «жесткий» режим работы высоковольтных транзисторов, включенных по ключевой схеме.
При случайном замыкании по выходу (КЗ) эти элементы просто «сгорают», что приводит к необходимости срочного обновления всего электронного модуля. Нередко при этом выходит из строя и выпрямитель на полупроводниковых диодах, также нуждающийся в замене.
Приступаем к сборке
Трансформатор ТС-150–1
После того как вы определились с требованиями, которым должен отвечать ваш постой блок питания регулируемого типа, а также была выбрана подходящая схема, можно начинать саму сборку. Но прежде всего запасемся нужными нам деталями.
Для сборки вам понадобятся:
- мощный трансформатор. Например, ТС-150–1. Он способен выдавать напряжение в 12 и 24 В;
- конденсатор. Можно использовать модель на 10000 мкФ 50 В;
- микросхема для стабилизатора;
- обвязки;
- детали схемы (в нашем случае — схема, которая указана выше).
После этого по схеме собираем своими руками регулируемый блок питания в точном соответствии со всеми рекомендациями. Последовательность действий должна быть соблюдена.
Готовый БП
Для сборки БП используются следующие детали:
- германиевые транзисторы (в большинстве своем). Если вы захотите заменить их на более современные кремневые элементы, тогда нижний МП37 обязательно должен остаться германиевым. Здесь используются МП36, МП37, МП38 транзисторы;
- на транзисторе собирается токоограничительный узел. Он обеспечивает отслеживание падения на резисторе напряжения.
- стабилитрон Д814. Он определяет регулировку максимального выходного напряжения. На себя он забирает половину от выходного напряжения;
- нижний предел в собранном блоке питания имеет показатель напряжения всего 0,05 В. Такой показатель редкость для более сложных схем сборки преобразователя;
- стрелочные индикаторы отображают показатели тока и напряжения.
Детали для сборки
Для размещения всех деталей необходимо выбрать стальной корпус. Он сможет экранировать трансформатор и плату блока питания. В результате вы избежите ситуации появления различного рода помех для чувствительной аппаратуры.
Получившийся преобразователь можно спокойно использовать для питания любой бытовой аппаратуры, а также экспериментов и проверок, проводимых в домашней лаборатории. Также такой прибор можно применять для оценки работоспособности автомобильного генератора.
Как сайлентблоки влияют на управление автомобилем?
Сайлентблоки – важнейшая часть любого автомобиля. Данные детали представляют собой уплотнённую втулку, которая соединяет детали амортизации. А амортизация – это одна из самых главных составляющих любого автомобиля. Поэтому, исправность сайлентблоков крайне важна.
Как же они влияют на управление?
- Если сайлентблок сделан некачественно, то велик шанс обычной поломки, при которой он перестает выполнять свои функции. В данном случае, водитель может услышать звуки удара колес и дна автомобиля о кочки и другие неровности. Управлять автомобилем станет очень сложно.
- Некачественные сайлентблоки, но уже исправные. Обычно, данные детали делают с применением резины. А с использованием, из-за нефтепродуктов и химических средств, резина может слегка раствориться. Это также может привести к неисправностям амортизации.
Автомобиль станет сложнее держать на неровной дороге, что может привести к авариям.
Также, при проблеме и износе сайлентблоков, автомобиль на больших скоростях может терять управление, поэтому, очень важно следить за исправностью этих деталей.
Многослойная конструкция
Правильно выполненная изоляционная технология состоит из нескольких пластов и представляет собой так называемый пирог утепления, где материалы расположены в следующем порядке:
- гидроизоляция (мембранная пленка);
- базальтовый утеплитель;
- защитная фольга.
Толщина теплоизоляционного слоя в среднем составляет от 20 сантиметров и зависит от вида кровли (наличия чердака), функционального назначения помещения и климата в регионе, на территории которого возведена постройка.
Устройство и принцип действия ЭТ
Электронный трансформатор
Конструктивно этот элемент схемы содержит в своем составе следующие узлы:
- мультивибратор – задающий генератор импульсов на мощных транзисторах;
- мост, собранный на высоковольтных катушках индуктивности;
- малогабаритный трансформатор напряжения 220 12.
Функцию генератора в схеме электронного трансформатора выполняет либо диодный тиристор, либо транзисторы, включенные по схеме коммутаторов мощных импульсов (их еще называют ключевыми). При работе этого электронного узла частота генерации задается с помощью переменного резистора и накопительной емкости (ее допускается регулировать в диапазоне от 30 до 35 кГц). Катушки индуктивности включены по частично мостовой схеме и намотаны на небольшом по размеру кольцевом сердечнике.
