Содержание
- 1 Виды реостатов
- 2 Устройство ПЧ
- 3 Параметры балласта
- 4 Как сделать баластник для сварочного аппарата своими руками?
- 5 Балластный реостат РБ-302
- 6 Определяем причину поломки сами
- 7 Балластный реостат РБ-302
- 8 ВОЗМОЖНЫЕ НЕИСПРАВНОСТИ И СПОСОБЫ ИХ
- 9 Устройство люминесцентной лампы
- 10 СТРОЕНИЕ И ПРИНЦИП РАБОТЫ
- 11 Датчики, основанные на реостатах
- 12 Балластный реостат. Настройка сварочного тока
- 13 Как сделать баластник своими руками?
- 14 Электронный балласт
- 15 ДЕЛАЕМ БАЛАСТНИК САМОСТОЯТЕЛЬНО
- 16 Включение люминесцентных светильников
Виды реостатов
Реостат в виде тора меняет сопротивления практически не создавая разрыва в цепи. В полную противоположность ему выступает рычажный вид. Резисторы расположены на специальной раме, и их выбор происходит при помощи рычага. Любая коммутация сопровождается разрывом контура. Помимо этого в схемах с рычажным реостатом отсутствует возможность плавного регулирования сопротивления. Все переключения приводят к ступенчатым изменениям параметров сети. Дискретность шагов зависит от количества резисторов на раме и диапазона регулирования.
Как и рычажные, штепсельные реостаты регулируют сопротивление ступенчато. Отличительной особенностью является изменение параметров сети без разрыва цепи. При нахождении штепселя в перемычке, большая часть тока идет вне сопротивления. Количество возможных вариантов включения зависит от размера магазина. Вытаскиванием штепселя происходит перенаправление тока в резистор.
К специфичным видам можно отнести ламповые устройства и жидкостные реостаты. В связи с рядом недостатков данные приборы не нашли широкого распространения. Жидкостные реостаты можно встретить лишь в взрывоопасной среде, где они выполняют функции управления двигателем. Ламповые можно встретить в лабораториях и на уроках физики, так как их надежность и точность недостаточны для повсеместного использования.
Устройство ПЧ
- двигатель переменного тока природный контроллер;
- привод;
- дополнительные элементы.
Схема контроллера оборотов вращения двигателя 12 в изображена на рисунке. Обороты регулируются с помощью потенциометра. Если на вход поступают импульсы с частотой 8 кГц, то напряжение питания будет 12 вольт.
Прибор может быть куплен в специализированных точках продажи, а можно сделать самому.
Схема регулятора оборотов вращения переменного тока
При пуске трехфазного двигателя на всю мощность, передаётся ток, действие повторяется около 7 раз. Сила тока сгибает обмотки двигателя, образуется тепло, на протяжении долгого времени. Преобразователь представляет собой инвертор, обеспечивающий превращение энергии. Напряжение поступает в регулятор, где происходит выпрямления 220 вольт с помощью диода, расположенного на входе. Затем происходит фильтрация тока посредством 2 конденсатора. Образуется ШИМ. Далее импульсный сигнал передаётся от обмоток двигателя к определённой синусоиде.
Существует универсальный прибор 12в для бесколлекторных двигателей.
Схема состоит из двух частей–логической и силовой. Микроконтроллер расположен на микросхеме. Эта схема характерна для мощного двигателя. Уникальность регулятора заключается в применении с различными видами двигателей. Питание схем раздельное, драйверам ключей требуется питание 12В.
Параметры балласта
Параметры балласта важны при выборе оптимальной схемы
освещения аквариума и, особенно, в случае, когда схема собирается самостоятельно.
Ниже рассмотрены некоторые параметры балласта, многие из которых указаны на самом
балласте или в каталоге.
Мощность (power)- мощность балласта должна
соответсвовать мощности лампы. Нельзя использовать балласт для лампы с мощностью
отличной от номинальной. Это приведет либо к выходу лампы из строя, либо к пониженной
ее светоотдаче. Некоторые балласты специально предназначены для работы с пониженной
мощностью, например, в тех случаях, когда долгий срок работы лампы более важен.
Такие балласты называются экономичными (не надо путать их с экономичными лампами
(), которые потребляют меньше
мощности и дают меньше света при включении в обычный балласт)
Коэффициент мощности (power
factor) — еще называется косинусом угла. Дает представление о том, насколько
хорошо используется ток и напряжение сети. У обычного магнитного дросселя. без
корректирующего конденсатора, коэффициент мощности около 0.5 (low power factor
ballast). Балласт с низким коэффициентом мощности приведет к возрастанию тока
в цепи. Большинство современных балластов имеют коэффициент мощности близкий к
0.95-0.97 (high power factor ballast)
Входное напряжение (voltage)
— многие современные балласты имеют возможность подключения к сети с различным
напряжением. Также надо следить за выбором корректирующего конденсатора для сети
с частотой 50 и 60Гц. Современные балласты, особенно электронные, могут компенсировать
изменение напряжения питающей сети. В противном случае, световой поток будет резко
изменятся и при уменьшении напряжения ниже 80-85% номинального лампа может погаснуть.
Потери мощности в балласте
(power losses) — характеризует мощность, рассеянную в балласте, т.е.
на нагревание балласта. Типичные потери в электромагнитном балласте — 5-10Вт (в
электронном в несколько раз меньше). Потери мощности означают повышенный расход
энергии, более высокую температуру ламп (если они расположены близко к балласту).
что приводит к уменьшению светоотдачи и сокращению срока службы ламп.
Балласт-коэффициент (ballast-factor)
— один из наиболее важных параметров. Показывает количество света, производимое
лампой при использовании балласта, относительно значений в каталоге, т.е. при
использовании лабораторного балласта. Например, балласт-коэффициент 0.9 означает,
что лампа, с каталожным значением 2000 Лм, излучает только 1800 Лм. Многие имеют коэффициент
больший единицы (это не значит, что они нарушают закон сохранения энергии, поскольку
это не КПД), т.е. при использовании балласта с коэффициентом 1.15 данная лампа
будет производить 2300 Лм. Однако, не следует использовать балласты с коэффициентами
большими 1.1-1.15, поскольку это укорачивает срок службы лампы.
Температура (case temperature)
— указывается на корпусе балласта. Надо следить, чтобы она не превышала указанного
значения. Для магнитных балластов обычно 120-130C, для электронных 70-75C
Пиковый ток (inrush current,
crest factor) — характеризует скачок тока в сети во время зажигания лампы.
Чем он меньше, чем лучше для электрической цепи.
Нелинейные гармонические искажения
(total harmonic distortion)- некоторые балласты, особенно электронные,
могут вызывать нежелательные эффекты в электрической цепи. В современных балластах
они не превышают 10-20%
Шум (audible noise)
— балласты делятся по производимому ими шуму на несколько категорий. Постарайтесь
не использовать в жилой комнате балласт, предназначенный для использования в гараже
(в USA следует использовать класс А по шуму). Высокочастотные балласты практически
бесшумны.
Количество подключаемых ламп — многие
балласты предназначны для использования в схеме с 2-4 лампами. В подоюном случае
балласт используется более эффективно, потери на лампу меньше, чем в схеме, когда
каждая лампа питается своим балластом. Традиционные балласты (, ) используют
обычно последовательное подключение ламп, т.е. при отключении одной лампы, отключаются
и все остальные. балласт мгновенного старта () и многие электронные рассчитаны на параллельное
подключение ламп, т.е. при этом выключение одной лампы не приводит к выключению
остальных.
назад к оглавлению
Хитрые значки на балласте
Помимо разных электрических параметров, рассмотренных
выше, на балласте можно встретить разные обозначения — FCC, CE, и т.д.