В этом модуле предусмотрена петля обратной связи, позволяющая повысить стабильность работы задающего генератора.
В составе схемы применены высоковольтные биполярные транзисторы (обычно – типа MGE 13001-13009). Конкретная марка выбирается в зависимости от мощности электронного трансформатора, основное назначение которого – понижать уровень выходного сигнала до заданной величины в 12 (24) Вольта. Его основное достоинство – небольшие габариты и малый вес, что позволяет снизить соответствующие параметры всего устройства.
Где 12 вольт, а где 5? Разбираемся с цветовой маркировкой
Как узнать, на каких проводах какие напряжения формируются? Где, к примеру, 12 вольт на блоке питания компьютера? Для этого не понадобится тестер, поскольку все провода, выходящие из компьютерного блока питания, имеют строго определенную общепринятую расцветку. Поэтому вместо тестера мы вооружаемся табличкой, приведенной ниже.
Расцветка и назначение проводов блока питания ATX
Цвет | Назначение | Примечание |
черный | GND | провод общий минус |
красный | +5 В | основная шина питания |
желтый | +12 В | основная шина питания |
синий | -12 В | основная шина питания (может отсутствовать) |
оранжевый | +3.3 В | основная шина питания |
белый | -5 В | основная шина питания |
фиолетовый | +5 VSB | дежурное питание |
серый | Power good | питание в норме |
зеленый | Power on | команда запустить БП |
Табличка особых пояснений не требует. С зеленым проводом (Power on) мы познакомились в предыдущем разделе – на него материнская плата подает сигнал низким уровнем (замыканием на общий) на включение БП. Синий провод в новых моделях БП может отсутствовать, поскольку производители материнских плат отказались от интерфейса RS-232C (COM-порт), требующего -12 В.
Фиолетовый провод (+5 VSB ) – это как раз дежурные +5 В, питающие дежурные узлы материнской платы. По серому проводу (Power good) блок питания сообщает, что все напряжения в норме и компьютер можно включать. Если какое-то из напряжений в процессе работы выходит за допустимые пределы или пропадает, то сигнал снимается. Причем это происходит до того, как успеют разрядиться накопительные конденсаторы БП, давая процессору время на принятие экстренных мер по аварийной остановке системы. Остальные провода – это провода питания материнской платы и периферийных устройств – дисководов, внешних видеокарт и т. д.
Предупреждение
Показанный в данной статье способ коррекции пригоден далеко не во всех случаях и может быть непреемлем для отдельного ряда задач!
ВНИМАНИЕ!!! Показанный способ коррекции следует использовать с особой осторожностью, зная принцип работы настраиваемого устройства и хорошо представляя, что Вы делаете! В других схемах при определённых положениях движка резисторов могут возникать недопустимые токи, способные вывести из строя резисторы или иные детали рабочего устройства!!! Используя описанный способ коррекции в своём устройстве вы действуете на свой страх и риск, а ещё лучше, представляете, что делаете. Ни какой ответственности за возможные причинённые неисправности Ваших устройств при применении корректирующего резистора по моей схеме лично я не несу
Данный способ коррекции в конкретной представленной схеме на рисунке 2 абсолютно безопасен при любых номиналах корректирующего резистора и любых положениях движков корректирующего и переменного резисторов R7 и R6.
Пользуйтесь и наслаждайтесь творческим процессом
Как включить блок питания (БП) от компьютера без компьютера
Итак, у нас в руках блок питания ATX компьютера. Прежде всего попробуем его включить. Но для этого нужно знать некоторые тонкости работы этого устройства. Предположим, перед нами компьютер. Включаем его в сеть, но внешне ничего не происходит. Это, казалось бы, понятно – машина отключена, а чтобы ее включить, нужно нажать кнопку питания на лицевой панели системного блока.
На самом деле это не совсем так. Как только мы вставили вилку в розетку, в блоке питания заработала небольшая часть схемы, вырабатывающая дежурное напряжение +5 В. Называется эта часть модулем дежурного питания. Напряжение поступает на материнскую плату и питает ее отдельные узлы, один из которых предназначен для включения компьютера.
Для подачи напряжения на этот БП служит механический выключатель
Нажимая кнопку на лицевой панели системного блока, мы тем самым подаем команду материнской плате (точнее, ее узлу включения) запустить блок питания. Узел подает на БП сигнал Power on, и БП, а значит, и сам компьютер включаются.