Как сделать баластник для сварочного аппарата своими руками?
Создание собственноручно сделанного баластника является делом достаточно простым, если есть необходимые расходные материалы. Но результат может оказаться не столь точным в регулировке, как у покупных вариантов. При точном расчете можно получить достоверные данные, даже с учетом некоторых погрешностей, но это уже дополнительная работа. Вторым минусом этой идеи является низкий уровень безопасности. Балластники зачастую получаются открытыми и крепление на них не всегда надежное, что подвергает мастера опасности во время работы.
Чтобы создать балластник для начала нужно рассчитать сопротивление используемого материала, какое оно даст падение тока и можно ли будет его использовать с такими параметрами. Если предел будет превышен, то всегда можно уменьшить физические размеры устройства. Для этого дела понадобятся следующие материалы:
- Металлический прут или проволока, к примеру, из меди;
- Цилиндрическая форма;
- Зажимы;
- Материалы для создания передвижного контакта;
- Прибор для измерения сопротивления и силы тока.
Необходимо закрутить проволоку вокруг цилиндрической формы, чтобы она стала похожа на пружину. В отличие от пружины баластник не должен тянуться, так как ему необходимо сохранять форму. Один конец присоединяется к токоведущей части. К полученному сопротивлению присоединяется конец передвижного контакта, который может выступать провод от держака сварочного аппарата. Путем передвижения места контакта регулируется сварочный ток.
Схема подключения баластника сварочного аппарата является предельно простой. Он ставится на выходе трансформатора перед непосредственной подачей тока на держатель. Подключение осуществляется последовательно.
Балластный реостат РБ-302
РБ-302 – один из наиболее распространенных типов реостатов, технические характеристики которого позволяют работать при силе тока от 10 до 315 А. Данное устройство можно использовать при выполнении различных типов сварочных работ, в том числе ручных операций или при работе с полуавтоматом. Его можно применять совместно с выпрямителями и генераторами.
Балластный реостат РБ-302
РБ-302 оснащен системой воздушного охлаждения, что позволяет значительно расширить сферу его применения. Аппарат работает от сети 380 В. Может использоваться при подключении к различным типам источников питания, кроме некоторых типов трансформаторов. При работе с ними рекомендуют параллельно подключать несколько реостатов.
Это устройство, как и большинство аналогов, позволяет работать в двух диапазонах, 5 и 10 А. Состоит из шести рабочих секций, регулировка которых выполняется с помощью специальных контактных ножей. Диаметр проволоки, используемой в секциях, составляет 2,2 мм. Изоляция состоит из керамических пластин.
При использовании данного аппарата следует проводить периодический контроль, который выполняется путем измерения фактического сопротивления изоляции и сравнения с показателями корпуса.
Определяем причину поломки сами
Перед началом самостоятельной диагностики важно определить одну вещь: барабан в стиральной машине крутится туго или не крутится совсем?
Крутится, но туго
Предполагаемые причины:
- Перегрузка бельем.
- Разбалансированность механизма барабана.
- Присутствие в баке и в системе фильтрации посторонних предметов.
Если ваш механизм барабана вращается туго, то вполне объяснимым фактором выступает практически безобидная в последствиях перегрузка.
Для того, чтобы выяснить, так ли это или нет, откройте инструкцию к вашей стиральной машине и прочтите, какой весь загрузки белья для вашей машинки максимальный.
Многие новые модели стиралок просто-напросто не начинают работать, пока вес белья превышает допустимую норму.
Если же есть проблемы со скоростью прокручивания барабана уже на этапе отжима, то возможно проблема кроется не в перегрузке, а в разбалансированности бака, при которой стиральное устройство не может набрать необходимое количество оборотов для качественной работы. Для этого нужно узнать, равномерно ли распределено белье по всему периметру бака.
И еще одной наиболее распространенной причиной является попадание посторонних предметов в бак и барабанный механизм. Это и может мешать нормальной работе вашего стирального устройства. Даже из-за такой, казалось бы, незначительной причины барабан стиральной машины может начать туго вращаться.
Совсем не вращается
Предполагаемые причины:
- Вывод из строя приводного ремня.
- Поломка угольных щеток.
- Повреждение электродвигателя.
Когда стиралка начинает свой цикл стирки с разбалансированностью бака или просто перегруженным бельем, вполне может произойти ситуация, когда приводной ремень может соскочить или даже порваться. В таком случае вы можете провести замену и натяжение ремня привода собственноручно.
Силу натяжение приводного ремня следует довести до такого уровня, чтобы при прикосновении к нему вы могли услышать звенящий звук.
Если же проблема заключается в поломке угольных щеток, то хотя бы одна из них будет обугленной. Если же щетки истерлись, то вы можете сами их поменять. Для этого нужно снять электродвигатель и после этой процедуры заменить уже износившиеся щетки на новые детали.
Есть и такая вероятность, что неисправность самого двигателя уже будет основой для плохой работы барабана или даже его полной поломки.
Короткое замыкание или обрыв обмоток являются довольно-таки редкими ситуациями, с которыми приходилось сталкиваться пользователям бытовой техники.
В таком случае не рекомендовано пытаться починить что-то самостоятельно. Лучше доверьте это профессионалам.
Иногда бак стиральной машины вращается туго и по причине отсутствия подачи напряжения. Как правило, если электричество не попадает на обмотку электродвигателя, то и барабан не начнет своего движения. Вполне вероятно, что есть нарушение электрической цепи, а возможно из строя вышел какой-то один из программных модулей.
Мастер в сервисном центре скажет вам настоящую причину после проведения полной диагностики стирального устройства. А для того, чтобы такого не было, вам следует следить за питанием, чтобы не было никаких замыканий и скачков напряжения. Для этого советуем приобрести стабилизатор напряжения.
Балластный реостат РБ-302
РБ-302 – один из наиболее распространенных типов реостатов, технические характеристики которого позволяют работать при силе тока от 10 до 315 А. Данное устройство можно использовать при выполнении различных типов сварочных работ, в том числе ручных операций или при работе с полуавтоматом. Его можно применять совместно с выпрямителями и генераторами.
Балластный реостат РБ-302
РБ-302 оснащен системой воздушного охлаждения, что позволяет значительно расширить сферу его применения. Аппарат работает от сети 380 В. Может использоваться при подключении к различным типам источников питания, кроме некоторых типов трансформаторов. При работе с ними рекомендуют параллельно подключать несколько реостатов.
Это устройство, как и большинство аналогов, позволяет работать в двух диапазонах, 5 и 10 А. Состоит из шести рабочих секций, регулировка которых выполняется с помощью специальных контактных ножей. Диаметр проволоки, используемой в секциях, составляет 2,2 мм. Изоляция состоит из керамических пластин.
При использовании данного аппарата следует проводить периодический контроль, который выполняется путем измерения фактического сопротивления изоляции и сравнения с показателями корпуса.
ВОЗМОЖНЫЕ НЕИСПРАВНОСТИ И СПОСОБЫ ИХ
Таблица 3 Наименование Вероятная причина Метод устранения неисправности При работе аппарата не Ослабление Подтянуть контакты обеспечивается контактов на регулирование тока на 6 и клеммах тумблеров 10 А.
При работе реостата Ослабление Подтянуть резьбовые неудовлетворительно резьбовых соединения в местах регулируются токи по соединений в местах контактов ступеням контактов
9.СРОК СЛУЖБЫ И ХРАНЕНИЯ.
9.1 Срок службы реостата составляет 5 лет, при условии соблюдения правил эксплуатации и хранения.