Поскольку компьютера у нас нет, этот сигнал нам придется подать самостоятельно. Сделать это несложно. Для этого достаточно найти разъем на блоке питания, который питает материнскую плату, и установить перемычку между зеленым и любым из черных проводов. Итак, устанавливаем перемычку, подключаем блок питания к сети, и он сразу же запускается — это слышно даже по шуму вентилятора.
Необычный блок питания
Иногда нужен регулируемый БП в диапазоне от 0 до 30 В. Такой блок питания называется лабораторным. Собирается он в такой последовательности:
- Устанавливаем на печатную плату детали, способные регулировать напряжение (предохранитель, стабилизатор и резисторы);
- Монтируем фильтрующие конденсаторы. Для плавной регулировки напряжения.
- Подключаем силовые транзисторы;
- Подключаем питание для периферии и LM301;
- Устанавливаем операционный усилитель и детали, способные стабилизировать ток (резисторы, конденсаторы, диоды);
- Устанавливаем LM113 или LMV431 (нуль) и защитные диоды;
- Настраиваем ограничитель максимального тока;
- Подключаем вольтамперметр
Блок питания на 0-30 Вольт своими руками собран. Осталось лишь подключить его в сеть, проверить под нагрузкой. И если схема собрана правильно, не допущено каких-либо ошибок, то он обязательно заработает.
Схема блока питания
Схема блока питания в классическом исполнении включает: сетевой трансформатор, диодный мост, конденсаторный фильтр, стабилизатор и светодиод. Последний выполняет роль индикатора и подключается через токоограничивающий резистор.
Поскольку в данной схеме лимитирующим по тока элементов является стабилизатор LM7805 (допустимое значение 1 А), то все остальные компоненты должны быть рассчитаны на ток не менее 1 А. Поэтому и вторичная обмотка трансформатора выбирается на ток от одного ампера. Напряжение ее должно быть не ниже стабилизированного значения. А по хорошему его следует выбирать из таких соображений, что после выпрямления и сглаживания U должно быть на 2 – 3 В выше, чем стабилизированное, т.е. на вход стабилизатора следует подавать на пару вольт больше его выходного значения. Иначе он будет работать некорректно. Например, для LM7805 входное U = 7 – 8 В; для LM7805 → 15 В. Однако следует учитывать, что при слишком завышенном значении U, микросхема будет сильно нагреваться, поскольку «лишнее» напряжение гасится на ее внутреннем сопротивлении.
Диодный мост можно сделать из диодов типа 1N4007, или взять готовый на ток не менее 1 А.
Сглаживающий конденсатор C1 должен иметь большую емкость 100 – 1000 мкФ и U = 16 В.
Конденсаторы C2 и C3 предназначены для сглаживания высокочастотных пульсаций, которые возникают при работе LM7805. Они устанавливаются для большей надежности и носят рекомендательный характер от производителей стабилизаторов подобных типов. Без таких конденсаторов схема также нормально работает, но поскольку они практически ничего не стоят, то лучше их поставить.
Индикатор для блока питания
Провёл у себя ревизию, нашёл пару простеньких стрелочных головок М68501 для этого БП. Просидел пол дня над созданием экрана для него, но таки нарисовал его и точно настроил под требуемые выходные напряжения.
Сопротивление используемой головки индикатора и применённый резистор указаны в прилагаемом файле на индикаторе. Выкладываю переднюю панель блока, если кому понадобится для переделки корпус от блока питания АТХ, проще будет переставить надписи и что-то добавить, чем создавать с нуля. Если потребуются другие напряжения, шкалу можно просто подкалибровать, это уже проще будет. Вот готовый вид регулируемого источника питания:
Плёнка — самоклейка типа «бамбук». Индикатор имеет подсветку зелёного цвета. Красный светодиод Attention указывает на включившуюся защиту от перегрузки.
Как правильно рассчитать число витков
При перемотке вторичной катушки, нужно знать, какому напряжению соответствует виток. Если перематывать первичную обмотку не планируется, нет нужды рассчитывать ни сечение провода, ни его свойства. Проблема с первичной обмоткой заключается в большом количестве витков тонкой проволоки, из которой он состоит.
Для расчета вторичной обмотки, делают 10 витков и подключают трансформатор в сеть. Измеряют напряжение на выводах, после чего делят его на 10, после чего 12 делится на полученное число. Результат и будет необходимым количеством витков, причем рекомендуется увеличить его на 10% для компенсации падения напряжения.