9.2. Транспортирование упакованных реостатов может производиться любым видом транспорта при условии сохранности реостата от недопустимых климатических и механических воздействий.
9.3. реостат должен храниться в сухом вентилируемом помещении при температуре от -200С до +450С и относительной влажности не более 80% при 200С. Категорически запрещается хранить в одном помещении с реостатом материалы, испарения которых способны вызывать коррозию металла и разрушение изоляции (кислоты, щелочи и др.).
9.4.Срок хранения на складах предприятий торговли не более 24-ти месяцев с момента выпуска, после чего необходимо снять кожух реостата и произвести его ревизию.
10. СВИДЕТЕЛЬСТВО О ПРИЕМКЕ Реостат балластный РБ – 302/306 У2 серийный номер __________________ соответствует техническим условиям ТУ 3441-008-24154334-2008 и признан годным для эксплуатации.
Дата выпуска: ________________________2011г.
Штамп ОТК ______________
Подпись лица ответственного за приемку: ______________________
11. ГАРАНТИЙНЫЕ ОБЯЗАТЕЛЬСТВА
11.1. Предприятие изготовитель гарантирует соответствие изделия требованиям технических условий при соблюдении условий транспортирования, правил хранения и эксплуатации, установленных техническими условиями и настоящим паспортом.
11.2. Гарантийный срок эксплуатации изделия 12 (двенадцать) месяцев.
11.3. Гарантия не распространяется на изделия имеющие:
а) механические повреждения или несанкционированные изменения конструкции;
б) следы постороннего вмешательства или была произведена попытка ремонта в неуполномоченном сервисном центре.
в) повреждения, вызванные попаданием внутрь изделия посторонних предметов, веществ, жидкостей, насекомых;
г) повреждения, вызванные стихией, пожаром, бытовыми факторами;
д) неисправности, возникшие в результате перегрузки изделия, повлекшие выход из строя узлов и деталей.
К безусловным признакам перегрузки изделия относятся, помимо прочих: изменения внешнего вида, деформация или оплавление деталей узлов изделия, потемнение или обугливание изоляции проводов под воздействием высокой температуры.
Внимание: Перед пуском изделия в эксплуатацию внимательно ознакомьтесь с инструкцией. Нарушение правил эксплуатации влечет за собой прекращение гарантийных обязательств перед покупателем. При возникновении неисправностей изделия в течение гарантийного срока покупателю необходимо обратиться в торгующую организацию, в которой был приобретено изделие или на фирму – изготовитель
При возникновении неисправностей изделия в течение гарантийного срока покупателю необходимо обратиться в торгующую организацию, в которой был приобретено изделие или на фирму – изготовитель.
Адрес предприятия-изготовителя:
Произведено ООО «Современное Сварочное Оборудование» специально для ООО ПКП «Плазер»
344064, г. Ростов-на-Дону, ул. Вавилова,69.
Устройство люминесцентной лампы
Люминесцентная лампа относится к категории классических разрядных источников освещения низкого давления. Стеклянная колба такой лампы всегда имеет цилиндрическую форму, а наружный диаметр может составлять 1,2см, 1,6см, 2,6см или 3,8см.
Цилиндрический корпус чаще всего прямой или U-изогнутый. К торцевым концам стеклянной колбы герметично припаиваются ножки с электродами, выполненными из вольфрама.
Устройство лампочки
Внешней стороной электроды подпаиваются к цокольным штырям. Из колбы осуществляется тщательное откачивание всей воздушной массы через специальный штенгель, расположенный в одной из ножек с электродами, после чего происходит заполнение свободного пространства инертным газом с ртутными парами.
На некоторые типы электродов в обязательном порядке производится нанесение специальных активирующих веществ, представленных окислами бария, стронцием и кальцием, а также незначительным количеством тория.
СТРОЕНИЕ И ПРИНЦИП РАБОТЫ
Балластный реостат, в быту называемый баластником, является механизмом, который повышает сопротивление тока и с помощью этого контролирует его силу. Баластник просто в использовании и надежен.
Чаще всего баластник присутствует в конструкции дорогих сварочных аппаратов. Если в вашем аппарате его нет, его можно найти в специальном магазине, но цены будут достаточно высокими.
Конструкция устройства понятно каждому сварщику, так что его легко можно изготовить самостоятельно, своими руками.
Выглядит он как пружина с множеством витков большого диаметра. Она и отвечает за сопротивление, называемое балластным.
Прибор имеет специальный регулятор, позволяющий повышать или понижать сопротивление, и, соответственно, менять значение силы тока. Этот регулятор передвигается по балластному реостату, меняя его длину, то есть расстояние, которое проходит ток.
Таким образом, изменяется сопротивление.
Датчики, основанные на реостатах
Между положением ползунка реостата, его сопротивлением, силой тока в цепи и напряжением существуют прямые зависимости. Эти особенности лежат в основе датчика угла поворота. Каждому положению ротора в таком устройстве соответствует определенная электрическая величина.
Постепенно такие датчики вытесняются магнитными и оптическими аппаратами. Связанно это с тем что характеристика зависимости угла и сопротивления, помехонеустойчива от влияния температурного воздействия. Также свою долю в вытеснение реостатных датчиков вносит переход к цифровым системам. Резистивные измерители можно встретить только в схемах, использующих аналоговые сигналы.
Балластный реостат. Настройка сварочного тока
Основой стабильного протекания сварочного процесса является поддержание требуемой вольтамперной характеристики дугового разряда. В инверторных сварочных установках это достигается вследствие двухстадийного преобразования рабочего тока и определённой периодичности включения и выключения аппарата. Для остальных случаев в схеме должен присутствовать балластный реостат.
Назначение и устройство балластного реостата
Для формирования крутопадающей вольтамперной характеристики рабочего тока во время сварки, балластный реостат должен выполняет две функции: дискретно регулировать силу тока, и компенсировать его постоянную составляющую, которая возникает при питании сварочного поста от трансформатора.
Эффективность балластного реостата определяется числом его рабочих секций, каждая из которых представляет собой последовательную электрическую цепь из резистора с определённым сопротивлением и рубильника, механически разрывающего эту цепь.
Соединение секций – параллельное, что создаёт наилучшие возможности для комбинированного включения в работу каждой из них. В результате регулировка тока может выполняться с шагом 5…10 А, чего в большинстве случаев бывает вполне достаточно.
В общую цепь сварочного поста балластный реостат подключается последовательно источнику тока.
Конструктивно балластный реостат представляет собой агрегат, состоящий из:
- Закрытого обдуваемого корпуса.
- Нескольких плат из нихромовых или константановых лент.
- Прерывателей, число которых соответствует числу ступеней регулирования.
- Клемм, к которым подключаются кабеля сварочного аппарата.
- Блока включения нужного сварочного диапазона.
Все элементы управления выводятся на одну из внешних панелей корпуса. В наиболее современных конструкциях балластных реостатов в корпус встраиваются вентиляторы, устраняющие перегрев аппарата при длительной работе на больших токах (в противном случае для этого приходится последовательно подключать несколько балластных реостатов), а также конденсаторные батареи, которые компенсируют постоянную составляющую тока, возникающую при специальных процессах сварки, в частности, алюминия.
Линейка РБ наиболее распространённых балластных реостатов, выполненных по вышеописанной схеме, включает в себя следующие типоразмеры:
- РБ-201 – регулирует ток в пределах от 10 до 200 А;
- РБ-300 – регулирует ток в пределах от 10 до 300 А;
- РБ-302 – регулирует ток в пределах от 10 до 315 А;
- РБ-306 – регулирует ток в пределах от 6 до 315 А;
- РБ-501 – регулирует ток в пределах от 10 до 500 А.
Балластный реостат РБ-306
Эксплуатация модели РБ-302 выявила ряд ограничений. Быстрый выход из строя резисторов вследствие их перегрева и недостаточную точность регулировки по току. В частности, при длительных ПВ реостат сильно перегревается, что вынуждает применять аналогичный аппарат, подключаемый параллельно основному.
Модель РБ-306 лишена этих недостатков. Корпус аппарата выполнен с увеличенным количеством жалюзи, которые улучшают обдув элементов резисторных плат, а в качестве материала проволок использованы фехралевые пружины диаметром 3 мм. Первая ветка – на 6 А – собрана в виде трубчатого электронагревателя.
Модульная схема размещения элементов сопротивления облегчает их диагностику и замену. В результате указанных конструктивных изменений при тех же размерах и весе агрегата удалось расширить диапазон управления токами сварки и повысить точность регулировки.
На базе РБ-306 собираются блоки балластных реостатов (маркируются ББР), которые используют при электродуговой резке металлов. ББР эффективны в случае многопостовой сварки, применяются и для управления сварочным током от выпрямителей автоматических сварочных аппаратов.
При использовании балластных реостатов следует придерживаться следующих правил эксплуатации:
- Работать при условиях, которые указаны в паспорте на аппарат (климатическое исполнение всех типов балластных реостатов – от -40 до +45ºС);
- Запрещается эксплуатация в атмосфере, загрязнённой пылью и вблизи с источниками газа и пара, которые способствуют разрушению электроизоляции;
- Используемый балластный реостат должен проходить периодическую поверку в специализированной электролаборатории. Сроки и содержание такой поверки определяются положениями РД 03-614-03.
Как сделать баластник своими руками?
Первым делом нужно найти подходящую проволоку из металла. Она может быть, к примеру, медная. Дополнительно понадобится цилиндрическая форма, например, труба и амперметр. Нужно продумать, из чего сделать подвижный контакт, это может быть провод.
Следующий этап очень важный: нужно проверить работу нового реостата с помощь. Амперметра. Дело в том, что домашний самодельный баластник для сварочного аппарата не такой точный, как заводские модели.
Следующий нюанс заключается в том, что наш реостат не снабжен корпусом, поэтому соблюдение правил техники безопасности делается еще более обязательным.
Электронный балласт
Все недостатки описанной выше схемы стимулировали изыскания. В результате была разработана схема электронного балласта. Она которая подает не сетевую частоту в 50Гц, а высокочастотные колебания (20-60 кГц), тем самым убирая очень неприятное для глаз мигание света.
Один из электронных балластов — ЭПРА
Выглядит электронный балласт как небольшой блок с выведенными клеммами. Внутри находится одна печатная плата, на которой собрана вся схема. Блок имеет небольшие габариты и монтируется в корпусе даже самого небольшого светильника. Параметры подобраны так, что пуск происходит быстро, бесшумно. Для работы больше никаких устройств не надо. Это так называемая безстартерная схема включения.
На каждом устройстве с обратной стороны нанесена схема. По ней сразу понятно, сколько ламп к нему подключается. Информация продублирована и в надписях. Указывается мощность ламп и их количество, а также технические характеристики устройства. Например, блок на фото выше обслуживать может только одну лампу. Схема ее подключения есть справа. Как видите, ничего сложного нет. Берете провода, соединяете проводниками с указанными контактами:
- первый и второй контакты выхода блока подключаете к одной паре контактов лампы:
- третий и четвертый подаете на другую пару;
- ко входу подаете питание.
Все. Лампа работает. Ненамного сложнее схема включения двух люминесцентных ламп к ЭПРА (смотрите схему на фото ниже).
ЭПРА для двух ламп дневного света
Преимущества электронных балластников описаны в видео.
Такое же устройство вмонтировано в цоколь ламп дневного света со стандартными патронами, которые еще называют «экономлампами». Это аналогичный осветительный прибор, только сильно видоизмененный.
Это тоже люминесцентные лампы, только форма другая
ДЕЛАЕМ БАЛАСТНИК САМОСТОЯТЕЛЬНО
Самый главный элемент, который необходим для этого – проволока, в нашем примере мы взяли медную, но подходит и из других металлов.
Также вам понадобится цилиндрическая фигура ( можно использовать готовую небольшую трубу или просто сварить новую форму из толстого металла), передивжной контакт( для него подойдет провод от сварочного держателя) и амперметр, для измерения силы тока.
Проволоку нужно накрутить на цилиндрическую форму, располагая витка через каждый сантиметр. Провод от держателя присоединяем к тому концу пружин, где будет находится токоведущий элемент.
Затем остается только измерить силу тока, чтоб понять как именно реостат ее меняет.
Устройства, сделанные своими руками, не закрыты корпусом, из-за чего их крепление может быть не очень надежным.
Включение люминесцентных светильников
Есть три основных вида пусковых устройств ЛДС.
С помощью стартёра и дросселя
При такой схеме включения нити накала соединяются последовательно со стартёром и баластником. Другое название электромагнитного баластника – дроссель. Это катушка индуктивности, ограничивающая ток через светильник.
При включении светильника стартёр подключает вольфрамовые спирали последовательно с дросселем. При их нагреве происходит эмиссия электронов, что облегчает появление между электродами разряда. Периодически стартёр разрывает цепь и, если в это время происходит запуск лампочки, то напряжение между электродами падает, и он больше не включается. Если же разряд не возникает, то стартёр снова замыкает цепь, и процесс зажигания повторяется.
Недостатки этой схемы:
- длительное время запуска, особенно зимой в неотапливаемых помещениях;
- дроссель гудит при работе;
- свет мерцает с частотой 100Гц, что незаметно глазу, но может вызвать головную боль.
Электромагнитный баластник для люминесцентных ламп
Интересно. Для уменьшения мерцания в светильниках из двух ламп одна из них включается через конденсатор. При этом колебания света в них не совпадают, что благоприятно влияет на освещённость в помещении.
Умножитель напряжения
Для работы таких светильников раньше использовались самодельные умножители напряжения. Роль токоограничивающего баласта в этой схеме играют конденсаторы С3 и С4, а С1 и С2 создают высокое напряжение, необходимое для появления внутри трубки разряда.
Высоковольтный разряд зажигает ЛДС сразу, но мерцание такого светильника сильнее, чем в схеме со стартёром и дросселем.
Умножитель напряжения
Интересно. Умножитель напряжения позволяет использовать колбы с перегоревшими вольфрамовыми спиралями.
Электронный пускорегулирующий аппарат (ЭПРА)
Электронный балласт для люминесцентных ламп – это преобразователь напряжения, зажигающий и питающий лампу во время работы. Вариантов реализации таких устройств много, но собраны они по одной блок-схеме. В некоторых конструкциях добавляется регулировка яркости.
Запуск светильников с ЭПРА производится двумя способами:
- Перед включением нити накала разогреваются, из-за чего запуск откладывается на 1-2 секунды. Яркость света может нарастать постепенно или сразу включаться на полную мощность;
- Зажигание лампы производится при помощи колебательного контура, который входит в резонанс с колбой. При этом происходит постепенное повышение напряжения и разогрев нитей накала.
Такие устройства обладают рядом достоинств:
- питание светильника осуществляется напряжением высокой частоты, что устраняет мерцание света;
- компактность, что позволяет уменьшить габариты светильника;
- быстрое, но плавное включение, продлевающее срок службы лампы;
- отсутствие шума и нагрева при работе;
- высокий КПД – до 95%;
- встроенные защиты от короткого замыкания.
Электронные ПРА изготавливаются на 1, 2 или на 4 лампы.
Подключение ЭПРА